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Abstract
Search Engines represents an important application of Information Retrieval. In particular, a major
branch of Search Engines is devoted to web search.
In this document we summarize our work to produce a submission for the CLEF LongEval initiative
[1], primarily concerning web search. The described activity first focuses onto the development of an
indexing and searching IR system with the best possible performance based on the provided training
data then evaluates its performance on test data coming from different scenarios.
We first introduce the task and related problems. Subsequently we present the retrieval systems that we
have used for the program submission.
Afterwards, we discuss the results obtained with the various systems and compare them in the training
scope to explain why some systems perform better than others.
Finally, metrics analysis is extended to the additional scenarios LongEval focuses on, along with statistical
considerations over the systems’ output.
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1. Introduction

Search Engines (SE) are used daily by every person in the world. In particular, the main
application of SE is the web search consisting in the retrieval of documents (web pages) in the
web. Generally, people expect to provide a sentence as input (a query, representing their interest
or information need) and to get back a list of results that are highly related (relevant) to that
piece of text.

This document summarizes the information retrieval systems developed by the team DARDS
as part of the Search Engines 2022/2023 course, which is held at the University of Padua, in
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order to address the task 1 "Retrieval" of the "LongEval" lab proposed by CLEF 2023. The goal of
the lab, hence of the systems, is to retrieve the most relevant documents given a query (a short
sentence representing what the user would use to look for its information need). Furthermore,
the lab aims at understand the time persistence and reliability of the developed systems by
testing them using some data sampled at different times.

The paper is organized as follows: Section 2 describes our approach; Section 3 explains
our experimental setup; Section 4 discusses our main findings with relative failure analysis;
eventually, Section 5 draws some conclusions and outlooks for future work.

bridge

2. Methodology

The first goal we intended to achieve was to reach a stable (i.e. without Runtime Exceptions and
usable with the given collections) and simple version of a basic indexing and searching system,
to be used as a baseline to experiment additional features on.

Afterwards, the workflow split into several lines, each applying a different improvement
strategy, such as different text analyzers, different filter configurations or different document
preprocessing operations. Once a better system was found, it would eventually become the new
baseline to run further experiments on. In order to operate in this way, each line would evolve
on a different working branch of our git repository, with its performance measured mainly
through trec_eval’s nDCG and/or MAP metric.

Some tools were also developed to help us analyze what kind of errors the run contained,
to perform some pre-processing to the collection documents and to solve some translation
problems.

The main programming language that we used to develop our systems is Java, while some
tools have been developed using Python. In particular, the core of our work was implemented
by exploiting the Lucene java library [2].

We can split our systems in four main components:

• Parser
• Analyzer
• Indexer
• Searcher

In this section we describe the general workflow of our systems (Section 2.1), the developed
tools ( Sections 2.2 and 2.3), the general components (Sections 2.4, 2.5, 2.6 and 2.7) and the
complete systems (Section 2.8).

2.1. General systems flow

All of our systems operate in the following order (a scheme of the system is reported in Figure 1):

1. Apply a pre-processing to the documents of the corpus (optional stage).
2. Parse the documents of the corpus, splitting the content into the appropriate fields, using

the parser.
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Figure 1: General system scheme

3. Analyze the documents’ fields to convert them into a stream of tokens and index them to
perform the search (single index folder).

4. Parse and analyze the queries to convert them into a stream of tokens.
5. Perform the search on the index (one query at the time).
6. Rerank the documents retrieved with the search (optional stage).
7. Print the results of the search into a dedicated text file.

2.2. Pre-processing tools

2.2.1. SPAM parser

By analyzing the results produced with the French-based system (the simplest one) on the
French collection, we realized that relevant documents for a specific query were not included in
the first one thousand documents retrieved by the system for that query. Before increasing the



system’s complexity through new features, while inspecting the retrieved documents, it turned
out that several of the non-relevant documents were actually ranked as relevant documents
due to the high number of words repetitions inside them. More precisely, excluding documents
that were actually not relevant, we noticed that in the analyzed documents the words were not
different and the text contained a sensible number of repetitions. This new information drove
us to develop term frequency analyses to avoid the retrieval of documents considered "spam"
during the search task or, even better, the addition to the Lucene index during the indexing
phase, reducing its overall size.

With the term "spam" we denote the type of documents that "hack" the retrieval system
through the use of a set of words contained in the user query, that brings the document to the
top of the document-ranked list.

The following documents are some examples of "spam". We can notice that the length of the
texts is very short compared to the one of an average document:

"Tableau de conversion pouce / inch en Cm mm | Tableau de conversion, Tableau
de conversion de mesure, Scrapbooking à imprimer"

"[...] Quiz : Cinéma Quiz : Histoire de France Quiz : Géographie Quiz : Histoire
Quiz : Littérature Quiz : Espace Quiz : Bien-être Quiz : Littérature Quiz : Gamer

Quiz : Formule 1 Quiz"[...]

The methodology that we applied to fulfil this goal takes into account two main factors:

1. The ratio between the most frequent word and the total length of the document, excluding
articles and stopwords:

Max freq
Doc length

. (1)

The value obtained is as low as the term occurrences are spread all over the document.
2. The ratio between the number of words in the document and the number of different

words used in it:
Doc length

Number different words
. (2)

This ratio reaches higher values (closer to Document Length) on documents formed by a
limited set of distinct words. Spam pages often contain a small set of repeated keywords,
hence an high value of this ratio may be an indicator for spam.

In order to combine the two approaches, we can obtain a third ratio by multiplying the previous
ones and comparing the result with a threshold:

Max freq

������Doc length
· ������Doc length

Number different words
=

Max freq
Number different words

> threshold (3)

During the process, one more threshold is checked: the length of the analyzed word. Since
the implemented parser splits the sentences using blank spaces, it may happen that sequence of
characters (e.g. "⋆ ⋆ ⋆", "NVO",..) or symbols (e.g. €) cause an erroneous document exclusion. By
applying the proposed threshold these errors are avoided. To choose the best one, a first run



Figure 2: Flow of the documents parser. (docs_filter.py).

