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Abstract
This report explains and analyzes the system developed by Team FADERIC for the LongEval Lab at CLEF
2023, Task 1 - LongEval-Retrieval. The team members are all students following the Search Engines
course a.y. 2022/23 at the Computer Engineering master degree at University of Padua. The system
developed is a search engine that has to retrieve documents from a corpus, composed of original files in
French language and automatically translated files in English language. The produced IR system exploits
the query expansion technique, such as word N-grams and synonyms, and also the use of a reranking
to improve the overall performance. Evaluating the longitudinal effectiveness of the system using the
multiple collections provided by CLEF, we show that the performances remain satisfactory over time.
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1. Introduction

Search engines have become an indispensable tool for people to retrieve various kinds of
information in their daily routine. However, recent research has shown that Information
Retrieval (IR) systems tend to perform poorly over time as the test data becomes more distant
from the training data. This issue is particularly critical in the field of computer science, where
data is constantly updated and information quickly becomes obsolete. Therefore, Conference and
Labs of the Evaluation Forum (CLEF) 2023 LongEval task [1] has gained interest in evaluating
the temporal persistence of IR systems. The aim of this report is to present the solution of Team
FADERIC to this challenge. The team members are all students following the Search Engines
course a.y. 2022/23 at the Computer Engineering master degree at University of Padua.
The paper is organized as follows: Section 2 shows the related work we have started from;
Section 3 describes our approach; Section 4 explains our experimental setup; Section 5 discusses
our main findings; finally, Section 6 draws some conclusions and outlooks for future work.

CLEF 2023: Conference and Labs of the Evaluation Forum, September 18–21, 2023, Thessaloniki, Greece
$ enrico.bolzonello@studenti.unipd.it (E. Bolzonello); christian.marchiori@studenti.unipd.it (C. Marchiori);
daniele.moschetta@studenti.unipd.it (D. Moschetta); riccardo.trevisiol.1@studenti.unipd.it (R. Trevisiol);
fabio.zanini@studenti.unipd.it (F. Zanini); ferro@dei.unipd.it (N. Ferro)
� http://www.dei.unipd.it/~ferro/ (N. Ferro)
� 0000-0001-9219-6239 (N. Ferro)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:enrico.bolzonello@studenti.unipd.it
mailto:christian.marchiori@studenti.unipd.it
mailto:daniele.moschetta@studenti.unipd.it
mailto:riccardo.trevisiol.1@studenti.unipd.it
mailto:fabio.zanini@studenti.unipd.it
mailto:ferro@dei.unipd.it
http://www.dei.unipd.it/~ferro/
https://orcid.org/0000-0001-9219-6239
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


2. Related Work

To understand the task and the collections provided by CLEF we have used the paper by
LongEval organizers Galuščáková et al. [2]. This has helped us to tackle the problem by figuring
out how given documents and queries were collected and which were the main goals of the
task. In the paper are also given some baseline performances that we have used to benchmark
our system during its development.

We decided to exploit query expansion techniques basing our knowledge of the theme on
the works from Carpineto and Romano [3] and Azad and Deepak [4]. We have decided to use
various techniques, such as word N-grams and synonyms, which we have then tried during the
development of our system.

Moreover, we choose to approach the problem by also using reranking. To do so we have
used the work from Alkhalifa et al. [5], which explains the problem of using a language model
to address the longitudinal evaluation task. We build our reranking approach based on the work
from Yilmaz et al. [6] who developed the Birch system.

3. Methodology

In this section, we describe the methodology we have adopted in order to develop an IR system
for the task.

3.1. Parser

We manually inspected the documents provided by CLEF in order to understand their structure
and be able to extract the body and ID of each document from them.

In order to do that, we created a tool called parser that has been essential for extracting
information from documents in the specified format used by Text REtrieval Conference (TREC).
The parser helps us create structured objects that are used for analysis and indexing within the
IR system.

Here are the key components we implemented:

• ParsedDocument: represents a parsed document to be indexed. It has two attributes:
ID for the unique identifier of the document and body for the document’s content. This
class provides functionalities to set and retrieve documents’ attributes.

• DocumentParser: represents an abstract class providing basic functionalities to
iterate over the elements of a ParsedDocument, reading and parsing its content.

• LongEvalDocumentParser: specific DocumentParser for the LongEval corpus.
It provides an implementation of a parser for the documents in the TREC format. The
parser reads a document and returns a ParsedDocument that contains the ID and the
body of the document.

We used the LongEvalDocumentParser and the ParsedDocument in the indexer to rep-
resent the content of the documents that are in the directory specified by docsDir. The first
one has been used to iterate over the content of the specified document, while the second one
has been used to represent a document to be indexed.



3.2. Analyzer

In order to process texts from documents and queries, we have implemented custom analyzers:
since the collections are provided in both French and English language, two of them have been
implemented.

3.2.1. French analyzer

The FrenchLongEvalAnalyzer component is in charge of processing French language texts,
it is composed by:

• Tokenizing: the StandardTokenizer is used, which exploits the Word Break rules
from Unicode Text Annex #29 [7];

• Character folding: the ICUFoldingFilter is used, which applies the foldings from
Unicode Technical Report #30 [8]. This is useful to fold upper cases, accents and other
kinds of complex characters;

• Elision removal: the ElisionFilter is used, which removes the elision from words;
• Stopword removal: the StopFilter is used, which removes the given stopwords from

the tokens. In this system we have tried using the default Lucene1 stoplist and custom
one, generated by picking the 50 most frequent terms in the documents;

• Position filtering: a custom TokenFilter has been implemented to set the position-
Increment attribute of all tokens to a specific value. This will be useful to ignore the
positionIncrement due to removed stopwords in the search phase when we will use
the proximity between tokens, as explained in Section 3.4.3;

• Stemming: this process is useful to reduce words to their base form, in this system we
have tried using the Snowball French [9] and Light [10] stemmers.

In Table 1 we show an example of the analyzing process for the French language.

3.2.2. English analyzer

The EnglishLongEvalAnalyzer component is in charge of processing English language
texts, it is composed by:

• Tokenizing: the StandardTokenizer is used, which exploits the Word Break rules
from Unicode Text Annex #29 [7];

• Character folding: the ICUFoldingFilter is used, which applies the foldings from
Unicode Technical Report #30 [8]. This is useful to fold upper cases, accents and other
kinds of complex characters;

• Possessive removal: the EnglishPossessiveFilter is used, which removes the very
frequent possessives (’s) from words;

• Stopword removal: the StopFilter is used, which removes the given stopwords from
the tokens. In this system we have tried using the default Lucene stoplist and custom
one, generated by picking the 50 most frequent terms in the documents;

1https://lucene.apache.org/core/9_5_0/index.html



Table 1
French analyzer process

Step Tokens

La méthode d’analyse de texte est
essentielle pour l’extraction d’informations.

