
SEUPD@CLEF: Team CLOSE on Temporal Persistence
of IR Systems’ Performance
Notebook for the LongEval Lab on Information Retrieval at CLEF 2023

Gianluca Antolini1, Nicola Boscolo1, Mirco Cazzaro1, Marco Martinelli1,
Seyedreza Safavi1, Farzad Shami1 and Nicola Ferro1

1University of Padua, Italy

Abstract
This paper presents the work of the CLOSE group, a team of students from the University of Padua,
Italy, for the Conference and Labs of the Evaluation Forum (CLEF) LongEval LAB 2023 Task 1 [1]. Our
work involved developing an Information Retrieval (IR) system that can handle changes in data over
time while maintaining high performance. We first introduce the problem as stated by CLEF and then
describe our system, explaining the different methodologies we implemented. We provide the results of
our experiments and analyze them based on the choices we made regarding various techniques. Finally,
we propose potential avenues for future improvement of our system.

Keywords
Information Retrieval, Search Engines, Longitudinal Evaluation, Temporal persistence, Model Perfor-
mance

1. Introduction

Recent research has shown that the performance of information retrieval systems can deteriorate
over time as the data they are trained on becomes less relevant to current search queries. This
problem is particularly acute when dealing with temporal information, as web documents and
user search preferences evolve over time. In this paper, we propose a solution to this problem
by developing an information retrieval system that can adapt to changes in the data over time,
while maintaining high performance.

Our approach involves using the training data provided by the Qwant [2] search engine,
which includes user searches and web documents in both French and English. We believe that
this data will enable our system to better adapt to changes in user search behavior and the
content of web documents.

The remainder of this paper is organized as follows: Section 2 describes our approach in more
detail, including the different techniques we used. Section 3 explains our experimental setup,

CLEF 2023: Conference and Labs of the Evaluation Forum, September 18–21, 2023, Thessaloniki, Greece
$ gianluca.antolini@studenti.unipd.it (G. Antolini); nicola.boscolocegion.1@studenti.unipd.it (N. Boscolo);
mirco.cazzaro@studenti.unipd.it (M. Cazzaro); marco.martinelli.4@studenti.unipd.it (M. Martinelli);
seyedreza.safavi@studenti.unipd.it (S. Safavi); farzad.shami@studenti.unipd.it (F. Shami); ferro@dei.unipd.it
(N. Ferro)
� http://www.dei.unipd.it/~ferro/ (N. Ferro)
� 0000-0001-9219-6239 (N. Ferro)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:gianluca.antolini@studenti.unipd.it
mailto:nicola.boscolocegion.1@studenti.unipd.it
mailto:mirco.cazzaro@studenti.unipd.it
mailto:marco.martinelli.4@studenti.unipd.it
mailto:seyedreza.safavi@studenti.unipd.it
mailto:farzad.shami@studenti.unipd.it
mailto:ferro@dei.unipd.it
http://www.dei.unipd.it/~ferro/
https://orcid.org/0000-0001-9219-6239
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

including the datasets and evaluation metrics we used. Section 4 presents our main findings
and analyzes them based on the choices we made regarding various techniques. Section 5 goes
into deep in analyzing results of our systems over test data and within time performances,
making use of statistical tools such as ANOVA. Finally, Section 6 summarizes our conclusions
and outlines potential avenues for future work.

2. Methodology

2.1. General Overview of Our IR System

In the development of our IR system, we followed the traditional Y model, represented in the
figure below.

INFORMATION
NEED

INDEXING

QUERY

INDEXING

DOCUMENTS
REPRESENTATION

DOCUMENTS

MATCHING

RETRIEVED
DOCUMENTS

QUERY
REPRESENTATION

RETRIEVAL PROCESS

Figure 1: Apache Lucene Y Model.

The workflow of our system, starting from the train collection provided by LongEval [1], is
as follows:

1. Parsing: The first phase consists of parsing the documents in the collection, which is
a pre-processing operation performed to clean them from unnecessary noises. Since
the collection is composed of web pages, the documents contain many leftovers like
JavaScript scripts, HTML and CSS codes, HTTP and HTTPS URIs, and so on.

2. Indexing: Each parsed document is then analyzed and indexed keeping only the necessary
information. Indexed documents are composed of two fields: an id field, containing the

identifier of the document in the collection, and a content field, containing the entire body
of the document cleaned by the parsing and indexing phases.

3. Query Formulation: Topics are then parsed using the same analyzer used for documents,
and used to formulate queries. For each topic, together with the already provided query,
around 15 other query variants are generated (through the GPT model) by us and used
altogether for searching relevant documents.

