
SEUPD@CLEF: Team NEON. A Memoryless Approach
To Longitudinal Evaluation
Notebook for the LongEval Lab at CLEF 2023

Simone Bortolin
1
, Gioele Ceccon

1
, Gil Czaczkes

1
, Alessandra Pastore

1
, Pietro Renna

1
,

Giovanni Zerbo
1

and Nicola Ferro
1

1University of Padua, Italy

Abstract
This paper presents a possible approach for the LongEval Lab of the CLEF 2023 conference concerning

Longitudinal Evaluation of Model Performance. Studies have shown that the performance of Information

Retrieval systems decreases as the time gap between the test data and the training data increases. The

LongEval Lab focuses on the development of a robust temporal IR system that improves such performance.

Keywords
Information Retrieval, Search Engine, LongEval CLEF 2023

1. Introduction

Information retrieval is nowadays an indispensable tool for almost everyone, helping people to

obtain all kind of information in a quick and effective way.

This report describes an Information Retrieval System developed for the Search Engines

course at the University of Padua, and it is related to Task 1 of the Longitudinal Evaluation of

Model Performance (LongEval) lab for CLEF 2023 [1] conference. As stated on [1], the primary

goal for developing this system is to improve the model’s performance as the test data are

collected further away in time from the train data. The train collection is a large data set based

on the Qwant [2] click model and random documents from the Qwant index.

The task is divided into two sub-tasks regarding short-term and long-term persistence to

better test the robustness of our system.

The paper is organized as follows:

• Section 3 describes our approach;

• Section 4 explains our experimental setup;

• Section 5 discusses our main findings;

• Section 6 draws some conclusions and outlooks for future work.

CLEF 2023: Conference and Labs of the Evaluation Forum, September 18–21, 2023, Thessaloniki, Greece
$ simone.bortolin.1@studenti.unipd.it (S. Bortolin); gioele.ceccon@studenti.unipd.it (G. Ceccon);

gil.czaczkes@studenti.unipd.it (G. Czaczkes); alessandra.pastore.2@studenti.unipd.it (A. Pastore);

pietro.renna@studenti.unipd.it (P. Renna); giovanni.zerbo@studenti.unipd.it (G. Zerbo); ferro@dei.unipd.it

(N. Ferro)

� http://www.dei.unipd.it/~ferro/ (N. Ferro)

� 0000-0001-9219-6239 (N. Ferro)

© 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:simone.bortolin.1@studenti.unipd.it
mailto:gioele.ceccon@studenti.unipd.it
mailto:gil.czaczkes@studenti.unipd.it
mailto:alessandra.pastore.2@studenti.unipd.it
mailto:pietro.renna@studenti.unipd.it
mailto:giovanni.zerbo@studenti.unipd.it
mailto:ferro@dei.unipd.it
http://www.dei.unipd.it/~ferro/
https://orcid.org/0000-0001-9219-6239
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

2. Related Work

The main motivation for the longitudinal evaluation of IR systems is the need to assess the

performance of the systems in real-world scenarios, in which the data is constantly changing.

In fact, the data evolves due to the social context and language representation. For this reason,

it is of great interest to be able to predict the performance of search engines over a long period

of time [3, 4, 5].

Creating a collection resembling such scenario is rather than simple. In the cases of Twitter

[6] and Robust [7] collections, the information about the time in which each document was

created is available. Then, this information can be used to simulate the changes in the data and

to evaluate the system under these changes. Despite this, these collections do not well represent

an evolving environment. An interesting case is the TREC-COVID dataset [8]. It captures the

evolution of data, however it presents some disadvantages. In particular, it is very specific, since

it focuses only on the covid epidemic. Furthermore, the collection is quite small.

Another relevant aspect in evaluating the performance of such systems is the treatment of

languages when dealing with a cross-language collection. English and French were part of the

CLEF 1999–2002 collections [9, 10, 11, 12].

Later on, English and French were part of the multilingual collections of CLEF eHealth

Evaluation Lab [13, 14], that was focused on multilingual information extraction in the medical

subject.

For what concerns the word representation, a noteworthy approach is the one presented

in [15] (FastText), where each word is represented as a set of character n-grams. For each

n-gram is then created its vector representation. This method allows the computation of word

representations for words that did not appear in the train data of the model.

Lastly, an exploitable tool is WordNet [16]. Through semantic relations it links words to

synonyms. The challenge it presents is polysemy. In fact, choosing between alternative senses

of the same word implies choosing between different contexts in which the word can be used.

3. Methodology

The developed IR system is based on Apache Lucene.

To allow for a more in-depth description of the system, this section is organized into separated

sub-sections.

Parser: handles the parsing of documents in the collection, provided in the TREC format, as

defined in [17].

Analyzer: is responsible for analyzing pieces of text and applying the appropriate filters to

standardize the text.

Indexer: takes care of indexing the documents in the index once received from the Parser.

Searcher: handles the search for documents in the index from queries.

3.1. System Architecture

The IR system is based on the latest current version of Apache Lucene (9.5.0). This library

represents the state-of-the-art and it is also used by major IR systems, such as those based on

Elasticsearch. For this reason, the architecture is based on the four core elements of this library

and the main structure is presented in fig. 1.

To test different configurations for the produced model, the system is developed to take in

input different parameters and behave differently for each of them, so that it is easier to produce

different runs to compare.