(without threshold constraint) was performed to analyze the reasons for document exclusions,
highlighting issues for example with symbols, acronyms and English articles. In the next steps,
the threshold was increased resulting in a value of 4 since the program could ignore useless
words while considering words containing more characters (with a higher probability that the
word was an actual word and not anything else). A better approach to this problem would
be an ML-oriented algorithm which would choose the best threshold based on the final score
obtained by the overall system. Both thresholds (on ratios and word length) used by the script
were experimentally obtained by manually analyzing some spam documents from the training
corpus (as a reference, valid threshold values could be 4 for minimum word size and 0.8 for the
ratio).

The entire pre-processing task was implemented in a separate Python file which automatically
reads all the files in the French collection and for each file it saves a new one that doesn’t contain
the documents marked as spam. The overall flow is reported in Figure2.

2.2.2. Synonyms

In order to try to increase the system’s performance, a query expansion method was implemented
through the use of synonyms. The files containing French synonyms available on the internet
were not sufficient and covered only a small part of the entire French dictionary. For this reason,
a new collection of words that could be easily used as synonyms of words found in the queries
during the search task was needed. To address this need, another Python tool that automatically
performs a request to a specialized site (dictionary.reverso.net/french-synonyms/) and retrieves
all the related synonyms was created. All the new words found are placed in the same line as
the searched word so that the Searcher (2.7) can easily extract the information needed. The
overall flow is shown in Figure 3.

https://bitbucket.org/upd-dei-stud-prj/seupd2223-dards/src/french/docs_filter.py
(


Figure 3: Flow of the synonyms searcher. (search_synonyms.py).

2.3. Translation tool

Since we found the translations of the documents and the queries provided by the LongEval
organizers to be imprecise, since the meaning of the original documents and queries some times
turned out to be completely different from the translated ones, we developed a tool that allows
to translate a piece of text from French to English. The tool has been implemented as a script in
Google’s "Google App Script" platform and then deployed as a web application. This tool must
be used as a REST resource.

The code used to implement this tool can be found HERE. 1

2.4. Parser

The parser that we implemented for all of our systems is a basic parser. This component simply
reads all the files with a given extension (.txt) present in a directory tree (specified as input) and
converts all the Trec formatted documents into an instance of the Lucene’s class Document that
has two fields: the identifier of the document (ID) and the body of the document (BODY). Some
systems in addition to that also read another file (whose path is given as input) that contains
pairs "document identifier"-"document url" and add an additional url field (URL) to the instances
of the documents based on the identifier. In some systems, we decided to add this field for two
reasons: the URL could help decreasing the rank position of the document containing "spam"
(see section 2.2) and it could help us in the queries that contain a website url.

1https://bitbucket.org/upd-dei-stud-prj/seupd2223-dards/src/master/code/BM25TRANSLATEDQUERIES/src/main/java
/it/unipd/dei/dards/utils/GoogleScriptApi.gs

https://bitbucket.org/upd-dei-stud-prj/seupd2223-dards/src/french/search_synonyms.py
https://bitbucket.org/upd-dei-stud-prj/seupd2223-dards/src/master/code/BM25TRANSLATEDQUERIES/src/main/java/it/unipd/dei/dards/utils/GoogleScriptApi.gs


Furthermore, we tried also to add another field to the document instances that was meant
to contain the document keywords (retrieved exploiting an algorithm called RAKE [3], Rapid
Automatic Keyword Extraction), but it required too much computation time so we didn’t
implement this option.

Eventually, the queries parser uses the tsv file format and its parsing action is done in the
searcher module (see Section 2.7).

2.5. Analyzer

In our systems we implemented customized analyzers instead of using the standard ones
proposed by Lucene. This choice was motivated by the fact that this way we could customize
the filters pipeline and choose a tokenizer. Tokenizers process the input stream (the document
text) and using some predefined rules they split it into tokens: these are the atomic units
composing a document. Unlike words, tokens do not have to be grammatically correct or
meaningful, but are suitable for processing and comparison operations. We tried two different
tokenizers:

• StandardTokenizer: a grammar-based tokenizer constructed with JFlex. It implements
the Word Break rules from the Unicode Text Segmentation algorithm, as specified in
Unicode Standard Annex #29.

• WhiteSpaceTokenizer: it breaks text into terms whenever it encounters a whitespace
character.

We started out using StandardTokenizer and we noticed that expressions separated with hyphens
were divided into different tokens. To avoid this, we tried a combination of WhiteSpaceTokenizer
and PatternReplaceFilter to remove all punctuations/symbols except for hyphens. But then
performance decreased and we backtracked.
In addition to the StandardTokenizer we used different filters, some of them shared by both
English-based and French-based systems:
French

• ElisionFilter: it targets elisions, so removes articles, prepositions and conjunctions
placed either in the initial or final part of the token, usually connected by an apostrophe
or hyphen. This connection makes it impossible for a generic stopword filter alone to
detect and delete those particles.

• ASCIIFoldingFilter: it converts alphabetic, numeric, and symbolic Unicode characters
which are not in the Basic Latin Unicode block (the first 127 ASCII characters) to their
ASCII equivalents, if one exists. This filter was used to remove accents and diacritical
marks from French words.

• FrenchLightStemFilter: this stemmer implements the "UniNE" algorithm [4].