4. Re-ranking: Utilizing the sentence transformers model to determine the similarity
between the document and the query. This similarity score is then multiplied by the BM25
score, resulting in new ranking scores for the documents. Then the retrieved documents
are re-ranked based on these new ranking scores.

Documents
Collection

Topics

Parsing

Parsed
Documents Indexing Indexed

Documents

Parsed
Topics

Queries
Formulation

Computed
Queries

Matching
Relevant

Documents
Retrieved

Re-ranking

Retrieved
Results

Figure 2: Workflow of the IR system implemented by CLOSE.

2.2. Class Diagram

Figure 3: Diagram of the classes implemented by CLOSE IR system

The class diagram of the system [3] retraces the Y model [1] of an IR system: in fact, it is
possible to see it as an indexer class and a searcher class that is, in this order, called by the
main class CloseSearchEngine of our system. The Analyzer class is instantiated before all, as it is
used both from the two main branches stated before. Here many other Lucene (and Solr for
NLP filters trials) tools are instantiated, as long as this component is responsible for analyzing
tokens, and here most of our processing phase goes on: in particular, the tokenizer and the
stemmer (and some NLP filters used in a trial).
The other connected component of the diagram is related to the parsing section: here, while
walking on the file tree, the Indexer uses this component to generate, from a JSON document,
an actual Java object (ParsedTextDocument) representing it with its fields.
The Searcher class firstly parses the queries from the Text REtrieval Conference (TREC) format
in a Lucene QualityQuery object, through our ClefQueryParser class. It also instantiates the
ReRanker, responsible for the second-ranking phase.

2.3. Parser

As stated before, the documents in the collection provided by the CLEF LongEval LAB 2023 [1]
are essentially the corpus of web pages, to better represent the nature of a web test collection.
From this, the need for performing a pre-processing phase of parsing the documents before
analyzing and indexing them arises. In this phase, the documents are cleaned from all the
residuals of codes not useful for our purposes. We first created an abstract class DocumentParser
and then extended it by implementing a custom ClefParser class, which contains many functions
for removing sundry types of noises that can be present in documents. This was the result of
the trial and error approach we adopted for implementing this class:

• We started with our own read of a large statistical sample size of the documents in the
collection to decide which types of noises needed to be removed.

• Then we implemented the parser and ran it.
• The results of the parsing were stored, and a sample of the parsed documents was analyzed

to start this procedure again.

Sample
of the

Documents
Collection

Noises
Identification

Parser
Implementation

Parsed
Documents

Sample
Selection

Figure 4: Workflow of the parser implementation.

The types of noises we tried to remove are the following:

• JavaScript scripts,
• HTTP and HTTPS URIs,
• HTML tags and CSS stylesheets,
• XML and JSON codes,
• Meta tags and document properties,
• Navigation menus,
• Advertisements,
• Footers,
• Social media handlers,
• Hashtags and mentions.

The final decision about the type of noises to effectively remove for our runs was the most
crucial part of this process.
For establishing this we used a trial & error approach, and in the end, we decided to remove
only the JavaScript scripts and the HTTP and HTTPS URIs. Regarding URIs, although these are
usually important because they can contain valuable keywords, we noticed an improvement in
Mean Average Precision (MAP) of almost 0.5 points by just removing them.
We also identified some patterns of words and symbols to remove:

• Two words separated by an underscore, like word1_word2
• Two words separated by a colon, like word1:word2
• Two words separated by a point, like “word1.word2”

We used Regular Expressions [3] to identify and remove these patterns.
The structure of the parsed document is defined in the ParsedTextDocument class, and it is

composed of just two fields:

1. id: the identifier of the document,
2. body: the (parsed) content of the document.

Inside it, multiple controls about the validity and integrity of the parameters are performed,
then an object of the class is instantiated.

2.4. Analyzer

The Analyzer is responsible for analyzing the extracted documents and preparing them for the
Indexing and Searching phases. It does so by combining a series of techniques of text processing
such as tokenization, stemming, stopword removal, and many more.
We extended Apache Lucene’s Analyzer abstract class [4] by creating a custom class CloseAn-
alyzer, which is fully customizable by its parameters that can be chosen when creating an
instance of the class. This has been done because we tried different settings and approaches to
maximize the results and kept all the possible variations as optional settings. This CloseAnalyzer
is passed as a parameter and then used by the DirectoryIndexer and by the Searcher.
The constructor of CloseAnalyzer accepts the following parameters:

• tokenizerType: used to choose between three standard Lucene tokenizers: Whitespace-
Tokenizer [5], LetterTokenizer [6], and StandardTokenizer [7].