Document in
TREC Form

Read Content

Analyze Document NEONAnalyzer

IndexDocument

Index Directory

Query in
TREC Form

Read Content

NEONAnalyzer Analyze Query

Run Query

Figure 1: Representation of the system architecture

3.2. Parser

NEONParser is the parser developed to manage the parsing of the documents in the LongEval

collection. Based on the code analyzed in the Search Engine course, it extends the abstract

class DocumentParser, an Iterable class used to run through the whole corpus, and reads one

document at a time, provided in the TREC format. While reading, it removes the HTML tags and

collects the information needed to create the corresponding ParsedDocument object, which is

made of two fields:

ID: contains the ID of the document.

BODY: contains the textual content of the document.

These objects are then used by the system to create the index.

3.3. Analyzer

The developed Analyzer is called NEONAnalyzer, which extends the abstract Analyzer pro-

vided by the Apache Lucene library. The Tokenizer source is obtained using StandardTokenizer
from Apache Lucene, and then the returned TokenStream is modified by applying both stan-

dard and custom filters.

LowerCase Filter: standard lowercase filter provided by the Apache Lucene library. It converts

all the tokens into lowercase.

English Possessive Filter: standard filter provided by the Apache Lucene library. This version

of the filter is specifically made for the English language and removes the possessives

(trailing ’s).

Accent Filter: custom filter. It removes both accents and diacritics.

Stop Filter: standard filter provided by the Apache Lucene library. It is used to remove all stop

words in the Snowball [18] expanded stoplist.

KStem Filter: standard filter provided by the Apache Lucene library. It applies the Krovetz

Stemmer that combines both algorithmic and dictionary-based stemming techniques.

PorterStem Filter: standard filter provided by the Apache Lucene library. Transforms the

token stream as per the Porter stemming algorithm. It’s used when dealing with synonyms,

as discussed in Section 3.3.2).

Before choosing to stick with the Krovetz one, other stemmers such as the Lovins Stemmer and

the Porter Stemmer were tried.

3.3.1. French and English processing: additional filters

These are additional filters that are used together with the ones of Section 3.3 to form a particular

implementation of the system. Since the English dataset is an automatic translation of the

French documents, some terms were not fully translated and maintained their original French

form (e.g. chalor, challoire). Accordingly, to improve the indexing of these words, a French

Filter is incorporated in certain runs.

• French Minimal Stem Filter: standard filter provided by the Apache Lucene library.

It’s designed to perform minimal stemming on French text.

• Lovins Stem Filter: Custom filter that implements the Lovins stemmer.

3.3.2. Query expansion: WordNet and WuPalmer similarity

There is a portion of code in NEONAnalyzer that is specialized in dealing with query strings.

After applying the filters discussed in Section 3.3, to perform query expansion the analyzer

applies a POS tagger and then a custom filter that deals with the synonyms.

• OpenNLP POS Filter: standard filter provided by the Apache Lucene library. It works

by tagging all terms as a normal POS filter, using Machine Learning for the processing of

Natural Language.

• OpenNLP POS Tagging To WordNet POS Tagging Converter: custom filter that

relies on the POS list used in the Penn Treebank Project [19] to detect different types of

entities.

• Synonym Filter and Synonym Add Token Filter: custom filters that rely on the

WordNet database [16] and the Wu & Palmer similarity function [20] to find synonyms

up to a given maximum number. In particular, the constant value of 2 was chosen to

prevent excessive noise from being added to the queries, which could cause the system to

retrieve irrelevant documents.

These two filters differ in the way they emit the synonyms as tokens:

– SynonymFilter emits for every token it parses a single token, composed by the

original word followed by its synonyms (if any) separated by a slash.

– SynonymAddTokenFilter emits the token in input and one separated token for

its synonyms (if any), tagged with the string "synonym" to recognize them during

the search phase.

In the end, it was decided to use SynonymAddTokenFilter since it allowed an easier

integration of the synonyms management into the system.

Created at Princeton University, WordNet is a lexical database for the English language. It is a

semantic network consisting of a large collection of words (called "synsets") that are organized

based on their meanings and relationships with other words. Each synset contains a group of

words that are synonyms of each other and share a common meaning, as well as a definition

and examples of how the words can be used in context. WordNet then works by organizing

words into hierarchies of semantic relationships, such as hypernyms (words that are more

general than a given word) and hyponyms (words that are more specific than a given word). In

particular, WordNet consists of four sub-nets, one each for nouns, verbs, adjectives, and adverbs,

connecting words from the same Part Of Speech (POS).

In order to use WordNet within the filters, the 3.1 Prolog version of the database has been

downloaded and fed to a SynonymMap object, a fast hash map used to retrieve synonyms from

any specified lowercase word which is provided by the wordnet package of Lucene.

To obtain a more precise use of synonyms, it has been decided to retain only the top two

words with a score greater than a given threshold value of 0.9 (if specified as input), along with

the original token, for the Wu & Palmer similarity function that was implemented.

WuPalmer similarity is a method for measuring the similarity between two words based on

their synsets in a semantic network (such as WordNet). The idea behind it is that two words

with similar meanings should have synsets that are close to each other in the network. Thus,

the method is based on the notion of depth in a semantic network, which is the number of edges

that must be traversed to get from one synset to another. The WuPalmer similarity between

two synsets is then defined as the depth of their lowest common subsumer (LCS) divided by the

sum of their depths in the network. This means that the LCS is the most specific synset that is

an ancestor of both senses in the network. The result is a number between 0 and 1, where 1

indicates perfect similarity and 0 indicates no similarity.