Note that for the French case other stemmers (FrenchMinimalStemmer, org.taurus.snowball’s
FrenchStemmer) and chain of stemmers (multiple stemmers in a single analyzer) have been
tested and evaluated but the performance of the FrenchLigthStemmer turned out to be the best
(by looking at the map and ndcg metrics).
English



• NGramFilter: it generates character n-gram tokens of sizes in the given range. Tokens
are ordered by position and then by gram size.

• ShingleFilter: it constructs word n-grams, which are token n-grams, from the token
stream.

• PorterStemFilter: it applies the Porter Stemming Algorithm for English. The results are
similar to using the Snowball Porter Stemmer with the language="English" argument. It
is coded directly in Java and it is four times faster than the English Snowball stemmer.

• KStemFilter: it is an alternative to the Porter Stem Filter for developers looking for a
less aggressive stemmer. KStem was written by Bob Krovetz, ported to Lucene by Sergio
Guzman-Lara (UMASS Amherst). This stemmer is only appropriate for English language
text.

Shared

• LowerCaseFilter: it converts any uppercase letter in a token to the equivalent lowercase
token. All other characters are left unchanged.

• StopFilter: it discards, or stops analysis of, tokens that are on the given stop words list.
• SynonymGraphFilter: it maps single- or multi-token synonyms, producing a fully

correct graph output. If used for indexing it must be followed by a FlattenGraphFilter to
squash tokens on top of one another, because the indexer can’t directly consume a graph.

• HyphenatedWordsFilter: it reconstructs hyphenated words that have been tokenized
as two tokens because of a line break or other intervening whitespace in the field test.
If a token ends with a hyphen, it is joined with the following token and the hyphen is
discarded.

• RemoveDuplicatesTokenFilter: it removes duplicate tokens in the stream. It filters out
Tokens at the same position (with position we mean the position given by lucene to the
token in the token stream. There could be more tokens in the same position since some
operations, like the synonym expansion, add new tokens having the same position of the
original token and offset zero) and Term text as the previous token in the stream.

• NumberFilter: it removes every token in the token stream that happens to be a number
(this filter has been developed by team DARDS).

2.6. Indexer

The indexer’s job is to store the tokens, generated by processing every document with a
given analyzer, into an inverted index (data structure which maps terms to documents). We
implemented two types of indexer, DirectoryIndexer and ReRankDirectoryIndexer, the first one
takes all the documents in a given directory and stores them into the index, the second one
does the same but it can also store a list of documents passed to it.
Lucene captures some statistics at indexing time which can then be used to support scoring at
query time. To do this it makes use of similarity functions, which set a per-document value for
every field in the document. Hence, the similarity determines how Lucene weights terms.
In our systems we tested different similarities:

• BM25Similarity



Table 1
Comparison of rerank performance.

Similarity MAP
BM25Similarity 0.1424
LMJelinekMercerSimilarity(0.1F) 0.1249
LMJelinekMercerSimilarity(0.5F) 0.1255
LMJelinekMercerSimilarity(0.8F) 0.1242
DFRSimilarity (most of the configurations) 0.1423
LMDirichletSimilarity 0.1204
IndriDirichletSimilarity 0.0137
ClassicSimilarity 0.0740
BooleanSimilarity 0.0121
AxiomaticF2LOG 0.1358
AxiomaticF2EXP 0.1346

• LMDirichletSimilarity
• LMJelinekMercerSimilarity
• DFRSimilarity
• ClassicSimilarity
• BooleanSimilarity
• AxiomaticF2LOG
• AxiomaticF2EXP
• IndriDirichletSimilarity
• MultiSimilarity

In the large majority of cases the BM25Similarity turned out to be the best option to use (see
Table 1. Note that the values of the following table refer to an initial system that performed the
search on the English corpus provided by CLEF).

2.7. Searcher

The searcher is the other fundamental part of any IR system besides the Indexer. This component
takes care of doing the matching between a document and a topic, giving as a result a ranking,
which marks how relevant a document should be for a certain topic. In our application, topics
are real user queries.

In our systems, the searcher have been customized to first parse the queries from a provided,
.tsv formatted file. Then, one query at the time, this component turns the query into a stream of
tokens (exploiting a query parser and an analyzer which must be the same used for indexing),
converts it into a Lucene Query and searches the index for it. After performing the actual search
this tool optionally executes a rerank (see Section 2.7.2) and then prints the results of the overall
process into a file.

Note that in some systems the query is not directly turned into a Lucene Query but in the
process the terms are boosted (see Section 2.7.1). Furthermore, in the majority of cases the



query is performed by considering the BODY field of the document but in some systems the
same query is applied also to the URL field.

2.7.1. Boosting

In some of our systems we decided to not to use a plain query but to boost the term according
to some statistics. In particular, we computed a boost factor based on a measure that is quite
similar to the the TF-IDF weight. The equations used to compute the boost factor for the term i
are the following:

𝑤𝑖 =

(︃
𝑡𝑡𝑓𝑖∑︀𝑇
𝑗 𝑡𝑡𝑓𝑗

)︃0.2

·
(︂
1 + log

𝑁 + 1

𝑛𝑖 + 1

)︂
, (4)

where with 𝑡𝑡𝑓𝑖 we indicate the "total term frequency" (number of occurrences of the term in
the entire corpus), with 𝑁 the number of documents in the corpus, with 𝑇 the total number of
unique terms in the collection and with 𝑛𝑖 we denote the number of documents containing the
term.

In order to boost the query terms we:

1. Compute from the index an hash map that contains as keys the terms and as values the
related weight.

2. Get (exploiting the analyzer), from the original text of the query, the list of terms that
will compose our Lucene Query.

3. Create a TermQuery for each of the term.
4. Wrap the TermQuery in a BoostQuery, setting the boost based on the hash map (the boost

is set to zero if the term doesn’t appear in the index).
5. Merge all the BoostQuery(ies) in a BooleanQuery.