• stemFilterType: the possible choices for the stemming types are four standard Apache
Solr [8] filters: EnglishMinimalStemFilter [9], KStemFilter [10], PorterStemFilter [11],
and FrenchLightStemFilter [12]. We also tried using FrenchMinimalStemFilter [13] and a
custom filter called LovinsStemmerFilter based on a LovinsStemmer [14] implementation
but decided to keep them commented as they didn’t improve the results.

• minLength and maxLength: these are integers that simply specify the minimum and
maximum length of a token, applying Lucene’s LengthFilter [15].

• isEnglishPossessiveFilter: specifies whether to use Lucene’s EnglishPossessiveFilter [16]
or not. Of course, this can be useful when operating with the English dataset.

• stopFilterListName: with this parameter, it’s possible to insert the path of an eventual
word stoplist .txt file located in the resources folder. To do this we use Lucene’s StopFilter
[17] and a custom class called AnalyzerUtil that uses a loadStopList method to read and
load all the stoplist words from the specified file. The stoplists we created are based on
the standard ones but modified after inspecting the index with the Luke [18] tool. We
have lists of different lengths and different ones for French and English.

• Character nGramFilterSize: if specified, this parameter is used to define the size of the
n-grams to be applied by Lucene’s NGramTokenFilter [19].

• Word nGramFilterSize: similar to the previous one, if used, this integer number indicates
the shingle size to be applied by Lucene’s ShingleFilter [20] that allows the creation of a
combination of words.

• useNLPFilter: this boolean allows the use of Solr’s [8] OpenNLPPPOSFilter [21] for
Part-Of-Speech Tagging and of a custom class called OpenNLPNERFilter for Named Entity
Recognition. To load the .bin models, which are located in the resources folder, we use
two methods from AnalyzerUtil: loadPosTaggerModel and loadNerTaggerModel.

• lemmatization: specifies whether to use Solr’s OpenNLPLemmatizerFilter [22] by loading
a .bin model file in the resources folder using AnalyzerUtil’s loadLemmatizerModel function.

• frenchElisionFilter: we applied this only when using the French dataset by adding
Lucene’s ElisionFilter [23] with an array of the following characters: ’l’, ’d’, ’s’, ’t’, ’n’, ’m’.

On top of this, a LowerCaseFilter [24] is always applied.
We also tried Lucene’s ASCIIFoldingFilter [25] and SynonymGraphFilter [26]. For the second
one, only for the French Dataset, we used a SynonymMap [27] based on a .txt file containing
French synonyms.
After different trials with different variations of the parameters, the following are options used
with our CloseAnalyzer implementation: we have opted for the French dataset and by doing
so we have the StandardTokenizer, 2 and 15 as minimum and maximum token length, we use
frenchElisionFilter, FrenchLightStemFilter, and a list of 662 French words as a stoplist. This
stoplist has been built upon a popular French stoplist together with the most frequent stopwords
in the collection. We didn’t use any of the other parameters. We utilized the Gson library to
efficiently parse JSON files that contained query expansions. By leveraging Gson’s capabilities,
we were able to seamlessly convert the JSON data into Java objects.

2.5. Searcher

The purpose of the Searcher is to search through the indexed documents to retrieve relevant
information based on user queries after analyzing them and to return a ranked list of documents
that match the user’s information needs.
Our implementation does so by accepting the following parameters:

• analyzer: in this case, an instance of CloseAnalyzer.
• similarity: we decided to opt for the BM25Similarity [28] function with the parameters

k1 and b tuned at 1.2 and 0.90.
• Run options: there are parameters for the index path, the topics path, the run path

and the run name, the number of the expected topic (in our case 50), and the maximum
number of documents retrieved (in our case 1000).

• reRankModel: this is the type of model used to do a Re-Ranking on the retrieved
documents. In our case, we use a model called all-MiniLM-L6-v2 [29], explained in the
following subsection.