To implement the WuPalmer Similarity, the MIT Java Wordnet Interface (JWI) [21] was

adopted. JWI is a library used to access and manipulate the WordNet database: it provides a set

of classes and methods for accessing WordNet data, including synsets, words, and relationships

between them. It also allows to perform various operations on the data, such as searching for

words or synsets and retrieving hypernyms and hyponyms. Since the JWI implementation

does not accept a Prolog database like the one discussed above, it was downloaded the specific

database file, as requested in the JWI documentation.

Furthermore, because WordNet is divided into four subnets - one for each of the previously

specified POS tags - it was necessary to:

1. Use OpenNLPPOSFilter to attach the POS tag to each token;

2. Use OpenNLPPOSTaggingToWordNetPOSTaggingConverter filter to convert the tags

into the ones accepted by the JWI;

3. Feed the tokens to SynonymFilter/SynonymAddTokenFilter.

3.4. Indexer

The developed Indexer (DirectoryIndexer) deals with the indexing of the parsed documents

by storing their most interesting features, which will be then used during the search process. In

particular, for each document, the two extracted fields are the ones created by NEONParser
(Section 3.2):

• The ID field;

• The BODY field.

After the tokenization, for each BODY field the following features are saved inside the index:

• For each term in the field, its document frequency and its position;

• The term vector (a distinct data structure from the inverted index that can be accessed

during search) contains:

– Terms frequency;

– Terms position;

– Terms payload (if any), which represents any additional data associated with each

term, that is the word2vec FastText array.

3.5. FastText: Indexer and Query Expansion

FastText is an open-source library designed by Facebook’s AI Research (FAIR) used for word

embeddings and text classifications [15], needed in order to improve the search for similar

words, along with a FuzzyQuery1
.

For every token in the indexer, a related vector is added to the payload. This vector is

automatically generated by FastText. Then for every token in the query, a FuzzyQuery is

generated so that the search involves the token itself and similar words at character level (e.g.

tax, taxation, taxi). Then the cosine similarity is used to match query vector and indexer vector

to find a correlation and update the query score.

The goal of FastText is not to generate synonyms on-the-fly but to search for words correlated

at character level.

• It works both at word level and sentence level allowing sentences with the same words

but in different order to generate similar vectors (unlike word2vec models).

• It uses a hierarchical softMax classifier with a binary tree;

• Like word2vec models, it uses negative sampling to update the parameter.

Specifically, it has been implemented with the JFastText library [22], using the actual last

available version (0.9.2) with pre-trained word vectors [23, 24] and using a vector of 50 floats

for each word.

This vector is obtained by a resize of the original vector of 300 elements using the tools

provided by FastText.

3.6. Searcher

The implemented custom searcher is specialized according to the various ways it is trained: in

particular, it branches differently according to the presence or absence of FastText (Section 3.5).

Initially, the method creates a BooleanQuery object for each topic, using the QueryParser
to parse the query.

If FastText is present, a FuzzyQuery1
is created for each word and merged in a single query

to be searched together with the payload. Due to efficiency reasons, this does not search for

very different words with a similar vector, instead, it should find relatively similar words.

1FuzzyQuery is a type of query in the Apache Lucene search library that allows you to search for terms that are

similar to a specified term based on their Damerau-Levenshtein distance. Damerau-Levenshtein is a measure of the

minimum number of single-character edits (insertions, deletions, or substitutions) required to transform one string

into another.

If FastText is absent, a query structure is generated based on the combinations of possible

words returned by the analyzer. Through a specific procedure that generates all the possible

combinations, several queries are then created and merged: one containing all the words and

the other containing some of them. The algorithm that computes the combinations of the words

is based on the idea that any combination can be represented by a number (in binary form)

which indicates whether the element will be present or not.

Example: Let array = {𝐴,𝐵,𝐶}. The combination 𝑐(array, 5) is: 5 = 101 → {𝐴,𝐶}. So,

iterating over the combinations, which are enumerated over the numbers in range ⟨0, . . . , 2𝑛−1⟩
where 𝑛 is the size of 𝑎𝑟𝑟𝑎𝑦, the system gets the element corresponding to the number through

bit-to-bit operators, which index is represented by the binary representation of the combination.

If WordNet is enabled, synonyms are added to the queries, with a SynonymQuery object.

Also, if re-ranking is enabled, the method computes a re-ranking score for each document using

the Jaccard Similarity measure (Section 3.6.1) and then sorts the documents based on this score.

Finally, the method writes the top retrieved documents to a run file.

3.6.1. Re-ranking and Jaccard similarity

The re-ranking method developed is based on the weighted Jaccard similarity measure, which

yields a value in [0, 1]. The purpose of this implementation was to take into account the term

frequency when ranking the documents.

While the Jaccard similarity is a measure of similarity between two sets of items (like the

sets of terms corresponding to a query and a document):

J(𝐴,𝐵) =
|𝐴 ∩𝐵|
|𝐴 ∪𝐵|

the weighted one computes the similarity between a query and a document taking into

account the weights of the terms in the documents and in the query, computed using the TF-IDF

scheme (with relative frequency):

Jw(𝑄,𝐷) =

∑︁
𝑡∈𝑄∩𝐷

min
(︁
𝑤

(𝑄)
𝑡 , 𝑤

(𝐷)
𝑡

)︁
∑︁

𝑡∈𝑄∩𝐷
max

(︁
𝑤

(𝑄)
𝑡 , 𝑤

(𝐷)
𝑡

)︁ (1)

where:

• 𝑄 is the set of query terms

• 𝐷 is the set of document terms

• 𝑤
(𝑄)
𝑡 is the weight of term 𝑡 in the query

• 𝑤
(𝐷)
𝑡 is the weight of term 𝑡 in the document

The idea behind Equation (1) is the following:

• The numerator computes the sum of the minimum weights of each term that appears

both in the query and the document. This measures the extent to which the query and

the document share the smallest weight for each term.