2.7.2. Reranking

After the searcher performed the task, some systems (such as the BM25FRENCHRERANK100
system 2.8.4) execute a rerank. To implement the reranking we simply consider the document
retrieved by the search (hits), we create a new index based only on those documents (or only on
the top-N document retrieved) and eventually we repeat the same or a slightly modified query
(depending on the system) on the new index.

2.8. Systems

In this subsection we describe the systems that we implemented. The overall system sequence
diagram is reported in Figure 1.

2.8.1. BM25FRENCHBASE system

As a baseline for all our work, this IR system for French uses:
This configuration has been achieved by trying all possible filter configurations while retaining

only the better performing ones.



Query language French
Document language French
Preprocessing None
Similarity BM25Similarity
Analyzer Custom, composed as below
Tokenizer StandardTokenizer
Filters ElisionFilter, LowerCaseFilter, StopFilter, ASCIIFoldingFilter, FrenchLightStemFilter
Searcher Standard searcher

The stoplist used by the StopFilter is a custom stoplist created by merging different French
stoplist found online and by adding some terms based on the index created (that has been
analyzed using Luke).
The article’s list used by the ElisionFilter is a custom list of terms that we created on the basis
of French dictionaries.
The ASCIIFoldingFilter was used to avoid problems related to French diacritical marks and
accents since not in all queries and/or documents were used properly.

This system has overall good performance on the test data, especially considering its moderate
complexity.

2.8.2. BM25FRENCHBOOSTURL system

The BM25FRENCHBOOSTURL system considers a document with three fields: ID,BODY,URL
(see Section 2.4). Furthermore this system uses:

Query language French
Document language French
Preprocessing None
Similarity BM25Similarity
Analyzer Custom, composed as below
Tokenizer StandardTokenizer
Filters ElisionFilter, LowerCaseFilter, StopFilter, ASCIIFoldingFilter, FrenchLightStemFilter
Searcher Standard searcher + boosting (see Section 2.7.1)

In this system the query is performed on both the BODY field and the URL field of the document
but in a slightly different way. In particular, the main boolean query is composed of two sub-
queries: one for the BODY field where each term is connected by means of an OR clause, the
other for the URL field where term is connected by means of an AND clause. Eventually, the
two sub-queries are connected by means of an OR clause to compose the final query.

Furthermore, boosting is performed, as described in Section 2.7.1, in the same way for both
the URL and BODY field sub-queries (we tried different combination of boosting, for example to
give to the URL sub-query terms double the weight, but this combination turned out to be the
best).

The stoplist used by the StopFilter is a custom stoplist created by merging different French
stoplist found online and by adding some terms based on the index created (that has been
analyzed using Luke).

The article’s list used by the ElisionFilter is a custom list of terms that we created on the basis



Table 2
Query translation error examples

Query ID French English

q062213307 cuisson gigot agneau leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg
leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg
leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg
leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg
leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg
leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg leg
leg leg leg leg leg leg

q062228 aeroport bordeaux airport

of French dictionaries.
The ASCIIFoldingFilter was used to avoid problems related to French diacritical marks and

accents since not in all queries and/or documents were used properly.

2.8.3. BM25TRANSLATEDQUERIES system

The BM25TRANSLATEDQUERIES system has been developed as an attempt of running an
English system with a better query quality: looking at the supplied English queries, multi-
ple translation mistakes and imprecisions were noticeable (see Table 2 for some examples).
Therefore, a custom translator was implemented, as defined in Section 2.3.

The translation of the queries is performed in the searcher right after their parsing and before
turning them into a token stream.

This system uses:

Query language French, translated in English
Document language English
Preprocessing None
Similarity BM25Similarity
Analyzer Custom, composed as below
Tokenizer StandardTokenizer
Filters LowerCaseFilter, StopFilter, KStemFilter
Searcher Standard searcher + query translation

By doing several experiments we noticed that with English the best performing stemmer was
the Krovetz stemmer (KStemFilter).

The StopFilter does not use a customized stoplist but it uses the standard English stoplist pro-
vided by the Lucene class EnglishAnalyzer through the static variable ENGLISH_STOP_WORDS_SET.

Furthermore, to increase the performance, we tried to translate also the documents by using
our tool (see Section 2.3) but, since the tool is used as a REST resource and because of the
number and length of the documents, this approach resulted to be too demanding in terms of
computational time, so we abandoned this idea.



2.8.4. BM25FRENCHRERANK100 system

This system has been developed to evaluate the benefits of introducing reranking mechanics
(as defined in Section 2.7.2). In order to achieve a better performance, query boosting (see
Section 2.7.1) is also included in the Searcher. In comparison to 2.8.2, this system does not take
into account the document’s URL but it considers only the BODY and ID fields.

Here follows a more detailed component overview:

Query language French
Document language French
Preprocessing None
Similarity BM25Similarity
Analyzer Custom, composed as below
Tokenizer StandardTokenizer
Filters ElisionFilter, LowerCaseFilter, StopFilter, ASCIIFoldingFilter, FrenchLightStemFilter
Searcher Standard searcher + boosting (see Section 2.7.1) + reranking

The rerank is performed as described in Section 2.7.2 and, in this case, the query that is used
to repeat the search is the same used for the main search. The query created is a BooleanQuery
obtained by connecting the BoostedQuery(ies) (each representing a boosted token of the topic )
by means of an OR clause.

Note that this system performs the rerank only for the first (most relevant) 100 document
retrieved by the first search (for the CLEF LongEval task the maximum number of retrieved
documents is 1000). We have chosen to rerank only 100 documents because by looking at the
performance through the Trec_Eval tool we noticed that the recall at the document cut-off
100 was sufficiently high. Nonetheless, we also tried to perform the rerank considering all the
retrieved document but the performance resulted to be lower.