2.5.1. Query Expansion

When running the search function, one of the first actions performed is to generate new queries
from the original ones by query expansion [30].
We created a Python script that, given the *.trec topic file, generates all the expanded terms for
each query and stores everything in a .json file called result, containing all the expansions.
We use OpenAI’s Text completion [31] endpoints to generate the expansions, we can use our
need as a prompt and the model will generate the result. We used the davinci model, which is
the most powerful one, and we set the temperature parameter to 0.6, which is the value that
gives the best results.
The sample result for prompt

“Expand the following query with num_expansions related terms or phrases for information
retrieval (search-engine): query and the result should be in array format without any numbers at

first [expanded_term1, expanded_term2, ...]”

is:

Query text-davinci-002 text-davinci-003

antivirus comparison

1. Antivirus software
2. Antivirus protection
3. Best antivirus
4. Free antivirus
5. Antivirus for Windows
6. Antivirus for Mac

1. Antivirus Reviews
2. Antivirus Software
3. Antivirus Protection
4. Malware Protection
5. Virus Scanner
6. Online Security

The main difference between davinci-text-002 and davinci-text-003 is that the latter has been
trained on a larger dataset, allowing it to generate more accurate results [32].

2.5.2. Query Boosting

Query boosting is a technique used to assign greater relevance to certain query terms or queries.
We tried the following approach that seemed to improve the overall results: when building
the queries in the search function of the Searcher (2.5), for each query, a BooleanQuery [33] is
built in the following way: after getting the query expansions, each of them is added to the
BooleanQuery with the clause SHOULD (meaning that at least one of them must be satisfied)
and a main query is added with the clause MUST, indicating that it must be satisfied.
This main query is boosted using Lucene’s BoostQuery [34], with a boost value tuned at 14.68
multiplied by the number of expansions. We got this value by a trial & error approach we used
to fine-tune this parameter.

2.5.3. Document Re-Ranking

Re-Ranking is the process of ranking documents retrieved by the search function of the Searcher
(2.5). To accomplish this task, we utilized sentence transformers [35], a Python framework
known for its state-of-the-art sentence, text, and image embeddings. Various models were
experimented with, and the one yielding the best results was identified as all-MiniLM-L6-
v2 [29]. This particular model aims to train sentence embedding models using a self-supervised
contrastive learning objective on vast sentence-level datasets, ultimately mapping sentences
and paragraphs to a dense vector space of 384 dimensions.

To generate embeddings for both the documents and query retrieved by the search function,
we loaded the all-MiniLM-L6-v2 model and instantiated a SentenceTransformer object. To
calculate similarity, we employed the widely used cosine similarity formula, which computes
the similarity between two vectors. The formula is defined as follows:

similarity =
𝑡 · 𝑑𝑖
|𝑡||𝑑𝑖|

(1)

Here, 𝑡 represents the query vector, and 𝑑𝑖 denotes the vector of the 𝑖-th document.
Subsequently, we interpolated this similarity score with the BM25 score to improve the

ranking of the documents. Among the different approaches we explored, the most successful
one was as follows:

rank = BM25_score × similarity (2)

To visualize the re-ranking operation’s effectiveness, we plotted the results for 50 sample
queries, as depicted in Figure 5.

Finally, we sorted the documents based on the new rank and returned them.

Figure 5: Plot illustrating the re-ranking operation performed on 50 sample queries

3. Experimental Setup

3.1. Collections

We developed our model using a collection of 1,593,376 documents and 882 queries provided
by Qwant search engine, available at https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/
1-5010.
The collection contains information about user web searches and actual web pages corpora. The
data was originally all in French but, for both queries and documents, an English translation is
provided.

3.2. Evaluation Measures

To measure the effectiveness of our IR system we used the trec_eval executable by testing it
with the resulting runs produced by the model and its different configurations.
We tracked improvements of the following evaluation measures generated by trec_eval:

• num_ret: number of documents retrieved for a given query.
• num_rel: number of relevant documents for a given query.
• num _rel_ret: number of relevant documents retrieved for a given query.
• map: Mean Average Precision, a measure of the average relevance of retrieved documents

across all queries.
• rprec: R-Precision is the precision score computed at the rank corresponding to the

number of relevant documents for a given query.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-5010
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-5010

• p@5 and p@10: Precision at 5 and at 10 is the precision computed at the top 5 and 10
retrieved documents for a given query.

• nDCG: it is a metric used to evaluate ranked lists. It measures the effectiveness of a
ranking algorithm by considering item relevance.

3.3. Git Repository

More detailed information about our information retrieval system, including source code, runs,
results, homework reports, and presentation slides, can be found in our Git repository at
https://bitbucket.org/upd-dei-stud-prj/seupd2223-close/src/master/%7D. The code is available
for reproducibility.