Tokenizing [La, méthode, d’analyse, de, texte, est,
essentielle, pour, l’extraction, d’informations]

Character folding [la, methode, d’analyse, de, texte, est,
essentielle, pour, l’extraction, d’informations]

Stopword removal [methode, analyse, texte,
(50 most freq.) essentielle, extraction, informations]

Stemming [method, analys, text,
(Ligth) esentiel, extraction, inform]

Table 2
English analyzer process

Step Tokens

The text analysis method’s importance
lies in its role in information extraction.

Tokenizing [the, text, analysis, method, importance,
lies, in, its, role, in, information, extraction]

Character folding [the, text, analysis, method, importance,
lies, in, its, role, in, information, extraction]

Stopword removal [text, analysis, method, importance,
(50 most freq.) lies, role, information, extraction]

Stemming [text, analysis, method, importance,
(Krovetz) lie, role, information, extraction]

• Position filtering: a custom TokenFilter has been implemented to set the position-
Increment attribute of all tokens to a specific value. This will be useful to ignore the
positionIncrement due to removed stopwords in the search phase when we will use
the proximity between tokens, as explained in Section 3.4.3;

• Stemming: this process is useful to reduce words to their base form, in this system we
have tried using the Snowball English (Porter2) [11] and the Krovetz [12] stemmers.

In Table 2 we show an example of the analyzing process for the English language.

3.3. Indexer

Indexing is a crucial step where we create a searchable database, called index, for the parsed
documents. The index contains important information about the documents, such as the words



Table 3
Indexing performances

Collection Docs size
(GB)

Stoplist Stemmer Body terms Index
size (GB)

Time (s)

French 7.99 Default Snowball 7,497,875 6.98 1224
50 most freq. Light 7,459,058 6.95 842

English 7.27 Default Snowball 7,253,947 6.49 1041
50 most freq. Krovetz 7,451,647 6.43 848

and phrases they contain, their frequency, and their location within the document. Indexing
allows us to store the documents in a structured manner, which greatly speeds up the retrieval
process by enabling users to search for documents based on keywords or phrases. To achieve
this, we developed the following components:

• DirectoryIndexer: indexes the documents located in a specified directory and its
sub-directories. It accepts various parameters, including the directory containing the
documents to be indexed, the DocumentParser, the Analyzer, the Similarity to be
used for indexing, the expected number of documents and the location where the index
will be stored. Our code ensures that the document directory is readable and the index
directory is writable before initiating the indexing process. Additionally, it keeps track of
statistics, such as the number of indexed files and documents.
The main component of the class is the index method, which is in charge of performing
the actual indexing of the documents. This method iterates through the documents in the
directory, extracting their content and adding it to the index. During all the iterations,
some statistics indexing is given, such as the time taken every 10 thousand documents.
Finally, the index is closed.

• BodyField: represents the body field of a document. This field has the following
properties:

– it is tokenized, meaning that the body is broken into words, or tokens, to make the
search more accurate and flexible;

– frequencies and also the positions of the tokens are stored, in order to allow for
phrase queries with proximity, as explained in Section 3.4.3;

– the body content is stored, even if this had an impact on the index size, this was
needed in the search phase in order to pass documents bodies to the reranker, as
explained in Section 3.4.5.

In Table 3 are reported the index performances obtained using the analyzers described in
Section 3.2 and the setup described in Section 4.

3.4. Searcher

In the searcher we have used a boolean query approach, in this way it was possible to create
complex queries by combining, using the boolean operators, different components to be matched.



Table 4
NDCG results with different BM25 parameters

Run FADERIC_French-Stop50-Stem-Shingle-Fuzzy

Measure nDCG

k1

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.30 0.3941 0.3952 0.3954 0.3957 0.3963 0.3936 0.3948 0.3934
0.40 0.3967 0.398 0.3984 0.3992 0.3992 0.3992 0.3981 0.3975
0.50 0.3999 0.4004 0.4008 0.4013 0.4014 0.4014 0.4014 0.4011
0.60 0.3999 0.4013 0.4017 0.4025 0.4026 0.4024 0.4019 0.4008
0.70 0.4021 0.4029 0.4034 0.4038 0.4043 0.4047 0.4046 0.4039
0.75 0.4018 0.4028 0.4035 0.4039 0.4038 0.4043 0.4037 0.4035
0.80 0.401 0.4025 0.4033 0.404 0.4041 0.4043 0.4047 0.4039

b

0.90 0.3985 0.3998 0.4009 0.4014 0.4018 0.4021 0.4015 0.4011

The components we have used in our queries are explained from Section 3.4.1 to Section 3.4.5.
Note that in the following, the word N-grams component explained in Section 3.4.3 will be
referenced also with the Lucene’s jargon shingles.

3.4.1. BM25

Since the document collection has a significant size, as a base of our system we opted for a
classic BM25 [13] approach due to the efficiency of it and higher effectiveness compared to other
methods.
The Lucene implementation has default values 𝑘1 = 1.2 and 𝑏 = 0.75 which worked fine,
but we decided to fine-tune the parameters to improve measures, in particular, Normalized
Discounted Cumulated Gain (nDCG) since it is the relevant measure for the LongEval campaign.
The results of our experiments are reported in Table 4.

The best result was given by two pairs: 𝑘1 = 1.8, 𝑏 = 0.8 and 𝑘1 = 1.6, 𝑏 = 0.7; we chose
pair 𝑘1 = 1.8, 𝑏 = 0.8 due to having the highest Mean Average Precision (MAP). Note that the
performance gain was minimal, just 0.006 from the score with default parameters, which was
expected.

3.4.2. Fuzzy

A fuzzy search, or approximate search, is a technique used to search for approximate or partial
matches between a search term and documents in a collection of texts. Unlike exact search,
in which the match must be exact and precise, fuzzy search allows you to find results even
when the words you search for do not exactly match those in the documents. Fuzzy search is
particularly useful when you want to get results even if there are misspellings, language variants,
abbreviations or other forms of variations in the search terms or texts of the documents. For
example, if you search for the term "roam" with a fuzzy search, the document containing the
term "foam" might also be returned.



Fuzzy search techniques are based on the use of algorithms that evaluate the similarity be-
tween text strings. One of the most common algorithms used for fuzzy search is the Levenshtein
algorithm [14], which calculates the edit distance between two strings, that is, the minimum
number of operations (character insertions, deletions and substitutions) required to transform
one string into the other. Lucene, for example, uses a variant of the algorithm just described, the
Damerau-Levenshtein algorithm, named after the Damerau algorithm [15], which also considers
character traspositions among its allowable operations.