• The denominator computes the sum of the maximum weights of each term that appears

both in the query and the document. This measures the overall importance of the terms

that appear both in the query and the document.

To implement this method, the Term Vector was stored for each document. Consequently,

the terms within a document could be accessed and their TF-IDF weights could be computed by

providing a document ID.

4. Experimental Setup

Collection The used experimental collection is provided by the commercial search engine

Qwant and is designed to reflect the changes of the Web across time, by providing evolving

document and query sets.

In particular, the system was developed over the experimental collection given as training

data for Task 1 of the LongEval CLEF 2023 Lab [1]. The training data is divided into three

fundamental categories:

• Queries: provided by the users of Qwant, 672 train queries and 98 heldout queries

to be used as test set. Both sets are provided in trec and tsv format.

• Corpora: it consists of 1,570,734 documents representing web pages collected in

June 2022 using the Qwant click model and the given queries. These documents are

provided both in JSON and trec format.

• Relevance Judgments: 9656 corresponding assessments stored in a qrels file.

It’s important to point out that all the documents and the queries contained in this

collection were originally collected in French and subsequently translated into English

using the CUBBITT system. Even if the collection contains both versions, it was decided

to work with the English one because of the lack of knowledge of the French language

of the team. Given the nature of the translation, when the choice was made it was also

taken into account a loss in precision of the system.

Evaluation measures The evaluation tools used during the development of the system are:

• TRECeval: to compute the performance measures.

• Luke: to inspect the indexes created by Lucene.

The main evaluation measures used to check the system during the various phases of

development are:

• MAP (Mean Average Precision): it allowed to understand the behavior and effec-

tiveness of the system.

• Interpolated precision-recall curve: it enabled the comparison of runs produced

from different versions of a system.

• nDCG (Normalized Discounted Cumulative Gain): it enabled the measurement of

the system’s effectiveness while considering the ideal run.

Repository: https://bitbucket.org/upd-dei-stud-prj/seupd2223-neon/src/master/

https://bitbucket.org/upd-dei-stud-prj/seupd2223-neon/src/master/

Hardware used Computers, mainly Windows-based, with 6th to 12th generation processors,

16+ GB RAM and at least 1 TB SSD. No hardware acceleration or computing clusters were

used. The run were all performed in human time (less than 24 hours).

5. Results and Discussion

5.1. Training results

In order to test the system and assess the impact of its components over the MAP measure, many

runs were produced over the given training collection, with every one of them representing the

results obtained by a specific implementation of the system. It’s worth noting that the BM25

was used for every run as similarity.

In particular, the following implementations of the system were tried:

• WordNet: run provided by the system implementing the query expansion described in

Section 3.3.2;

• Basic: run provided by the base system, without any further implementation described

in Section 3.3;

• FastText + WordNet: run provided by the system implementing FastText and the query

expansion described in Sections 3.3.2 and 3.5;

• FastText: run provided by the system implementing FastText described in Section 3.5;

• WordNet + Stems: run provided by the system implementing the query expansion, using

the French and English processing described in Sections 3.3.1 and 3.3.2;

• Stems: run provided by the system using the French and English processing described in

Section 3.3.1;

• FastText + WordNet + stems: run provided by the system using the French and English

processing described in Sections 3.3.1, 3.3.2 and 3.5, implementing FastText and the query

expansion;

• FastText + stems: run provided by the system implementing FastText, using the French

and English processing described in Sections 3.3.1 and 3.5.

For each system, we performed both a run with re-ranking and one without. Re-ranking is

described in Section 3.6.1

Considering Table 1, some considerations are:

• The re-ranking implemented seems to be detrimental to the performances of the system

since all the runs score better results without it. Probably, this happens because the

method fails to assess and compare the true nature of the documents;

• The basic system scores the best result;

• The systems (with and without re-ranking) implementing both FastText and the query

expansion score the worst results.

A comparison between all the different runs is made with the use of the Interpolated Precision-

Recall Curves, whose aim is to show how the runs perform in terms of Precision and Recall. It

is immediate to notice from both Figures 2 and 3 that precision decreases with an increasing

Table 1
Summary statistics for the runs

without re-ranking with re-ranking

run id MAP time (s) run id MAP time (s)

WordNet 1a 0.1405 30 1ar 0.1291 69
basic 1b 0.1459 12 1br 0.1345 58

FastText + WordNet 2a 0.1253 496 2ar 0.1136 700
FastText 2b 0.1387 383 2br 0.1344 584

WordNet + stems 3a 0.1402 27 3ar 0.1302 69
stems 3b 0.1435 11 3br 0.1336 55

FastText + WordNet + stems 4a 0.1174 566 4ar 0.1066 566
FastText + stems 4b 0.1307 487 4br 0.1192 560

recall, indicating an inverse relationship between the two measures: this means that the higher

the recall, the lower the precision.

Considering the different runs in the two graphs, it is worth mentioning that the basic model

is always among the top-performing ones. This suggests that the more processing is applied to

the input documents, the more the performance of the system decreases. This is contrary to the

expected outcome for a system that utilizes filters, identifies synonyms, and utilizes FastText,

either in combination or individually, as depicted in the two graphs for both runs with and

without re-ranking.