4. Results and Discussion

Table 1
Parameters used in the 5 different runs submitted to CLEF
Parameter Run 1 Run 2 Run 3 Run 4 Run 5
Token Filter Porter-

StemFilter
FrenchLight-
StemFilter

FrenchLight-
StemFilter

PorterStem-
Filter

FrenchLight-
StemFilter

Tokenizer Standard Standard Standard Standard Standard
Length Filter 2-15 2-15 2-15 2-15 2-15
Stop Filter "long-

stoplist.txt"
"long-
stoplist-
fr.txt"

"long-
stoplist-
fr.txt"

"long-
stoplist.txt"

"new-long-
stoplist-
fr.txt"

Lower Case Filter Yes Yes Yes Yes Yes
Similarity BM25 BM25 BM25 BM25 BM25
Query Expansion No Yes Yes Yes Yes
Re-ranking No No Yes Yes Yes

In this Section, we provide some of the most relevant results we got during the development
phase. We are considering five principal milestones that, within many different trials, led us to
improve significantly our MAP score and the overall number of relevant documents actually
retrieved.

4.1. Results on Training Data

First of all, given that we were provided with two different versions of the same document’s
corpora, our first idea was to try the English version.
We noticed that the best combination of basic IR tools was to use the Porter Stemmer [11],
a length filter from 1 to 10, and a list of stop-word composed by some standard terms and
more from the top 600 extracted from the index. The very first big milestone, that helped us to
increment the MAP of around 3 points, from 10.1% to 13.1%, was the JavaScript code cleaner
since we noticed by inspection that many documents were having these types of scripts inside.
Always by inspecting some documents and queries, and also considering that the original

https://bitbucket.org/upd-dei-stud-prj/seupd2223-close/src/master/%7D

Table 2
results for systems (top-1000 documents), on the Train collection and the train query set of LongEval.

metrics run1 run2 run3 run4 run5
num_q 657 669 669 667 667
num_ret 646525 658446 658347 652222 657903
num_rel 2550 2611 2611 2603 2600
num_rel_ret 1772 2182 2191 1866 2232
map 0.1307 0.2022 0.2335 0.1856 0.2351
Rprec 0.1041 0.1697 0.1989 0.1654 0.2022
iprec_at_recall_0.00 0.2553 0.3499 0.4134 0.3584 0.4182
iprec_at_recall_0.20 0.2387 0.3324 0.3873 0.3353 0.3927
iprec_at_recall_0.40 0.1441 0.2316 0.2732 0.2066 0.2716
iprec_at_recall_0.60 0.0965 0.1786 0.1996 0.1388 0.2014
iprec_at_recall_0.80 0.0628 0.1178 0.1311 0.0887 0.1295
iprec_at_recall_1.00 0.0525 0.0954 0.1031 0.0704 0.1028
P_10 0.0848 0.1296 0.1435 0.1126 0.1432
P_100 0.0186 0.0256 0.0268 0.0222 0.0268
P_1000 0.0027 0.0033 0.0033 0.0028 0.0033
recall_10 0.2166 0.3352 0.367 0.2849 0.3621
recall_100 0.4718 0.6426 0.6714 0.5536 0.6723
recall_1000 0.6816 0.8192 0.8218 0.7004 0.8392
ndcg 0.2719 0.3655 0.3924 0.3291 0.3982
ndcg_cut_5 0.1285 0.1908 0.2232 0.1854 0.2269
ndcg_cut_10 0.1609 0.2426 0.2739 0.2227 0.2758
ndcg_cut_100 0.2351 0.3349 0.3652 0.3016 0.3678
ndcg_cut_1000 0.2719 0.3655 0.3924 0.3291 0.3982

collection was the French version (translated then in English), we observed that the translation
was very poor: by switching to French by just cleaning the JS code and some other minor
cleaning tools, without even using an adequate stop-list and a correct stemmer for the French
language, the MAP was increasing by +5%.
2 more MAP points were achieved with a stop list built for French in the same way we did
previously for English, the FrenchLightStemFilter [12] as stemmer, and moving the length filter
from 2 to 15 (as we noticed French tends to have longer words).
We tried some Natural Language Processing (NLP) techniques for English to see if there were
improvements, and in this case, apply them to our main implementation for French with an
appropriate model. The obtained results were not interesting, and also the computing time was
definitely too costly. In particular, we tried to use Solr OpenNLP Part of Speech Filter [21] using
the en-pos-maxent Part of Speech (PoS) tagger provided by OpenNLP. Another approach we tried
and that carried an improvement was to use Query expansion: first we used some generative
text models to expand our queries, then we decided to weight different query scores by boosting
the original one linearly with respect to the number of expansion used. This made us gain an
extra MAP point.