Lucene also allows you to add an additional (optional) parameter with which to specify the
maximum number of changes allowed. In our case we decided to set a manual threshold to
choose the value of the parameter; if the word length is greater than or equal to the threshold
then the fuzzy parameter is set to 2 otherwise 1 is used. The threshold is called "fuzzyThreshold"
and can be set in the configuration file; we decided to set it to 10. Finally, to avoid performance
degradation, in our IR system, fuzzy search is applied only if the query contains a single term.

3.4.3. Word N-grams

Word N-grams are a sentence analysis technique that consists in dividing the words of a sentence
into sequences of 𝑛 consecutive words. For example, the sentence "the dog barks," can generate
the N-grams "the dog" and "dog barks". Word N-grams are useful because they capture local
relationships between words within a text, so this approach helps identify similar, though not
identical, phrases and can improve search relevance. The maximum number of words within an
N-gram can be set in the configuration file in maxShingleSize; in our case, we decided to use
a maximum of 3 words. Also, we avoided generating unigrams as they do not capture any local
relationships within the query.

We then decided to set up a proximity search within each N-gram. The proximity of terms can
be used to identify documents in which the search terms occur in a certain spatial relationship.
For example, if we are searching for the terms "dog" and "brown" with the proximity of 3 words,
we want to find documents in which these two terms appear within a maximum distance of
three words from each other. Thus, if a document contains sentences such as "I saw a brown
dog in the park" or "The brown dog was running fast", these documents would be considered
relevant because the terms "dog" and "brown" are close to each other. In our case, the proximity
parameter is set to 5.

Finally, we applied a boost to all word N-grams based on the numer of generated N-grams
for a certain query.

3.4.4. Synonyms

Managing synonyms in a retrieval system is not straightforward. The use of synonyms may
not necessarily improve results, and this depends on how they are used.

Synonyms may be useful in the context of IR to broaden the search to include more related
terms. However, the introduction of synonyms can also create problems such as noise in the
information retrieval process. Here are some reasons why the use of synonyms may not improve
results:



• Polysemy: words may have more than one meaning. Introducing synonyms might lead
to an increase in irrelevant results if a synonym is associated with another meaning of
the searched word. For example, if one searches for "bank" in the context of a financial
bank, introducing the synonym "riverbank" could generate irrelevant results.

• Irrelevant synonyms: not all synonyms are equally relevant in the context of a given
query. Some synonyms might be too general or too specific concerning the user’s intent,
leading to inappropriate or insufficient results.

• Redundancy: adding synonyms can lead to redundancy in the answers provided. If
multiple synonymous words or phrases are used in the query, there may be significant
overlap between the results, reducing the overall effectiveness of the IR system.

However, it should be kept in mind that the effectiveness of using synonyms in improving
the results of the IR system also depends on the specific implementation and the characteristics
of the domain or context in which the system is used. In some cases, the use or expansion of
synonyms could actually improve the accuracy of information retrieval.

Furthermore, the use of synonyms can increase computational complexity in the information
retrieval process. Because synonyms require accurate correspondence with indexed documents,
additional computations must be performed to identify and compare matching synonyms in
indexed texts.

We made several attempts to implement synonyms in our system; a summary description of
what we did is given below.

Firstly, since handling synonyms in the index takes too much computation time, we decided
to handle them directly in the search. We added synonyms in the queries with a query expansion
approach.

In addition, we decided to use the WordNet2 dictionary. WordNet is a lexical database that
groups English words into sets of synonyms called synsets, providing semantic relationships
and definitions. It offers a comprehensive resource for natural language processing tasks, such
as word sense disambiguation, information retrieval, and sentiment analysis. Since WordNet is
written in C, it was necessary to use an additional API in order to use the dictionary on our
system. That API is called extJWNL3 (Extended Java WordNet Library) and does not need the
WordNet database installed locally.

Also, to improve dictionary lookup, we decided to use the OpenNLP4 library for natural
language processing and limit polysemy. Each word in the original query was processed by
an OpenNLP Part of Speech (PoS) Tagger in order to obtain the tag associated with the word.
That function analyzes the context in which the word is used and returns the associated tag.
The model used for the pos tagger was en-pos-maxent.bin and the tags are associated with
WordNet section as shown in Table 5.
Knowing the tag of each word in a query made it possible to look up the word in the corre-
sponding dictionary section. For example, for the query "free software," free was searched in
the adjective section and software in the noun section. This strategy improved the metrics very
little probably because the queries provided by Long Eval are very short, averaging 2/3 words.

2https://wordnet.princeton.edu/
3https://github.com/extjwnl/extjwnl
4https://opennlp.apache.org/



Table 5
OpenNLP Tags compared with WordNet Sections

OpenNLP Tag WordNet Section

JJ Adjectives
VB Verbs
RB Adverbs
NN Nouns

Others No synonyms retrieved

In addition, OpenNLP works well with properly formulated sentences, including consideration of
capitalization and punctuation. In this case, queries are very crudely formulated, for example,
some begin with a capital letter and some do not, as a result, OpenNLP does not always provide
the correct tag. Then, this strategy might be more useful in the case of more complex queries,
such as those characterizing a conversational IR system.

Subsequently, we tried to give a different boost to each synonym. As a first approach, we
decided to provide a boost based on the amount of synonyms returned. In this case, the boost
was calculated in this way:

𝑏𝑜𝑜𝑠𝑡 =
𝐵𝑜𝑜𝑠𝑡𝐵𝑎𝑠𝑒

𝑆𝑦𝑛𝑜𝑛𝑦𝑚𝐿𝑖𝑠𝑡𝐿𝑒𝑛𝑔𝑡ℎ
(1)

This approach was used to limit the importance associated with each synonym if the returned
synonym list is long, being more likely to get irrelevant synonyms.