Given the above discussion, it was decided to consider the following runs for the LongEval

competition:

• WordNet without re-ranking (call 1a in table 1);

• Basic without re-ranking (call 1b in table 1);

• FastText with re-ranking (call 2br in table 1);

• Stems without re-ranking (call 3b in table 1);

• FastText + stems without re-ranking (call 4b in table 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Recall

Pr
ec
is
io
n

Interpolated Precision-Recall curves for runs without re-ranking

WordNet (1a)
basic (1b)

FastText + WordNet (2a)
FastText (2b)

stems + WordNet (3a)
stems (3b)

stems + FastText + WordNet (4a)
stems + FastText (4b)

Figure 2: Interpolated Precision-Recall curves for runs without re-ranking

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Recall

Pr
ec
is
io
n

Interpolated Precision-Recall curves for runs with re-ranking

WordNet (1ar)
basic (1br)

FastText + WordNet (2ar)
FastText (2br)

stems + WordNet (3ar)
stems (3br)

stems + FastText + WordNet (4ar)
stems + FastText (4br)

Figure 3: Interpolated Precision-Recall curves for runs with re-ranking

5.2. Test results

The runs selected in Section 5.1 have been tested over the following collections and set of

queries provided by the LongEval Lab [1]:

• Collection composed of 1,570,734 documents collected in June 2022 and set, called Heldout,

of 98 queries;

• Collection composed of 1,593,376 documents collected in July 2022 and set, called Short-

term, of 998 queries;

• Collection composed of 1,081,334 documents collected in September 2022 and set, called

Long-term, of 923 queries.

Using the provided relevance judgments, the MAP and nDCG scores are calculated for each

run in relation to the three separate test sets. Moreover, for each test set, two groups of boxplots

are computed for each set, respectively, by aggregating the Average Precision (AP) values and

the nDCG scores of each query within the run. In each group, the runs are shown in descending

order of MAP (boxplots group a) and nDCG (boxplots group b). Then, a comparison between

the nDCG values of the different runs of the three test sets is performed using the following

statistical techniques:

Two-way ANOVA Test: check if the factors Topic and run are statistically significant, and

so, if they are significantly influencing the results. The discussion about the results is

done considering a 5% level of significance, and it is performed on both MAP and nDCG

measures;

Tukey HSD test for multiple comparison adjustment: it is used to compare different runs

performances, for each pair of runs, and it is particularly useful to check which specific

groups means differ (or are similar) to each other. It is performed only with respect to the

nDCG measure.

Table 2
MAP and nDCG values for the runs tested over the collection of June 2022

run id MAP nDCG

basic 1b 0.1338 0.2269
WordNet 1a 0.1287 0.2201

FastText + re-ranking 2br 0.1279 0.2177
stems 3b 0.1226 0.2017

FastText + stems 4b 0.1213 0.2054

0.0

0.2

0.4

0.6

0.8

run 1b run 1a run 2br run 3b run 4b

A
P

(a) AP

0.00

0.25

0.50

0.75

run 1b run 1a run 2br run 4b run 3b

nD
C

G

(b) nDCG

Figure 4: Boxplot for Heldout set runs

5.2.1. Heldout: June 2022

Table 2 displays the results obtained by the runs produced by the systems tested with the queries

of the Heldout set.

In Figure 4 is reported the MAP value and the nDCG value of each run in a boxplot. Based on

the observation, it can be concluded that there is no substantial distinction between the runs.

Some general considerations true for both Figure 4a and Figure 4b are:

• The medians are almost the same for the 5 distributions. In particular, it’s evident how

similar the median of runs 1a (WordNet without re-ranking) and 1b (Basic without re-

ranking) are;

• The distributions are very similar to each other, although run 3b (Stems without re-

ranking) and run 4b (FastText + stems without re-ranking) have more extreme outliers.

The Two-way ANOVA test performed for MAP (Table 3) and nDCG (Table 4) suggests that:

• Topics are significant for both MAP and nDCG results;

• Runs are significant only for the nDCG results.

Table 3
Results of Two-way ANOVA test over MAP of runs and queries of the Heldout set

Df Sum Sq Mean Sq F value Pr(>F)

Topics 97 13.492 0.13910 27.368 <2e-16
runs 4 0.003 0.00087 0.171 0.953

Residuals 370 1.881 0.00508 - -

Table 4
Results of Two-way ANOVA test over nDCG of runs and queries of the Heldout set

Df Sum Sq Mean Sq F value Pr(>F)

Topics 97 29.13 0.3004 7.416e+28 <2e-16
runs 4 0.0 0.0000 2.502e+00 0.042

Residuals 388 <2e-16 <2e-16 - -

Table 5
MAP and nDCG values for the runs tested over the collection of July 2022

run id MAP nDCG

basic 1b 0.1390 0.2294
stems 3b 0.1384 0.2260

WordNet 1a 0.1356 0.2241
FastText + stems 4b 0.1324 0.2187

FastText + re-ranking 2br 0.1319 0.2219

Furthermore, the Tukey HSD test in Figure 5 is showing that runs are showing similarities

between each others. In particular, the graph is highlighting two similar groups of intervals in

the pairwise:

• Run 1a is similar to run 1b (WordNet without re-ranking), run 2b (Basic without re-

ranking), run 3b (Stems without re-ranking), run 4b (FastText + stems without re-ranking).