We try to generate the embeddings for each document based on word2vector, we use a
pre-trained word2vec model frWac_no_postag_no_phrase_500_cbow_cut100 [36] for French.

Figure 6: Standard Recall Levels vs Interpolated Precision

Then we calculate the embedding for each document and index them as KnnFloatVectorField
in Lucene and use KnnFloatVectorQuery [37] for searching the query to find the k nearest
documents to the target vector according to the vectors in the given field, but the results (overall
MAP 0.08) were not satisfying, being worse than the case of indexing and searching without
embeddings.
We then tried to combine different similarities rather than using the classic BM25Similarity: we
tried to use the Lucene MultiSimilarity [38], that allows combining the score of two or more
similarity scores, but it does not allow to tune the weights. Then, we tried to reimplement
the MultiSimilarity class with tuning options, but the results were always lower than the
standard BM25Similarity. Some minor improvements came up by fine-tuning the document-
length normalization b parameter and the term frequency component k1 parameter of the
BM25Similarity.
The last main implementation we did, was to use some Re-ranking techniques to improve the
results of the first retrieval phase. We tried to use the SBERT model [39], which is a pre-trained
model for sentence embeddings, and we used it to calculate the similarity between the query
and the document. We tried to use different distance metrics such as CosineSimilarity [40] and
ManhattanDistance [41] for calculating the similarity, but at the end of the day, CosineSimilarity
is much better than others. Finally, we sort the documents based on merging the BM25 score
and similarity score into one score by multiplying them together.

Lastly, some minor adding were set on the Analyzer (see Section 2.4) by implementing
the Lucene ElisionFilter (for French) [23], which aims to remove apostrophes articles and
prepositions from tokens (for example, m’appelle and t’appelle become the same token appelle).

4.2. Results on Test Data

Table 3
results for systems (top-1000 documents), on the Train collection and the heldout query set of LongEval
provied by LongEval.

heldout
run language type map p@10 recall nDCG nDCG@10
run2 FR QUEREXPANSION 0.2029 0.1367 0.8312 0.3725 0.2436
run3 FR RERANKING 0.2595 0.1541 0.8384 0.4166 0.2925
run5 FR SBERT_BM25 0.2675 0.1561 0.8726 0.4318 0.3017
run1 EN JSCLEANER_BM25 0.1282 0.0888 0.6316 0.2647 0.1565
run4 EN RERANKING_ENGLISH 0.1822 0.1122 0.6279 0.3113 0.2129

Table 4
results for systems (top-1000 documents), on the Test collection and the test query set of LongEval
provied by LongEval.

Short term
run language type map p@10 recall nDCG nDCG@10
run2 FR QUEREXPANSION 0.2213 0.1324 0.8155 0.3795 0.2583
run3 FR RERANKING 0.2508 0.1483 0.8133 0.4068 2944
run5 FR SBERT_BM25 0.2531 0.1492 0.8332 0.4128 0.2963
run1 EN JSCLEANER_BM25 0.1410 0.0884 0.6440 0.2694 0.1683
run4 EN RERANKING_ENGLISH 0.1941 0.1136 0.6750 0.3285 0.2303

Long term
run language type map p@10 recall nDCG nDCG@10
run2 FR QUEREXPANSION 0.2062 0.1420 0.8294 0.3736 0.2438
run3 FR RERANKING 0.2383 0.1551 0.8318 0.4062 0.2821
run5 FR SBERT_BM25 0.2432 0.1590 0.8521 0.4139 0.2880
run1 EN JSCLEANER_BM25 0.1419 0.0953 0.6756 0.2803 0.1672
run4 EN RERANKING_ENGLISH 0.1920 0.1251 0.7080 0.3373 0.2275

5. Statistical Analysis

In this section, we delve into a comprehensive analysis of the retrieval effectiveness for our
5 different runs submitted to CLEF on both the French and English collections (see Table 1).
The analysis aims to evaluate the performance of different runs and provides insights into the
effectiveness of the system in retrieving and ranking relevant documents.

We begin by analyzing the results obtained from the French collection. The overall Normalized
Discounted Cumulated Gain (nDCG) and MAP comparison allows us to gain an initial understand-
ing of the performance differences between runs 2, 3, and 5, considering short-term, heldout,
and long-term evaluations. By examining the nDCG scores and Relative nDCG Drop (RnD)
values, we can identify the run that demonstrates the highest effectiveness in retrieving relevant
documents.