Finally, we moved synonym management, creating two new Analyzers: SynonymAnalyzer
and SynonymPOSAnalyzer, which are applied only in the search part:

• SynonymAnalyzer: uses as input a query already previously analyzed with the
standard Analyzer, i.e. EnglishLongEvalAnalyzer or FrenchLongEvalAnalyzer,
after applies: SynonymGraphFilter, FlattenGraphFilter and StopFilter.
SynonymGraphFilter represents a filter that can be directly applied to a TokenStream
within an Analyzer. The filter creates a synonym graph based on specified configurations
and expands the terms found in the analyzed text by adding the corresponding synonyms
to the token graph. FlattenGraphFilter converts an incoming graph token stream,
such as one from SynonymGraphFilter, into a flat form so that all nodes form a single
linear chain with no side paths. Every path through the graph touches every node.
This is necessary when indexing a graph token stream because the index does not save
PositionLengthAttribute and so it cannot preserve the graph structure. However,
at search time, query parsers can correctly handle the graph and this token filter should
not be used.
This Analyzer uses a list of synonyms in .txt format, available in two versions: standard
and custom. Before being processed by the Analyzer, the synonym list is transformed
into a SynonymMap object via the AnalyzerUtil’s loadSynonymList function.

• SynonymPOSAnalyzer: takes as input EnglishLongEvalAnalyzer, then applies
an OpenNLPPOSFilter, so that each word is assigned the associated tag. Then, it applies



Figure 1: Retrieve-than-rerank framework

a custom filter called SynonymPOSFilter to manage the tags and look up words in the
WordNet dictionary. Creating a custom filter was not trivial as the information about it
in the documentation and online is very limited. The filter allows us to:

1. fetch the input tokens,
2. retrieve their associated tag,
3. search the synonyms in the dictionary based on their tag,
4. process the synonyms with the standard analyzer i.e. EnglishLongEvalAnalyzer
5. and return as output a TokenStream containing all the synonyms found.

The tokenStream returned as output by both Analyzers is then transformed into a list of strings
which is in turn processed by the Searcher to apply a boost. Finally, the synonyms are added
to the BooleanQuery along with the original query.

3.4.5. Reranker

After all of the previous steps, we obtained a working system that achieved satisfactory results at
a good speed, so we tried to improve it by introducing a second stage, called passage re-ranking,
in which each of the documents returned by the first retrieval model would be scored and
re-ranked by a more computationally-intensive method involving Machine Learning.
We achieved this by leveraging a library called PyGaggle5, which provides some deep neural

architectures for text ranking and question answering, and two transformer-based models, T5
and BERT, with different checkpoints and even our own trained checkpoint using code from
another library [16].

In our system, we can choose how many documents are to be reranked from the top for two
reasons: the first is raw computing performance, reranking all 1000 retrieved documents takes a
long time and we don’t have machines powerful enough to handle it; the second is that we saw

5https://github.com/castorini/pygaggle



that reranking more than 50 documents lowers our measures, even below the baseline measure
without reranking.
Our first approach to reranking was to consider only the scores returned by the models to
rerank the documents but we then switched to an approach where we consider also the BM25
score as follows. Let 𝑆𝑐𝑜𝑟𝑒𝐵𝑀25(𝑖) the score given by BM25 for the document at rank 𝑖 and
𝑆𝑐𝑜𝑟𝑒𝑟𝑟(𝑖) the score given by the reranker for the document at rank 𝑖, and let 𝑛 be the total
number of reranked documents, we define:

𝑛𝑆𝑐𝑜𝑟𝑒𝑟𝑟(𝑖) =

(︂
𝑆𝑐𝑜𝑟𝑒𝑟𝑟(𝑖) + min

𝑗∈[1,𝑛]
𝑆𝑐𝑜𝑟𝑒(𝑗)

)︂
· 𝑆𝑐𝑜𝑟𝑒𝐵𝑀25(1)

𝑆𝑐𝑜𝑟𝑒𝑟𝑟(1)
(2)

as the normalized score for the reranked documents, since the models returned a score in the
range [−10,+10], which was not suitable for our case.
In our first approach, we simply passed the score to Lucene’s ScoreDoc object and we were
done. But in this way, we would lose information about the ranking given by BM25, which is
still relevant, so we defined a new score:

𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒(𝑖) = 𝑚𝑛𝑡𝑟 + (1− 𝛼) · 𝑆𝑐𝑜𝑟𝑒𝐵𝑀25(𝑖) + 𝛼 · 𝑛𝑆𝑐𝑜𝑟𝑒𝑟𝑟(𝑖) (3)

where 𝑚𝑛𝑡𝑟 is the maximum score from docs which are not reranked, in this way, we preserve
the order of this docs. With this approach, we can give a weight to the reranker to find the
balance and we do not lose the information given to us by the first stage. Note that 𝛼 = 1
corresponds to considering only scores from the reranker.
Pretrained Models

We tried two transformer-based models, T5 and BERT since they are supported by PyGaggle.
First, we tried T5 [17], but with BERT [18] we got better results. Starting from the same base
model, t5-base6 for T5 bert-base-uncased7 for BERT, we tried different checkpoints8 fine-tuned
specifically for reranking tasks and we even tried to train our checkpoint. The pre-trained
checkpoints that we used are:

• monot5-base-msmarco-10k9

• bert-base-mdoc-bm2510

The results for the T5 model are reported in Table 6 and the results for the BERT model are
reported in Table 7.

The BERT pretrained checkpoint with 20 reranked documents improved nDCG by 3.56%
and MAP by 8.5%.
Training our own checkpoint
At this point, BERT gave us good results so we took it a step further and we tried to find ways
to finetune it to our data. The training process is pretty straightforward:

6https://huggingface.co/t5-base
7https://huggingface.co/bert-base-uncased
8saving the model’s parameters and optimizer state during the training process
9https://huggingface.co/castorini/ monot5-base-msmarco-10k
10https://huggingface.co/Luyu/ bert-base-mdoc-bm25



Table 6
monot5-base-msmarco-10k model with different number of documents to rerank

nDCG MAP

0 0.4075 0.2411
10 0.414 0.2502
20 0.4119 0.2477
50 0.4083 0.242
100 0.405 0.2376
250 0.3987 0.2301

Table 7
bert-base-mdoc-bm25 model with different number of documents to rerank

nDCG MAP

0 0.4075 0.2411
10 0.4207 0.2608
20 0.4222 0.2617
50 0.4212 0.2598
100 0.4184 0.2563
250 0.4104 0.2478

• Data pre-processing. Transformers expect batches of tensors as input, so we need to
preprocess our data to the expected format. For processing textual data the tokenizer
tool is used, which splits text into tokens; in our case, we exploit the pre-trained BERT
tokenizer which returns tokens that are not necessarily words, but rather subwords:
frequently used words are (or should) not split into smaller subwords, but rare words
should be decomposed into meaningful subwords [19]. Further, the tokenizer adds, at
the beginning and at the end, two special tokens, respectively [CLS] and [SEP]. The
tokenizer returns a dictionary with three items:

– input_ids, indices corresponding to each token in the sentence
– attention_mask, indicates whether a token should be attended to or not
– token_type_ids, identifies which sequence a token belongs to when there is more

than one sequence

An important note is that BERT accepts input sequences of up to 512 tokens, so the
tokenizer truncates longer documents.