Finally, we tried to boost the query performed in the second search in a different way (by
recomputing the TF-IDF-like weights considering only the secondary index created in during
the reranking step) but the performance decreased (see Table 3).

The stoplist used by the StopFilter is a custom stoplist created by merging different French
stoplist found online and by adding some terms based on the index created (that has been
analyzed using Luke).
The article’s list used by the ElisionFilter is a custom list of terms that we created on the basis

Table 3
Comparison of rerank performance.

rerank100 rerank1000

MAP 0.1960 0.1702
nDCG 0.3657 0.3379
recall 0.8437 0.8437
p@5 0.1533 0.1336



Table 4
Comparison of spam parsing performance.

THRESHOLD DOC KEPT MAP P@5 R@1000 nDCG

7% ≃ 74% 0.1462 0.1378 0.4869 0.2564
9% ≃ 83% 0.1729 0.1508 0.6135 0.3041
11% ≃ 88% 0.1891 0.1560 0.6869 0.3335
15% ≃ 93% 0.2067 0.1607 0.7648 0.3623

of French dictionaries.
The ASCIIFoldingFilter was used to avoid problems related to French diacritical marks and
accents since not in all queries and/or documents were used properly.

2.8.5. BM25FRENCHSPAM system

The system BM25FRENCHSPAM implements entirely the BM25FRENCHBASE (2.8.1) applying
documents preprocessing. All documents used as input are first parsed by a "spam" parser imple-
mented in Python, as described in Section 2.2.1, and executed before the BM25FRENCHSPAM
analyses. Since the pre-process activity uses a threshold above which a document is excluded, it
was necessary to understand the average value ( Max freq

Number different words ) of the collection, assuming
that most of the documents were valid (i.e. contain meaningful sentences). Using a slightly
modified version (not reported) of the already existing parser (Figure 2) it turned out that the
average ratio of the test collection corresponded to 6.5%.

In order to assign as correct a value as possible, some test has been done using different
thresholds and checking the corresponding performance. More specifically, the considered
tested values are 7%, 9%, 11% and 15% and the performance are reported in Table 4.

With this kind of methodology it was expected that, for thresholds below the average value
reported above, the performance would have dropped down since the parsing was acting
aggressively removing the relevant documents. On the other hand, for bigger thresholds, it was
also expected bad performance since the action of the filter would have been not significant.
An intermediate value, instead, would have ensured the right balance between the two cases.
The heuristic results show an opposite behaviour of the performance from the one described
above since the increase in performance as the threshold increases. This behaviour suggests
other implementations (as reported in Section 5) of the frequencies analyses possibly weighting
the two ratios used during the comparisons with thresholds. With the consideration of the data
discussed above, the threshold used during analyses with test data corresponds to 15%.

2.8.6. BM25FRENCHNOENG system

After the first spam removal attempt inspecting the documents we noticed how the majority
of spam documents were written in English despite being contained in the French collection.
So in this second attempt the DirectoryIndexer class was modified in order to execute a pre-
liminary filtering of the documents to index, discarding the ones written in English. This was



accomplished by scanning a copy of the document for English stopwords and another copy for
French stopwords. A document is inferred to be containing English content if the amount of
English stopwords it contains is at least 1.5 times the amount of French stopwords it contains.
Since English words are ubiquitous in all languages, a threshold higher than 1 had to be set.

Query language French
Document language French
Analyzer Same as Baseline
Preprocessing Custom DirectoryIndexer to exclude English docs

As an example, by looking at a batch of 10 discarded documents, we can what is reported in
Table 5.

Over the whole French corpus the pre-processing excludes 10,81% of the documents. The
table above shows how the majority of removed documents are not relevant. However, as
reported in Table 7, no significant effect (nor improvement, nor worsening) over the baseline
system has been recorded. This may be traced back to at least two reasons:

• English documents are seldom picked as relevant for French queries since their tokens do
not match. This causes the removal to cause small to none precision improvement.

• Some queries such as the ones in the table above are directly specified in English. This
makes English documents effectively relevant for them. This causes the removal to slightly
worsen recall.

As already said, this strategy is ineffective on its own but may bring some improvement if paired
with other techniques (see Section 5).

2.8.7. BaseSystem system

This system is actually the same as 2.8.3 but doesn’t implement the query translation so, as a
consequence, it uses the English queries provided by CLEF instead of the French queries. This
system is used only as a benchmark for comparison with the system described in Section 2.8.3.

Table 5
spam example

document ID Relevant For queries

doc062200100031 No
doc062200100356 No
doc062200100414 No
doc062200100463 No
doc062200100589 No
doc062200100599 No
doc062200100704 No
doc062200100726 Yes "youtube video converter", "video converter"
doc062200100748 No
doc062200100757 No
doc062200100802 No



2.8.8. BM25FRENCHDOCEXPANSION system

In this system we implemented the idea to expand the document vocabulary to avoid vocabulary
mismatch between queries and documents. To do this we use two different analyzers, one for
the documents (index time) and one for the queries (search time). This system is similar to
BM25FRENCHBASE (Section 2.8.1), but we added SynonymGraphFilter, FlattenGraphFilter and
RemoveDuplicatesFilter to the documents’ analyzer. By doing this we can store the documents
with their words and the synonyms too, lightening up the search time avoiding query expansion
technique.

Query language French
Document language French
Preprocessing None
Similarity BM25Similarity
Analyzer Custom, composed as below
Tokenizer StandardTokenizer
Filters ElisionFilter, LowerCaseFilter, StopFilter, SynonymGraphFilter, FlattenGraphFilter,

ASCIIFoldingFilter, FrenchLightStemFilter, RemoveDuplicatesTokenFilter
Searcher Standard searcher

2.8.9. BM25FRENCHQUERYEXPANSION system

This system is similar to the previous one but instead of expanding the documents we expand
the queries. It exploits the same idea of having two analyzers, one for the documents and one
for the queries. This time we added SynonymGraphFilter to the queries’ analyzer because
sometimes users do not formulate queries using the best terms, therefore using synonyms
can improve the quality of search results. This is less cost-effective than document expansion
because it makes the search heavier.