These pairwise comparisons are the most significant;

• Run 1b and run 2br (FastText with re-ranking) are similar to each other, and they are show-

ing the same behavior when compared with run 3b, run 4b. These pairwise comparisons

are less significant.

5.2.2. Short-term: July 2022

Table 5 displays the results obtained by the runs produced by the systems tested with the queries

of the short-term set.

In Figure 6 is reported the MAP value and the nDCG value of each run in a boxplot. Based

on the observation, it shows again that the distributions are almost the same.

In particular, it’s possible to make a comparison with what has been shown in Figure 4:

−1.5e−15 −1.0e−15 −5.0e−16 0.0e+00 5.0e−16

run 4b−run 3b

run 4b−run 2br

run 3b−run 2br

run 4b−run 1b

run 3b−run 1b

run 2br−run 1b

run 4b−run 1a

run 3b−run 1a

run 2br−run 1a

run 1b−run 1a

95% family−wise confidence level

Differences in mean levels of runFigure 5: Tukey’s results for Heldout set

0.00

0.25

0.50

0.75

1.00

run 1b run 3b run 1a run 4b run 2br

A
P

(a) AP

0.00

0.25

0.50

0.75

1.00

run 1b run 3b run 1a run 2br run 4b

nD
C

G

(b) nDCG

Figure 6: Boxplot for Short-Term set runs

• It’s even more immediate to notice that the medians are almost equal;

• The runs show overall more outliers characterized by even more extreme values, which

makes sense looking at the higher values in Table 5. It’s worth noting a concentration of

AP outliers in the range between 0.5 and 0.75 for all the different runs.

The Two-way ANOVA test performed for MAP (Table 6) and nDCG (Table 7) suggests that:

• Topics are significant for both MAP and nDCG results;

Table 6
Results of Two-way ANOVA test over MAP runs and queries of the Short-term set

Df Sum Sq Mean Sq F value Pr(>F)

Topics 877 176.17 0.20088 72.506 <2e-16
runs 4 0.04 0.00969 3.497 0.00741
Residuals 3501 9.70 0.00277 - -

Table 7
Results of Two-way ANOVA test over nDCG of runs and queries of the Short-term set

Df Sum Sq Mean Sq F value Pr(>F)

Topics 875 281.5 0.3217 1.262e+27 <2e-16
runs 4 0.0 0.0000 6.000e-02 0.993

Residuals 3500 <2e-16 <2e-16 - -

Table 8
MAP and nDCG values for the runs tested over the collection of September 2022

run id MAP nDCG

basic 1b 0.1478 0.2430
WordNet 1a 0.1446 0.2393

stems 3b 0.1442 0.2387
FastText + re-ranking 2br 0.1351 0.2282

FastText + stems 4b 0.1347 0.2276

• Runs are significant only for both MAP and nDCG results.

Furthermore, the Tukey HSD test in Figure 7 is showing that runs are showing similarities

between each others. As happened in Section 5.2.1, the graph is highlighting again two similar

groups of intervals in the pairwise:

• Run 1a (WordNet without re-ranking) is similar to run 1b (Basic without re-ranking), run

2br (FastText with re-ranking), run 3b (Stems without re-ranking), run 4b (FastText +

stems without re-ranking). These pairwise comparisons are the most significant;

• Run 1b and run 2br are similar to each other, and they are showing the same behavior

when compared with run 3b, run 4b. These pairwise comparisons are less significant.

5.2.3. Long-term: September 2022

Table 8 displays the results obtained by the runs produced by the systems tested with the queries

of the long-term set.

As can be seen in Figure 8, the runs are similar to each other. However, the distributions are

slightly different for the 5 runs.

In particular, some general considerations are:

−2e−15 −1e−15 0e+00 1e−15 2e−15

run 4b−run 3b

run 4b−run 2br

run 3b−run 2br

run 4b−run 1b

run 3b−run 1b

run 2br−run 1b

run 4b−run 1a

run 3b−run 1a

run 2br−run 1a

run 1b−run 1a

95% family−wise confidence level

Differences in mean levels of runFigure 7: Tukey’s results for Short-term set

0.00

0.25

0.50

0.75

1.00

run 1b run 1a run 3b run 2br run 4b

A
P

(a) AP

0.00

0.25

0.50

0.75

1.00

run 1b run 1a run 3b run 2br run 4b

nD
C

G

(b) nDCG

Figure 8: Boxplot for Long-Term set runs

• The median is overall the same for all the runs;

• The outliers are more extreme with respect to what it’s shown in Figure 6. Furthermore,

looking at Figure 8a it can be noticed that outliers are more concentrated in the range

between 0.5 and 0.75.

• Looking at the 3
rd

quartile, these runs exhibit the highest scores compared to what was

observed in the other sets.

Table 9
Results of Two-way ANOVA test over MAP of runs and queries of the Long-term set

Df Sum Sq Mean Sq F value Pr(>F)

Topics 920 180.77 0.19649 70.98 <2e-16
Runs 4 0.13 0.03333 12.04 1.01e-09
Residuals 3674 10.17 0.00277 - -

Table 10
Results of Two-way ANOVA test over nDCG of runs and queries of the Short-term set

Df Sum Sq Mean Sq F value Pr(>F)

Topics 918 301 0.3279 1.123e+27 <2e-16
Runs 4 0.0 0.0000 8.290e-01 0.506

Residuals 3672 <2e-16 <2e-16 - -

The Two-way ANOVA tests performed for MAP (Table 9) and nDCG (Table 10) suggest that:

• Topics are significant for both MAP and nDCG results;

• Runs are significant only for the MAP results.