• Training. The easiest way to train is to use the Trainer11 API from PyTorch.

To ease development, we used a package for training deep language model rerankers [16] and
adapted the example code to our collection.

The convert_to_training.py takes care of converting data to the training file, given
the ranking file, the qrels, the query collection and the docs collection. Then it is sufficient to
use the trainer.py code to get the trained model. Unfortunately, we don’t have access to

11https://huggingface.co/docs/transformers/main_classes/ trainer



Table 8
Our trained model with different number of documents to rerank

nDCG MAP

0 0.4075 0.2411
10 0.3910 0.2253
20 0.3741 0.1975
50 0.3405 0.1580

sufficiently powerful machines so we were forced to train on a Google Colab notebook. This
came with a major drawback: the maximum runtime is 12 hours, so we couldn’t train on more
than 1 epoch since a 2 epoch model was estimated to take 15 hours to train. This obviously
tanked our model performances, and, as we can see in Table 8.
The Colab notebook with all the hyperparameters can be found at https://colab.research.google.
com/drive/1oFeYSkR31A-MUibwWrfNcKLUyPxEYbOq?usp=sharing. The trained model can be
found at https://huggingface.co/enricobolzonello/clef_longeval.
Integrating with Lucene
One problem that emerged while working with the reranker was integrating it with Lucene
since the reranker is written in Python and our main program is in Java. To solve the issue we
came up with three approaches:

1. passing intermediate text files, with documents, query to the reranker and returning the
ranking to Java. This solution was used for initial testing but was deemed too inefficient
and prone to errors

2. using Python as the system’s entry point and using the PyJNIus12 library to access Java
classes. The same approach was used by Birch [6], but we should have changed the
classes too much to integrate tightly the reranker and more importantly we didn’t want
to change the entry point of our system

3. our final solution was to call in some way Python from Java

The library we used to achieve this is JEP13, which uses Java Native Interface (JNI) and the
CPython API to start up the Python interpreter inside the Java Virtual Machine (JVM). Thanks
to the Python interpreter, we can call, at each query, the reranker which returns a list of generic
Objects that is converted to a list of Float.

4. Experimental Setup

The experimental setup of this project consists of the following:

• The project is available at https://bitbucket.org/upd-dei-stud-prj/seupd2223-faderic/src/
master/;

• The collections are taken from https://clef-longeval.github.io/data/;

12https://github.com/kivy/pyjnius
13https://github.com/ninia/jep

https://colab.research.google.com/drive/1oFeYSkR31A-MUibwWrfNcKLUyPxEYbOq?usp=sharing
https://colab.research.google.com/drive/1oFeYSkR31A-MUibwWrfNcKLUyPxEYbOq?usp=sharing
https://huggingface.co/enricobolzonello/clef_longeval
https://bitbucket.org/upd-dei-stud-prj/seupd2223-faderic/src/master/
https://bitbucket.org/upd-dei-stud-prj/seupd2223-faderic/src/master/
https://clef-longeval.github.io/data/


• The evaluation tool used is trec_eval v9.0.7, available https://trec.nist.gov/trec_eval/;
• To compute the runs we have used the following hardware: CPU AMD Ryzen 7 2700,

GPU Zotac GeForce RTX 2060 6 GB, RAM 16 GB DDR4;

In order to reproduce the runs for this system, it is necessary to follow the instructions given
in the project’s ReadMe file.

5. Results

In this Section we will show and analyze the results obtained by our system. In particular,
Section 5.1 will be about the results of all the runs produced by our system on the training
collection during its development, while Section 5.2 will consist of a statistical analysis of the
runs submitted to CLEF on the test collections.

5.1. Training results

We have combined the different components explained in Section 3 and we conducted a thorough
experimentation process to identify the best-performing system for our task. By tuning the
parameters of each component and selecting the optimal ones, we were able to build a system
that addresses the persistence issue of IR systems. In Table 9 are reported the MAP and nDCG
scores obtained on those systems.

The keywords reported in the names of the runs have the following meanings:

• French: used documents and queries from the French collection
• English: used documents and queries from the English collection

Table 9
nDCG and MAP values on train collection

Run name nDCG MAP

FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom-
Rerank20W6

0.4274 0.2671

FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-Rerank30 0.4230 0.2632
FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom 0.4079 0.2416
FADERIC_French-BM25Tuned-Stop50-LightStem-Shingle-Fuzzy 0.4047 0.2383
FADERIC_French-BM25-StopDefault-SnowStem 0.3786 0.2110
FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-SynPOS
-Rerank30 0.3271 0.1877
FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-Rerank30 0.3527 0.1873
FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy
-TrainedRerank30 0.3599 0.1799
FADERIC_French-LMDirichlet-Stop50-LightStem 0.3398 0.1731
FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-SynPOS 0.3081 0.1634
FADERIC_English-BM25-StopDefault-SnowStem 0.2927 0.1490
FADERIC_English-LMDirichlet-Stop50-KStem 0.2612 0.1228

https://trec.nist.gov/trec_eval/


• BM25: used Okapi BM25 similarity (with default parameters)
• BM25Tuned: used Okapi BM25 similarity, with parameters tuned on training collection:

k1=1.6 and b=0.7
• LMDirichlet: used Dirichlet smoothing (with default parameter)
• StopDefault: used Lucene’s default stop words list
• Stop50: used stoplist built by picking the 50 most frequent terms in the documents indexed

without stoplist and stemming
• LightStem: used the Light stemmer
• KStem: used Krovetz stemmer
• SnowStem: the Snowball stemmer
• Shingle: used word N-grams (max window size = 3) query expansion
• Fuzzy: used fuzzyness (threshold parameter = 10) query expansion
• SynCustom: used custom synonyms list
• SynPOS: used WordNet synonym list together with OpenNLP PoS tagging
• Rererank20W6: used reranker, reranking 20 documents with weight 0.6 given to the

reranker scores
• Rererank30: used reranker, reranking 30 documents with weight 1 given to the reranker

scores
• TrainedRerank30: used reranker, reranking 30 documents using our custom model

During the tuning of our system, we primarily focused on MAP and nDCG. However, in
order to perform a more comprehensive analysis, we also considered additional measures such
as Precision and Recall: the first one is the fraction of retrieved documents that are relevant to
the user’s query, indicating a measure of the accuracy of the system, while with the second is a
measure of the completeness of the system in retrieving all relevant results, computed by the
fraction of relevant documents retrieved.