Query language French
Document language French
Preprocessing None
Similarity BM25Similarity
Analyzer Custom, composed as below
Tokenizer StandardTokenizer
Filters ElisionFilter, LowerCaseFilter, StopFilter, SynonymGraphFilter, ASCIIFoldingFilter,

FrenchLightStemFilter
Searcher Standard searcher

3. Experimental Setup

Overall, our experimental setup was composed by:

• Used collections: In our experiments we both used the French and English corpora
provided by the CLEF LongEval organizers, which include 1570734 documents and 672



queries for each language. However, the French collection was favoured because of the
translation errors the English corpus contains (see section 4 for a closer look).

• Evaluation measures: The general metric we used for evaluating the various systems
was the nDCG. However, more specific recall and precision metrics had also to be taken
into account to guide the improvement efforts. The tool used to evaluate the performance
once the run files were created was Trec_Eval (version 9.0.7). The ground-truth considered
for the evaluation was the one provided directly by CLEF organizer along with the
collection.

• Url to git repository: https://bitbucket.org/upd-dei-stud-prj/seupd2223-dards/src/master/
• Organization of git repository: The organization of the git repository is accurately

given in the README.md file. However, the main directories are:

– code: which contains some sub-directories each corresponding to one of the systems
and some additional run files.

– runs: which contains the runs submitted to CLEF for the evaluation (properly
organized in zipped directories having a name that corresponds to the related
system).

• Hardware used for experiments: All the indexing, searching and eventual pre-processing
work has mostly been carried out on different commercial, mid-end machines. Overall,
extensive testing (especially employing advanced NLP and POS-tagging techniques) has
been limited by the low computing power at our disposal that made certain processes
unsustainably long to complete. We report some of the used hardware:

– Machine 1:
∗ CPU: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz
∗ RAM: 16,0 GB (DDR4)
∗ GPU: NVIDIA GeForce GTX 1050
∗ HDD: Seagate Mobile HDD ST1000LM035

– Machine 2:
∗ CPU: Intel(R) Core(TM) i5-2400S CPU
∗ RAM: 8,0 GB (DDR3)
∗ GPU: NVIDIA GeForce GTX 750Ti
∗ HDD: 500GB 7200rpm hard drive

– Machine 3:
∗ CPU: AMD A8-7410 APU
∗ RAM: 8,0 GB (DDR3)
∗ GPU: Radeon R5 Graphics
∗ SSD: Baititon 480GB SSD

• Scripts and tools employed: A tool was developed to help in the error analysis process.
tellme is a small C program that automatically analyzes the run file, comparing it with
the qrels and producing a list of all the retrieval errors. Thresholds for both precision and
recall errors can be set in order to show only the most prominent errors while a verbose
mode will also print to screen the content of the related query and document, aiding error
inspection. You can find the tool’s C source here.

https://bitbucket.org/upd-dei-stud-prj/seupd2223-dards/src/master/
https://bitbucket.org/upd-dei-stud-prj/seupd2223-dards/src/master/tellmev3.c


Table 6
Non-uniform translation example

Item ID French English

q0622311 bourse de l emploi public Public Employment Exchange
doc062200210641 "Sélectionnée par Emploi Public" "Selected by Public servant"

Table 7
Training-time systems performance overview

System name Language nDCG MAP Recall@1000 CLEF-submitted?

BM25FRENCHBOOSTURL French 0.3815 0.2152 0.8421 Yes
BM25FRENCHBASE French 0.3812 0.2146 0.8451 Yes
BM25FRENCHNOENG French 0.3799 0.2139 0.8397 No
BM25FRENCHRERANK100 French 0.3657 0.1960 0.8437 Yes
BM25FRENCHDOCEXPANSION French 0.3650 0.2014 0.8176 No
BM25FRENCHSPAM French 0.3623 0.2067 0.7648 Yes
BM25FRENCHQUERYEXPANSION French 0.3567 0.1941 0.8202 No
BM25TRANSLATEDQUERIES Both 0.3037 0.1523 0.7437 Yes
BaseSystem (base English system) English 0.2944 0.1505 0.7022 No

4. Results

In this section we first discuss the performance on training data and how these were used to
select the system to submit to the LongEval lab. After that we analyze the performance on test
data (with some discussions) and report the hypotesis testing and failure analysis.

4.1. Performance on Training Data and Discussion

As aforementioned, it can be noted how work on the French corpus has been largely favoured.
Due to the fact that the English document and query set were obtained by translation of
the French ones, the former batch contains a lot of translation-induced noise which strongly
interferes with the goal of setting up an effective IR system. This was already seen from Table 2.

Another related issue is document and queries not being translated homogeneously. As an
example, in Table 6 we report a couple consisting of a query and a highly relevant document
and their translations. Such a translation, while semantically correct, makes it harder for the IR
system to correctly match the document to the query.

Moreover, by comparing our base French and base English systems we observed consistently
worse performance on the latter (see Table 7), while employing for the two systems essentially
the same techniques (adapted to the respective languages).

Overall, the best system for all metrics is the BM25FRENCHBOOSTURL. This particularly
good performance can be due to the URL tokenizing system helping with queries expressing
ad hoc search and known item search. In this scope, keywords contained inside the URL are
good indicators of page content: most of the time, while looking for a particular service or a
website, the best match contains its name in the page URL, since those are more likely to be
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Figure 4: Interpolated precision-recall curve

official websites and sources. Furthermore, considering the fact that some documents were
rich of repetitions and useless symbols, considering the URLs in the search phase allowed us to
distinguish more between real relevant documents and outliers.