The Tukey HSD test for the Long-Term set in Figure 9 is showing again that runs are similar

between each others. The graph is leading to the same conclusions obtained in Section 5.2.1

and Section 5.2.2:

• Run 1a (WordNet without re-ranking) is similar to run 1b, (Basic without re-ranking) run

2br (FastText with re-ranking), run 3b (Stems without re-ranking), run 4b (FastText +

stems without re-ranking). These pairwise comparisons are the most significant;

• Run 1b and run 2br are similar to each other, and they are showing the same behavior

when compared with run 3b, run 4b. These pairwise comparisons are less significant.

−2e−15 −1e−15 0e+00 1e−15 2e−15 3e−15

run 4b−run 3b

run 4b−run 2br

run 3b−run 2br

run 4b−run 1b

run 3b−run 1b

run 2br−run 1b

run 4b−run 1a

run 3b−run 1a

run 2br−run 1a

run 1b−run 1a

95% family−wise confidence level

Differences in mean levels of runFigure 9: Tukey’s results for Long-term set

5.3. Failure Analysis

The main problem in this system is that it finds few relevant results, for example in model

1a it does not find tax, even though the search key is taxation. In models 1b (Basic without

re-ranking), 2br (FastText with re-ranking), 3a (Stems without re-ranking), 4a (FastText + stems

without re-ranking) this specific case is solved, despite this, numerous similar cases remain.

Limiting the number of relevant documents to 50 (otherwise re-ranking becomes impossible)

makes it necessary to compute a score that reflects the real importance of a word or synonym.

However, this comes out to be a problem.

Furthermore, it has been seen that comparing the runs on most queries the results are

almost the same. For example the runs on query q062222425 return almost the same order

of documents with similar scores, whereas for query q062214361 they return most of the

same documents, often in a slightly different order, and lastly regarding query q062211403
the top-ranked results are the same among the runs, only those from the 30th onwards change.

We can generally classify queries in these 3 cases.

In addition, models 1b, 2a, 3a, 4a compared to model 1a only improve the results for certain

cases, however, the improvement is not generalized since they do not change the results.

5.4. Discussion

Overall the system presented in this document implements some interesting techniques, for

example, a lot of filters were implemented in order to make it possible to compare them and

select the ones achieving better results for the runs. According to the results, the system that

achieves better performance is the one that uses only essential filters. Nevertheless, some

queries that do not achieve any result with the essential system, gain some improvements using

specific filters. Despite that, the overall system performs better without these specific filters.

As already noticed, most of the runs returns the same documents with similar scores. Further-

more, as can be seen in Tables 2, 5 and 8, the MAP and nDCG values in each table are almost

the same. It is important to highlight that the values for both these measures increase over time,

with the highest scores being observed for the September’s collection. This last consideration

leads to the conclusion that the developed system well performs with data further away in time

from the training data, that was the final goal the system was intended to achieve.

6. Conclusions and Future Work

This system presents many flaws, but taking it as a starting point, there are several ways to

improve it:

• Develop a re-ranking method that better suits the system

• Integrate in a more comprehensive way the synonyms generated through the query

expansion

• Implement a more refined tokenization system (for example, one that deals with hyphens)

• Transform it into a 3-way re-ranking system: i.e. a first query that searches many more

documents, a second query for selection and re-ranking, and then finally a re-ranking

similar to the one we implemented

Other interesting features that could be developed are specific filters for relevant cases that

do not worsen the overall performance, based on the ones already developed.

Secondly, since WordNet has not been updated in the last 10 years, FastText could be an

alternative to it in order to generate synonyms on the fly. Developing these mentioned features

would surely increase the performance of this system.

Furthermore, working with the French collection should give the system a boost to its precision,

overcoming the translation issues, and it is also important to highlight that this dataset and the

LongEval task would require the use of a machine learning statistic model able to find more

suitable correspondences.

References

[1] R. Alkhalifa, I. Bilal, H. Borkakoty, J. Camacho-Collados, R. Deveaud, A. El-Ebshihy,

L. Espinosa-Anke, G. Gonzalez-Saez, P. Galuscakova, L. Goeuriot, E. Kochkina, M. Liakata,

D. Loureiro, H. T. Madabushi, P. Mulhem, F. Piroi, M. Popel, C. Servan, A. Zubiaga,

Overview of the clef-2023 longeval lab on longitudinal evaluation of model performance,

in: Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of

the Fourteenth International Conference of the CLEF Association (CLEF 2023), Lecture

Notes in Computer Science (LNCS), Springer, Thessaliniki, Greece, 2023.

[2] Qwant, Qwant, https://www.qwant.com, 2023.

https://www.qwant.com

[3] P. Galuščáková, R. Deveaud, G. Gonzalez-Saez, P. Mulhem, L. Goeuriot, F. Piroi, M. Popel,

Longeval-retrieval: French-english dynamic test collection for continuous web search

evaluation, 2023. arXiv:2303.03229.

[4] R. Alkhalifa, E. Kochkina, A. Zubiaga, Building for tomorrow: Assessing the temporal

persistence of text classifiers, Information Processing & Management 60 (2023) 103200.