In Figure 2, we show the interpolated Precision-Recall curve, which can be useful to show the
inverse relationship between Precision and Recall, indicating the trade-off between these two
measures.



Figure 2: Interpolated Precision-Recall curve on train collection

In Table 10 and in Table 11 we have reported a more complete list of scores respectively for
the French and English runs. For space reasons, we label the runs as:

• fr_1 = FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom
-Rerank20W6

• fr_2 = FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-Rerank30
• fr_3 = FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom
• fr_4 = FADERIC_French-BM25Tuned-Stop50-LightStem-Shingle-Fuzzy
• fr_5 = FADERIC_French-BM25-StopDefault-SnowStem
• fr_6 = FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-TrainedRerank30
• fr_7 = FADERIC_French-LMDirichlet-Stop50-LightStem
• en_1 = FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-SynPOS-Rerank30
• en_2 = FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-Rerank30
• en_3 = FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-SynPOS
• en_4 = FADERIC_English-BM25-StopDefault-SnowStem
• en_5 =FADERIC_English-LMDirichlet-Stop50-KStem



Table 10
Measures for French runs on train collection

runid all fr_1 fr_2 fr_3 fr_4 fr_5 fr_6 fr_7

num_q all 672 672 672 672 672 672 672
num_ret all 660838 660838 660838 660838 658471 660838 658512
num_rel all 2626 2626 2626 2626 2626 2626 2626
num_rel_ret all 2316 2318 2316 2323 2271 2318 2156

ndcg all 0.4274 0.4230 0.4079 0.4047 0.3786 0.3599 0.3398

map all 0.2670 0.2632 0.2416 0.2383 0.2110 0.1799 0.1731
gm_map all 0.0786 0.0765 0.0702 0.0696 0.0545 0.0552 0.0394

Rprec all 0.2280 0.2278 0.1987 0.1946 0.1747 0.1365 0.1469
bpref all 0.4128 0.4122 0.4085 0.4063 0.3753 0.3701 0.3561
recip_rank all 0.4222 0.4140 0.3824 0.3734 0.3424 0.3170 0.3134

iprec_at_recall_0.00 all 0.4499 0.4410 0.4078 0.4003 0.3646 0.3409 0.3274
iprec_at_recall_0.10 all 0.4485 0.4395 0.4060 0.3987 0.3633 0.3398 0.3258
iprec_at_recall_0.20 all 0.4310 0.4189 0.3815 0.3765 0.3465 0.3169 0.3066
iprec_at_recall_0.30 all 0.3651 0.3575 0.3200 0.3131 0.2813 0.2515 0.2359
iprec_at_recall_0.40 all 0.3046 0.2995 0.2763 0.2720 0.2433 0.2030 0.1963
iprec_at_recall_0.50 all 0.2846 0.2825 0.2623 0.2592 0.2296 0.1855 0.1795
iprec_at_recall_0.60 all 0.2328 0.2293 0.2147 0.2147 0.1861 0.1421 0.1381
iprec_at_recall_0.70 all 0.2120 0.2130 0.1976 0.1974 0.1671 0.1310 0.1242
iprec_at_recall_0.80 all 0.1616 0.1647 0.1489 0.1481 0.1212 0.1013 0.0851
iprec_at_recall_0.90 all 0.1375 0.1366 0.1279 0.1276 0.0985 0.0838 0.0677
iprec_at_recall_1.00 all 0.1357 0.1351 0.1268 0.1267 0.0984 0.0831 0.0675

P_5 all 0.2074 0.2065 0.1875 0.1827 0.1637 0.1315 0.1375
P_10 all 0.1603 0.1560 0.1472 0.1469 0.1332 0.1007 0.1088
P_15 all 0.1233 0.1243 0.1183 0.1167 0.1090 0.0869 0.0889
P_20 all 0.0990 0.1022 0.0990 0.0990 0.0901 0.0799 0.0753
P_30 all 0.0748 0.0743 0.0748 0.0743 0.0683 0.0742 0.0580
P_100 all 0.0279 0.0279 0.0279 0.0280 0.0267 0.0279 0.0232
P_200 all 0.0150 0.0150 0.0150 0.0151 0.0146 0.0150 0.0133
P_500 all 0.0065 0.0065 0.0065 0.0065 0.0064 0.0065 0.0060
P_1000 all 0.0034 0.0034 0.0034 0.0035 0.0034 0.0034 0.0032

recall_5 all 0.2738 0.2732 0.2478 0.2417 0.2106 0.1749 0.1802
recall_10 all 0.4167 0.4042 0.3830 0.3828 0.3402 0.2606 0.2789
recall_15 all 0.4724 0.4757 0.4560 0.4499 0.4203 0.3366 0.3380
recall_20 all 0.5034 0.5193 0.5032 0.5051 0.4595 0.4119 0.3814
recall_30 all 0.5710 0.5657 0.5710 0.5677 0.5187 0.5651 0.4412
recall_100 all 0.7022 0.7019 0.7022 0.7028 0.6688 0.7019 0.5816
recall_200 all 0.7555 0.7560 0.7555 0.7587 0.7283 0.7560 0.6729
recall_500 all 0.8219 0.8232 0.8219 0.8235 0.7994 0.8232 0.7574
recall_1000 all 0.8663 0.8662 0.8663 0.8685 0.8485 0.8662 0.8072



Table 11
Measures for English runs on train collection

runid all en_1 en_2 en_3 en_4 en_5

num_q all 672 672 672 671 671
num_ret all 655602 655602 655602 654919 654764
num_rel all 2626 2626 2626 2623 2623
num_rel_ret all 1924 1915 1924 1878 1765

ndcg all 0.3271 0.3257 0.3081 0.2927 0.2612

map all 0.1877 0.1873 0.1634 0.1490 0.1228
gm_map all 0.0221 0.0215 0.0195 0.0164 0.0122

Rprec all 0.1706 0.1708 0.1385 0.1253 0.1092
bpref all 0.3536 0.3524 0.3417 0.3263 0.3139
recip_rank all 0.3322 0.3289 0.2967 0.2697 0.2364

iprec_at_recall_0.00 all 0.3482 0.3451 0.3111 0.2825 0.2471
iprec_at_recall_0.10 all 0.3472 0.3444 0.3108 0.2825 0.2455
iprec_at_recall_0.20 all 0.3261 0.3234 0.2909 0.2652 0.2310
iprec_at_recall_0.30 all 0.2658 0.2646 0.2270 0.2050 0.1709
iprec_at_recall_0.40 all 0.2111 0.2118 0.1855 0.1641 0.1353
iprec_at_recall_0.50 all 0.1920 0.1937 0.1671 0.1510 0.1223
iprec_at_recall_0.60 all 0.1519 0.1526 0.1270 0.1168 0.0909
iprec_at_recall_0.70 all 0.1328 0.1331 0.1118 0.1017 0.0803
iprec_at_recall_0.80 all 0.0945 0.0955 0.0813 0.0760 0.0538
iprec_at_recall_0.90 all 0.0753 0.0769 0.0671 0.0616 0.0406
iprec_at_recall_1.00 all 0.0752 0.0769 0.0671 0.0616 0.0406