Furthermore, we employ two-way ANalysis Of VAriance (ANOVA) tests to investigate the
significance of the observed differences in the long-term and short-term evaluations. Along
with this, the analysis also includes the implementation of the Tukey HSD test, a post-hoc
analysis for ANOVA that compares group means while controlling for multiple comparisons,
ensuring reliable identification of significant differences.

This analysis provides valuable insights into the performance of the IR system on the French
collection, guiding us in identifying areas for improvement.

Subsequently, we shift our focus to the analysis of results obtained from the English collection.
We conduct an analogous evaluation, comparing the performance of runs 1 and 4 in the same
way as stated above for the French collection.

Still, we put here an extract of the first three columns of Table 3, which can be seen as a sort
of recap to have at hand of our runs submitted to CLEF:

Table 5
Recap of our runs submitted to CLEF.

heldout
run language type
run2 FR QUEREXPANSION
run3 FR RERANKING
run5 FR SBERT_BM25
run1 EN JSCLEANER_BM25
run4 EN RERANKING_ENGLISH

5.1. Analysis of Results on the French Collection

5.1.1. Overall nDCG Comparison

The overall nDCG comparison of runs 2, 3, and 5 on the French collection is presented in
Figure 7. This boxplot provides valuable insights into the performance of each run, with the
bars representing the nDCG scores for each run. The color coding distinguishes the different
evaluation periods, with short-term depicted in green, heldout in orange, and long-term in pink.
The delta values within the boxes represent the RnD of each run compared to the heldout run.

Analyzing the overall nDCG comparison, we observe that runs 3 and 5 consistently outper-
form run 2 across both short and long-term evaluations. These runs achieve higher nDCG
scores, indicating their superior effectiveness in capturing and ranking relevant documents. The
fact that both runs 3 and 5 exhibit similar levels of performance suggests comparable retrieval
capabilities among these two.

However, when considering the RnD values, we observe some variations among the runs.
Run 5 demonstrates a noticeable drop in nDCG compared to the heldout run, as indicated
by the RnD delta values. This indicates a potential decrease in retrieval performance when
transitioning from the heldout period to the short and long term.

On the other hand, run 3 displays a relatively smaller drop in nDCG compared to the heldout
run, suggesting greater stability and consistency in performance.

Figure 7: Overall nDCG Comparison for runs 2, 3, and 5 on the French Collection

In contrast, run 2 exhibits relatively lower nDCG scores, particularly in the long-term evalua-
tion. This can be attributed to its more greedy approach, which might compromise its ability to
retrieve relevant documents as the collection evolves over time.

5.1.2. OverallMAP Comparison

The boxplot shown in Figure 8 presents the overall MAP comparison of runs 2, 3, and 5 on
the French Collection. The notation for the used colors is the same as for Figure 7. From the
boxplot, we can observe the distribution of MAP scores for each run and collection type. The
height of each box indicates the Interquartile Range (IQR), representing the range of the middle
50% of the data. The horizontal line within each box corresponds to the median value, while the
whiskers above and below the box extend to the highest and lowest values within 1.5 times the
IQR.

Analyzing the overall MAP comparison, we observe that runs 3 and 5 consistently outperform
run 2 across both short and long-term evaluations, similarly to what we have seen in Section
5.1.1. These runs achieve higher MAP scores, indicating their superior effectiveness in accuracy.

However, we can see that run 5 demonstrates a noticeable drop in MAP of the long-term
compared to the heldout run. This indicates a potential decrease in retrieval performance when
transitioning from the heldout period to the long term. On the other hand, run 3 displays a
relatively smaller drop in MAP compared to the heldout run, suggesting greater stability and
consistency in capturing relevant documents over time.

Figure 8: Overall MAP Comparison of runs 2, 3, and 5 on the French Collection

These results, together with the ones we have seen on nDCG in Section 5.1.1, suggests that
the changes done from run 3 to run 5 for sure led to improvements, but they have to be better
optimized towards temporal persistence.

In contrast, run 2 exhibits relatively lower MAP scores, particularly in the long-term evalua-
tion. The reasons to which this can be attributed are the same stated in Section 5.1.1.

Overall, these results confirm what we found in Section 5.1.1: runs 3 and 5 are competitive
with each other, while run 2 exhibits lower performances compared to these, due to its more
basic implementation (see Table 1).

5.1.3. Two-way ANOVA on the Long Term French Collection

The results of the two-way ANOVA conducted on the Long Term French Collection are depicted
in Figure 9, which showcases the nDCG and Average Precision (AP) scores for run 2 in red, run
3 in grey, and run 5 in blue. These plots enable us to examine the effects of both the run choice
and the long-term evaluation on the performances.