Another thing to observe is the BM25TRANSLATEDQUERIES performance in comparison to
BaseSystem. When compared to base French systems, the results highlight how impactful query
translation is, and the different results between the two denote how using a different translator
may substantially influence output. This difference in results confirms how translation adds
significant noise that interferes with the system IR-wise improvement process.

The BM25FRENCHRERANK100 system instead doesn’t work as expected. In particular we
were expecting to increase the nDCG by reranking the first 100 documents but this metric
actually decreases. This can be due to the fact that by recreating the index based only on the
top-100 documents the terms statistic changes and the new statistics favors the documents that
are not considered relevant in the ground-truth.

To implement the reranking we thought about using some machine learning and/or deep
learning techniques (Learn To Rank, LTR) but we were worried about the fact that since we had
only a small number of relevance feedback for the training topics, then the resulting system
would overfit on the training data.

We chose the systems to be submitted to CLEF based on the previous consideration and by
evaluating also the trade-off between performance and novelty we brought (in the last column
of Table 7 we marked which systems were submitted).

Figure 4 shows the interpolated precision-recall curve for the two best performing systems.



Table 8
Test-time systems performance overview (nDCG)

System name
Within Time Short Term Long Term

nDCG Recall@1000 nDCG Recall@1000 nDCG Recall@1000

BM25FRENCHBOOSTURL 0.3859 0.8708 0.3866 0.8323 0.3945 0.8556
BM25FRENCHBASE 0.3843 0.8684 0.3924 0.8375 0.3916 0.8531
BM25FRENCHRERANK100 0.3755 0.8644 0.3756 0.8365 0.3758 0.8531
BM25FRENCHSPAM 0.3605 0.7874 0.368 0.7686 0.3643 0.7773
BM25TRANSLATEDQUERIES 0.3072 0.7317 0.3051 0.7225 0.3189 0.7482

4.2. Performance on Test Data

Table 8 reports the results computed for our CLEF-submitted systems over the LongEval test
datasets. Each metric group represents a different indexing scenario, whether on same-time (of
training data), short term evolution or long term evolution.

The results in Table 8 highlight how the time-wise evolution of corpora (and queries) did
not affect the system’s effectiveness in any relevant way. This can be traced back to two main
reasons:

• The systems rely on language-specific components only for a minimal part. Moreover,
such components are not largely affected by language change over time: unless way
longer timespans are observed, stopwords are unlikely to change and filters working on
syntax and morphology are expected to keep their behavior.

• At design time, during error analysis, changes were implemented targeting frequent
problems that affected documents of various nature and content. Problems affecting
specific categories of documents with specific content were not considered of primary
interest as a means to avoid overfitting when given potentially different content to index.

4.3. Hypothesis Testing & Failure Analysis

To compare the submitted systems for each of the three case studies (withing time, short term
and long term) we first plotted the box plots to have a visual representation of the systems, their
mean and their variance. After that, we computed the two-way ANalysis Of VAriance (ANOVA)
considering as hypothesis the null hypothesis 𝐻0 : 𝜇𝑥 = 𝜇𝑦 (where 𝑥 and 𝑦 represent two
generic systems to be compared). The reason why we considered two-way ANOVA and not
one-way ANOVA is that two-way ANOVA considers both the topics and the systems effect
while the one-way ANOVA considers only the systems effect. The threshold that we used to
consider the systems different was 𝛼 = 0.05 (5%). The results of the various ANOVA tests have
been reported in Table 9, Table 10 and Table 11, where with SS we mean "Sum of Squares", with
df we mean "degrees of freedom", with MS we mean "Mean Squares", with F we indicate the
F-Test value and with prob>F we indicate the P-Value.

Eventually, we computed the Tukey HSD Test to understand which of the systems were
actually different (in Figure 6, Figure 8 and Figure 10 the system highlighted in blue is the one
considered for the comparison, the systems in red are the systems that are considered different,
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Figure 5: Box Plots Within Time

Table 9
Two-Way ANOVA Within Time (based on nDCG)

Source SS df MS F prob>F

Columns (systems) 0.4170 4 0.1042 8.2753 2.0570e-06
Rows (topics) 21.6586 97 0.2233 17.7255 1.1527e-97
Error 4.8876 388 0.0126
Total 26.9631 489

while the systems in grey are the systems that are considered similar). In all cases, the metric
selected for the comparison has been the nDCG.

4.3.1. Within Time

From the Box plots reported in Figure 5 we can see that the systems, in this case, appear to be
quite similar. This is not confirmed by the output of ANOVA reported in Table 9 since the P-Value
result to be lower than the considered threshold. Nonetheless, the results can be considered
reliable since the system contribution is much higher than the error contribution. The ANOVA
results highlight significant differences between the systems we have analyzed. This difference
may be mainly due to the presence of an English-based system (BM25TRANSLATEDQUERIES)
along French-based ones.

Moreover, by looking at the Tukey HSD results (reported in Figure 6) the only system that
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(a) BM25FRENCHBOOSTURL
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(c) BM25FRENCHRERANK100
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(d) BM25FRENCHSPAM
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(e) BM25TRANSLATEDQUERIES

Figure 6: Tukey HSD Test Within Time. The blue line is the system we are taking into account to do
the test. The red lines are the systems significantly different to the blue system. The grey lines are the
systems not significantly different to the blue system.



Figure 7: Box Plots Short Term

appears different from the others is the BM25TRANSLATEDQUERIES system. This could be due
to the fact that that system is the only one using the English corpus and the performance results
to be quite different from the others.

We can conclude that the systems are quite similar but the BM25TRANSLATEDQUERIES
system turns out to be the only one showing relevant differences.