P_5 all 0.1542 0.1542 0.1345 0.1195 0.1019
P_10 all 0.1137 0.1131 0.1042 0.0954 0.0793
P_15 all 0.0904 0.0898 0.0835 0.0784 0.0650
P_20 all 0.0745 0.0732 0.0705 0.0662 0.0543
P_30 all 0.0536 0.053 0.0537 0.0513 0.0433
P_100 all 0.0208 0.0209 0.0208 0.0201 0.0179
P_200 all 0.0116 0.0115 0.0116 0.0113 0.0103
P_500 all 0.0052 0.0052 0.0052 0.0051 0.0048
P_1000 all 0.0029 0.0028 0.0029 0.0028 0.0026

recall_5 all 0.2020 0.2017 0.1710 0.1512 0.1329
recall_10 all 0.2909 0.2887 0.2628 0.2437 0.1988
recall_15 all 0.3430 0.3404 0.3155 0.2970 0.2432
recall_20 all 0.3745 0.3683 0.3523 0.3318 0.2727
recall_30 all 0.4010 0.3970 0.4018 0.3861 0.3281
recall_100 all 0.5140 0.5167 0.5151 0.500 0.4486
recall_200 all 0.5769 0.5754 0.5774 0.5630 0.5180
recall_500 all 0.6607 0.6597 0.6612 0.6443 0.6087
recall_1000 all 0.7186 0.7150 0.7186 0.7027 0.6635



Based on these results, we can derive the following considerations:

• the runs on the French collections are significantly better than the ones on the English
one, the reason for this is the automatic translation of the document collection, which has
led to errors and inconsistencies in the English one;

• the system performs better when configured to use BM25 similarity instead of the Dirichlet
smoothing;

• the tuned parameters on BM25 just gave slightly betters results, probably overfitting the
run we have tuned them on, for this reason we have chosen to use the default ones in
most of the runs;

• the custom stoplist we have generated by picking the most frequent terms has outper-
formed Lucene’s default ones because since it was based on the specific collection the
effectiveness of using a stoplist has been maximized;

• in both French and English the Snowball stemmer performed worse than the Light and
Krovetz stemmer, respectively;

• the use of word N-grams improved the performances, allowing to have more contextual
matches by looking for group of words instead of single ones;

• synonyms have slightly improved the performances, this is due to the fact that sometimes
they can be misleading and retrieve documents that are not contextual with the query;

• the reranking is a very powerful tool that has given a huge performance increase to our
runs.

Based on the previous results and these considerations, we have decided to submit to CLEF
the following systems:

• FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom-Rerank20W6, i.e.,
the best system overall;

• FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-SynPOS-Rerank30, i.e., the best
system overall on the English collection;

• FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom, i.e., the best sys-
tem without the use of reranking;

• FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-Rerank30, i.e., the best system
without the use of synonyms;

• FADERIC_French-BM25Tuned-Stop50-LightStem-Shingle-Fuzzy, i.e., the best system
without the use of both synonyms and reranking;

5.2. Test results

In this Section, we will analyze the performance of the submitted runs on heldout, short term
and long term collections. At first, we will tackle the performance changes and then we will
perform a statistical analysis. In this last part, we will use ANOVA2 with a significance level
𝛼 = 0.05 in order to find out if we can reject the null hypothesis, i.e. there is no significant
statistical difference between the results of the given runs.



Table 12
nDCG and MAP values on heldout collection

Run name nDCG MAP

FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom-
Rerank20W6

0.4169 0.2474

FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-Rerank30 0.4147 0.2416
FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom 0.4080 0.2376
FADERIC_French-BM25Tuned-Stop50-LightStem-Shingle-Fuzzy 0.4044 0.2324
FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-SynPOS
-Rerank30 0.3030 0.1626

Then we will use Tukey’s Honestly Significant Difference (HSD) test to perform multiple pairwise
comparisons and determine which specific run means differ significantly from each other.

Since we have submitted four runs performed on the French collection and one on the English
collection, in the statistical analysis we will compare to each other only the French runs.

5.2.1. Heldout

In Table 12 are reported the nDCG and MAP values obtained from the submitted runs on
the heldout collection, while in Figure 3 is reported the interpolated Precision-Recall curve.
Comparing these results with the ones obtained on training, shown in Table 9 and Figure 2
respectively, we can see that every run suffered a performance drop over all the measures. This
worsening was expected and it can be due to the fact that the system has been tuned over a
different set of queries. It should also be noticed that this set of queries is more than 6 times
smaller compared to the training one, therefore the presence of some outliers could have caused
the mean performances to drop and to not be a good descriptor of the system.

Observing the nDCG and Average Precision (AP) boxplots, shown in Figure 4, we can notice
that the runs performed on the French collection have a similar structure in terms of median
values and interquartile ranges. We can also notice that, in the AP boxplot, the reranked runs
fr_1, fr_2 have longer whiskers, while the others show the presence of outliers.

From the ANOVA2 analysis, which results are reported in Table 13, we can see that 𝑝–𝑣𝑎𝑙𝑢𝑒 >
𝛼, therefore we cannot reject the null hypothesis. Moreover, from Tukey’s HSD multiple
comparison shown in Figure 5, we can derive that the French runs can be considered to be
similar to each other.

5.2.2. Short term

In Table 14 are reported the nDCG and MAP values obtained from the submitted runs on the
short term collection, while in Figure 6 is reported the interpolated Precision-Recall curve.
Comparing these results with the ones obtained on heldout, shown in Table 12 and Figure 3
respectively, we can see that every run has increased its performances. This improvement was
not expected since the performances should tend to drop over time. This can be due to the fact
that this set of runs is almost 9 times bigger than the heldout, therefore we can consider the
mean measures obtained to be more reliable than the ones on the heldout collection.