[5] R. Alkhalifa, I. Bilal, H. Borkakoty, J. Camacho-Collados, R. Deveaud, A. El-Ebshihy,

L. Espinosa-Anke, G. Gonzalez-Saez, P. Galuščáková, L. Goeuriot, E. Kochkina, M. Liakata,

D. Loureiro, H. Tayyar Madabushi, P. Mulhem, F. Piroi, M. Popel, C. Servan, A. Zubiaga,

Longeval: Longitudinal evaluation of model performance at clef 2023, in: Advances in

Information Retrieval: 45th European Conference on Information Retrieval, ECIR 2023,

Dublin, Ireland, April 2–6, 2023, Proceedings, Part III, Springer-Verlag, Berlin, Heidelberg,

2023, pp. 499–505.

[6] R. Sequiera, J. Lin, Finally, a downloadable test collection of tweets, in: Proceedings of the

40th International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR ’17, Association for Computing Machinery, New York, NY, USA, 2017, pp.

1225–1228.

[7] E. M. Voorhees, The trec 2005 robust track, SIGIR Forum 40 (2006) 41–48.

[8] E. Voorhees, T. Alam, S. Bedrick, D. Demner-Fushman, W. R. Hersh, K. Lo, K. Roberts,

I. Soboroff, L. L. Wang, Trec-covid: Constructing a pandemic information retrieval test

collection, SIGIR Forum 54 (2021).

[9] E. M. Voorhees, D. K. Harman, Overview of the seventh text retrieval conference (trec-7)

[on-line], 1999.

[10] M. Braschler, Clef 2000 – overview of results, 2001, pp. 9–26.

[11] M. Braschler, Clef 2001 – overview of results, in: C. Peters, M. Braschler, J. Gonzalo,

M. Kluck (Eds.), Evaluation of Cross-Language Information Retrieval Systems, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2002, pp. 9–26.

[12] M. Braschler, Clef 2002 – overview of results, in: C. Peters, M. Braschler, J. Gonzalo,

M. Kluck (Eds.), Advances in Cross-Language Information Retrieval, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2003, pp. 9–27.

[13] L. Kelly, L. Goeuriot, H. Suominen, A. Neveol, J. Palotti, G. Zuccon, Overview of the

clef ehealth evaluation lab 2016, in: N. Fuhr, K. Balog, N. Ferro, B. Larsen, P. Quaresma,

T. Goncalves, C. Macdonald, L. Cappellato (Eds.), Experimental IR Meets Multilinguality,

Multimodality, and Interaction: 7th International Conference of the CLEF Association,

CLEF 2016, Proceedings [Lecture Notes in Computer Science, Volume 9822], Springer,

Switzerland, 2016, pp. 255–266. URL: https://eprints.qut.edu.au/98864/.

[14] L. Kelly, H. Suominen, L. Goeuriot, M. Neves, E. Kanoulas, D. Li, L. Azzopardi, R. Spijker,

G. Zuccon, H. Scells, J. Palotti, Overview of the clef ehealth evaluation lab 2019, in:

F. Crestani, M. Braschler, J. Savoy, A. Rauber, H. Müller, D. E. Losada, G. Heinatz Bürki,

L. Cappellato, N. Ferro (Eds.), Experimental IR Meets Multilinguality, Multimodality, and

Interaction, Springer International Publishing, Cham, 2019, pp. 322–339.

[15] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword

information, arXiv preprint arXiv:1607.04606 (2016).

[16] Princeton University, WordNet database, https://wordnet.princeton.edu/, 2000-2023.

[17] J. Palotti, TRECtools, https://github.com/joaopalotti/trectools, 2023.

http://arxiv.org/abs/2303.03229
https://eprints.qut.edu.au/98864/
https://wordnet.princeton.edu/
https://github.com/joaopalotti/trectools

[18] I. Brigadir, J. Nothman, igorbrigadir/stopwords: First release, 2019.

[19] M. P. Marcus, B. Santorini, M. A. Marcinkiewicz, Penn Treebank P.O.S. Tags —

ling.upenn.edu, https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_

pos.html, 1989-1992.

[20] Z. Wu, M. Palmer, Java Libraries for Accessing the Princeton Wordnet: Comparison and

Evaluation, https://aclanthology.org/P94-1019/, 1994.

[21] Finlayson, M. Alan, Java Libraries for Accessing the Princeton Wordnet: Comparison and

Evaluation, http://projects.csail.mit.edu/jwi/, 2014.

[22] K. Vinh, S. Carsten, L. Théo, Jfasttext: Java interface for fasttext, https://github.com/

stroppycow/JFastText, 2022.

[23] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin, Advances in pre-training

distributed word representations, in: Proceedings of the International Conference on

Language Resources and Evaluation (LREC 2018), 2018.

[24] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, T. Mikolov, Learning word vectors for 157

languages, in: Proceedings of the International Conference on Language Resources and

Evaluation (LREC 2018), 2018.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://aclanthology.org/P94-1019/
http://projects.csail.mit.edu/jwi/
https://github.com/stroppycow/JFastText
https://github.com/stroppycow/JFastText

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 System Architecture
	3.2 Parser
	3.3 Analyzer
	3.3.1 French and English processing: additional filters
	3.3.2 Query expansion: WordNet and WuPalmer similarity

	3.4 Indexer
	3.5 FastText: Indexer and Query Expansion
	3.6 Searcher
	3.6.1 Re-ranking and Jaccard similarity

	4 Experimental Setup
	5 Results and Discussion
	5.1 Training results
	5.2 Test results
	5.2.1 Heldout: June 2022
	5.2.2 Short-term: July 2022
	5.2.3 Long-term: September 2022

	5.3 Failure Analysis
	5.4 Discussion

	6 Conclusions and Future Work