4.3.2. Short Term

By looking at the box plot reported in Figure 7 we see that the systems have pretty much the
same performance, only BM25TRANSLATEDQUERIES differs a bit from the others. Furthermore
we can see that the extension of the whiskers in almost all the systems goes from 0 to 1, this is
due to the fact that those systems performs very well for some queries (and reach the maximum
value of nDCG) but very poorly for some other queries. A deeper analysis of the results revealed
that the queries performing well were very specific while the ones performing badly were either
or generic queries or containing terms that can be considered spam (see Section 2.2.1 for more
details).

The two-way ANOVA (whose results are reported in Table 10) does reveal relevant differ-
ences among the systems since the P-Value result to be lower than the considered threshold.
Furthermore, the results of ANOVA can be considered reliable since the system contribution is
much higher than the error contribution.

By looking at the Tukey HSD results (reported in Figure 8) we noticed that there is a clear differ-



Table 10
Two-Way ANOVA Short Time (based on nDCG)

Source SS df MS F prob>F

Columns (systems) 4.4582 4 1.1145 87.3582 7.1783e-71
Rows (topics) 231.3659 881 0.2626 20.5839 0
Error 44.9605 3524 0.0128
Total 280.7846 4409

Table 11
Two-Way ANOVA Long Time (based on nDCG)

Source SS df MS F prob>F

Columns (systems) 3.5172 4 0.8793 79.2206 1.4254e-64
Rows (topics) 218.3013 992 0.2368 21.3319 0
Error 40.9342 3688 0.0111
Total 262.7527 4614

ence between BM25TRANSLATEDQUERIES and the other systems, this is due to the fact that this
system is based on the English collection. Taken the best system’s test (BM25FRENCHBASE’s),
we see that the BM25FRENCHBASE system is significantly different from all systems other
than the BM25FRENCHBOOSTURL system, this happens because they are basically the same
except that the BM25FRENCHBOOSTURL system uses (in the indexing and searching phases) an
additional field: the URL.

4.3.3. Long Term

From the Box plots reported in Figure 9 we can see that the systems, even in this case, appear
to be quite similar. Furthermore we can see that the extension of the whiskers in almost all
the systems goes from 0 to 1, this is due to the fact that those systems performs very well for
some queries (and reach the maximum value of nDCG) but very poorly for some other queries.
A deeper analysis of the results revealed that the queries performing well were very specific
while the ones performing badly were either or generic queries or containing terms that can be
considered spam (see Section 2.2.1 for more details).

The two-way ANOVA (whose results are reported in Table 11) does reveal relevant differ-
ences among the systems since the P-Value result to be lower than the considered threshold.
Furthermore, the results of ANOVA can be considered reliable since the system contribution is
much higher than the error contribution.

By looking at the Tukey HSD results (reported in Figure 10) we noticed that the two best
performing systems (BM25FRENCHBOOSTURL and BM25FRENCHBASE) happen to be quite
similar between each other but different from the other systems; this happens because the
BM25FRENCHBOOSTURL system is actually the same as the BM25FRENCHBASE system except
that it uses one additional field: the URL. Furthermore, also the BM25FRENCHRERANK100 system
and the BM25FRENCHSPAM turn out to be similar while the BM25TRANSLATEDQUERIES system



still looks different and (as in the previous case studies) this is due to the fact that this last
system is based on the English collection.



(a) BM25FRENCHBASE (b) BM25FRENCHBOOSTURL

(c) BM25FRENCHRERANK100 (d) BM25FRENCHSPAM

(e) BM25TRANSLATEDQUERIES

Figure 8: Tukey HSD Test Short Term. The blue line is the system we are taking into account to do
the test. The red lines are the systems significantly different to the blue system. The grey lines are the
systems not significantly different to the blue system.
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Figure 9: Box Plots Long Term
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(a) BM25FRENCHBOOSTURL
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(b) BM25FRENCHBASE
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(c) BM25FRENCHRERANK100
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(d) BM25FRENCHSPAM
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(e) BM25TRANSLATEDQUERIES

Figure 10: Tukey HSD Test Long Term. The blue line is the system we are taking into account to do
the test. The red lines are the systems significantly different to the blue system. The grey lines are the
systems not significantly different to the blue system.



5. Conclusions and Future Work

We have been able to reach good results in terms of nDCG and in particular of recall, in particular
with the system BM25FRENCHBOOSTURL. We have developed a variety of system that use
multiple different techniques to retrieve the documents always by paying attention to not create
systems that are too overfitted to our training data (especially because the goal of the CLEF
LongEval task was to evaluate the stability of the systems over time).

The English translations of the original French documents and queries were done by machine
translators and their quality was not particularly good. Our translation tool demonstrated that
machine translation could have a not negligible impact on IR.

For what concerns spam detection, after these experiments we can assert that the models
we have experimented with are indeed too simple to adequately distinguish between spam
and non-spam documents. For instance, a more complex algorithm that takes into account
document length, word frequency distribution, word variance, sentence shape and language
simultaneously may be able to target spam way more effectively. Moreover, with such an
implementation, machine learning techniques may help in finding the optimal thresholds and
weights for each document feature.

5.1. Future work

To improve our systems we will work on these aspects:

• Document translation: try to improve the documents translations by improving our
translation tool (and turning it in something that allow us to execute the translation of
the documents BODY field in a computationally feasible time).

• System combination: develop further the systems that use the English language, trying
to increase the performance. After that combine the English and French systems results
trying to do a multilingual search.

• Learn To Rank (LTR): try to implement some LTR (and feature extraction) technique
considering more relevance feedback to avoid overfitting.

• Machine learning for spam detection: look for correlation between various document
features to infer with limited uncertainty whether a document contains spam.
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