Figure 3: Interpolated Precision-Recall curve on heldout collection

(a) nDCG (b) AP

Figure 4: Box plot on heldout collection, the mean values are shown in red



Table 13
ANOVA2 on heldout collection

(a) nDCG

Source SS df MS F Prob>F

Systems 0.01 3 0.003 0.64 0.58
Topics 23.54 97 0.242 47.20 1.97E-134
Error 1.49 291 0.005 - -
Total 25.04 391 - - -

(b) AP

Source SS df MS F Prob>F

Systems 0.01 3 0.003 0.68 0.55
Topics 23.35 97 0.240 42.10 8.26E-128
Error 1.66 291 0.057 - -
Total 25.03 391 - - -

(a) nDCG (b) AP

Figure 5: Tukey’s HSD on heldout collection

Observing the nDCG and AP boxplots, shown in Figure 7, we can notice that the runs
performed on the French collection have a similar structure in terms of median values and
interquartile ranges. We can also notice that in the AP boxplot the fr_1 run has a longer whisker,
while the others show the presence of outliers.

From the ANOVA2 analysis, which results are reported in Table 15, we can see that 𝑝–𝑣𝑎𝑙𝑢𝑒 <
𝛼, therefore we can reject the null hypothesis. Moreover, from Tukey’s HSD multiple comparison
shown in Figure 8, we can derive that runs fr_3, fr_4 can be considered similar, while all the
other runs differ from each other.



Figure 6: Interpolated Precision-Recall curve on short term collection

(a) nDCG (b) AP

Figure 7: Box plot on short term collection, the mean values are shown in red



Table 14
nDCG and MAP values on short term collection

Run name nDCG MAP

FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom-
Rerank20W6

0.4239 0.2665

FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-Rerank30 0.4145 0.2546
FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom 0.4034 0.2412
FADERIC_French-BM25Tuned-Stop50-LightStem-Shingle-Fuzzy 0.4034 0.2414
FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-SynPOS
-Rerank30 0.3296 0.1931

Table 15
ANOVA2 on short term collection

(a) nDCG

Source SS df MS F Prob>F

Systems 0.25 3 0.085 13.58 8.51E-9
Topics 218.58 881 0.248 39.30 0
Error 16.68 2643 0.006 - -
Total 235.52 3527 - - -

(b) AP

Source SS df MS F Prob>F

Systems 0.38 3 0.129 16.05 2.43E-10
Topics 205.64 881 0.233 28.92 0
Error 21.32 2643 0.008 - -
Total 227.36 3527 - - -

(a) nDCG (b) AP

Figure 8: Tukey’s HSD on short term collection



Table 16
nDCG and MAP values on long term collection

Run name nDCG MAP

FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom-
Rerank20W6

0.4153 0.2473

FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-Rerank30 0.4146 0.2465
FADERIC_French-BM25-Stop50-LightStem-Shingle-Fuzzy-SynCustom 0.4091 0.2384
FADERIC_French-BM25Tuned-Stop50-LightStem-Shingle-Fuzzy 0.4071 0.2350
FADERIC_English-BM25-Stop50-KStem-Shingle-Fuzzy-SynPOS
-Rerank30 0.3296 0.1809

5.2.3. Long term

Since some error occurred in the indexing phase when performing the submitted runs fr_1 and
fr_2, in the following analysis we will use a fixed version of those runs.

In Table 16 are reported the nDCG and MAP values obtained from the submitted runs on
the long term collection, while in Figure 9 is reported the interpolated Precision-Recall curve.
Comparing these results with the ones obtained on the short term, shown in Table 14 and Figure 6
respectively, we can see that every run suffered a performance drop over all the measures. This
worsening was expected and it can be due to the fact that the performances tend to drop over
time, however, the decrease is not huge and we can consider the performances of the system to
remain satisfactory.

Observing the nDCG and AP boxplots, shown in Figure 10, we can notice that the runs
performed on the French collection have a similar structure in terms of median values and
interquartile ranges. We can also notice that in the AP boxplot all the runs show the presence
of outliers.

From the ANOVA2 analysis, which results are reported in Table 17, we can see that we obtained
very different results for the two measures. In particular, on nDCG we have 𝑝–𝑣𝑎𝑙𝑢𝑒 > 𝛼,
which means we cannot reject the null hypothesis, while on AP we have 𝑝–𝑣𝑎𝑙𝑢𝑒 < 𝛼, which
means we can reject the null hypothesis. The same behavior is reflected in Tukey’s HSD multiple
comparison, shown in Figure 11, where on nDCG we can derive that the French runs can be
considered to be similar to each other, while on AP we can see that runs fr_1, fr_2, fr_3 and
runs fr_3, fr_4 can be considered similar to each other.



Figure 9: Interpolated Precision-Recall curve on long term collection

(a) nDCG (b) AP

Figure 10: Box plot on long term collection, the mean values are shown in red



Table 17
ANOVA2 on long term collection

(a) nDCG

Source SS df MS F Prob>F

Systems 0.04 3 0.015 1.51 0.056
Topics 202.35 922 0.219 16.17 0
Error 16.78 2766 0.006 - -
Total 219.18 3691 - - -

(b) AP

Source SS df MS F Prob>F

Systems 0.10 3 0.033 4.47 0.003
Topics 188.61 922 0.204 27.03 0
Error 20.92 2766 0.007 - -
Total 209.64 3691 - - -

(a) nDCG (b) AP

Figure 11: Tukey’s HSD on long term collection

6. Conclusions and Future Work

From the obtained results, we can say that the system has kept satisfactory performance from the
longitudinal evaluation point of view. In fact, on the short term, there has been no significant
worsening, while on the long term, there has been just a moderate performance drop.

During the developing of the system we understood that query expansion and reranking
play a major role in the IR systems. Those two features granted us the biggest performance
improvements. Although the system has reached decent scores, our work could be further
developed in different ways.

With respect to query expansion, we could improve the synonyms feature by using other
dictionaries, since WordNet is quite outdated and a big portion of the queries were regarding
very recent topics, and also by using better French dictionaries, since there are only a few
available when working with languages other than English and we had to customize our own.



Another query expansion option could be switching from simple dictionaries to neural models,
in order to expand a query with words related not just to the meaning of the single words but
also to the context of the whole topic the user is looking for.

Regarding the reranker, there are some things we could improve, mainly focusing on the
trained model. As discussed in Section 3.4.5, we did not have the required hardware to properly
train a machine learning model, so we trained on Colab with a time limit of 8 hours. This forced
us to train with only 1 epoch and we tested only one set of hyperparameters, so, assuming
having the necessary hardware, future improvements could focus on training a better model,
with more epochs and testing different hyperparameters. More affordable improvements could
be done by dropping the libraries for training and inference and working directly with Torch
for the interaction with the model, so we could be able to use the latest Torch version, which
includes a new implementation of the Transformer API which speeds up training significantly.
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