Analyzing the two-way ANOVA plot above, at first view we can notice, as expected, that
there is no interaction among the three runs.

Then, we observe that run 5 consistently achieves the highest nDCG and AP scores across
different evaluation points. Run 2 exhibits lower performance compared to the other runs, while
run 3 shows a relatively stable performance, albeit slightly lower than Run 5, confirming what
we found in Sections 5.1.1 and 5.1.2. In addition, the overlap we find among the columns of run

Figure 9: Two-way ANOVA plots for the runs on the French Collection

3 and run 5 suggests that the small changes done among these two (see Table 1) led to some
small albeit noticeable improvements. These findings suggest that both the choice of run and
the long-term evaluation have a significant impact on the overall nDCG and AP scores obtained.

To complement the two-way ANOVA plots, we refer to Tables 6 and 7, that provide multiple
comparisons between the nDCG and AP scores, variance, and p-values associated with runs 2,
3, and 5.

The tables present the results of the pairwise comparisons between different runs. The "Run
A" and "Run B" columns indicate the runs being compared. The "Lower Limit" and "Upper Limit"
columns represent the lower and upper bounds of the confidence interval, while the "A-B"
column indicates the mean difference between the runs. The "P-value" column displays the
statistical significance of the comparison, indicating the level of significance and suggesting
whether there is a significant difference in performance between runs.

Table 6
nDCG Multiple Comparisons for runs 2, 3, and 5 on the Long Term French Collection

Run A Run B Lower Limit A-B Upper Limit P-value
5 3 -0.0023 0.0077 0.0177 0.1661
5 2 0.0305 0.0405 0.0505 1.16 · 10−21

3 2 0.0228 0.0328 0.0428 3.84 · 10−14

Table 7
AP Multiple Comparisons for runs 2, 3, and 5 on the Long Term French Collection

Run A Run B Lower Limit A-B Upper Limit P-value
5 3 -0.0057 0.0049 0.0154 0.523
5 2 0.0265 0.037 0.0476 3.57 · 10−16

3 2 0.0216 0.0322 0.0427 2.50 · 10−12

Looking at Table 6, the comparison between run 5 and run 3 yields a p-value of 0.1661,

indicating that the mean difference in nDCG scores between these runs is not statistically
significant. Similarly, the comparison between run 5 and run 2 results in an extremely low
p-value of 1.16 · 10−21, suggesting a highly significant difference in nDCG scores. Finally, the
comparison between run 3 and run 2 also demonstrates a remarkably low p-value of 3.84 ·10−14,
indicating a significant discrepancy in their nDCG scores.

The results displayed in Table 7 don’t say anything new except to confirm what is stated
above.

Finally, the p-values obtained from the comparisons reinforce the observations made from
the two-way ANOVA plot, highlighting the superior performance of Run 5 and the relatively
stable performance of Run 3 compared to the other runs.

5.1.4. Two-way ANOVA on the Short Term French Collection

Similarly, the results of the two-way ANOVA for nDCG and AP performed on the Short Term
French Collection are visualized in Figure 10.

Figure 10: Two-way ANOVA for runs 2, 3, and 5 on the Short Term French Collection

Looking at Figure 9, we can see that the results above obtained on the short-term Collection
are almost identical. Therefore, the considerations made in Section 5.1.3 hold in almost the
same way for the results the system got on short-term Collection.

To further investigate the statistical differences among the runs, we refer to the multiple
comparisons Tables 8 and 9 shown below, which uses the same notation as Table 6:

Table 8
nDCG Multiple Comparisons for runs 2, 3, and 5 on the Short Term French Collection

Run A Run B Lower Limit A-B Upper Limit P-value
5 3 -0.0042 0.0067 0.0177 0.3215
5 2 0.0232 0.0341 0.0451 7, 97 · 10−13

3 2 0.0164 0.0274 0.0384 1.39 · 10−8

Table 9
AP Multiple Comparisons for runs 2, 3, and 5 on the Long Term French Collection

Run A Run B Lower Limit A-B Upper Limit P-value
5 3 -0.0095 0.0027 0.0148 0.8631
5 2 0.0203 0.0324 0.0445 1.18× 10−9

3 2 0.0176 0.0297 0.0419 2.87× 10−8

Looking at Table 8, the comparison between run 5 and run 3 yields a p-value of 0.355,
indicating that the mean difference in nDCG scores between these runs is not statistically
significant. Similarly, the comparison between run 5 and run 2 results in a remarkably low
p-value of 3.86 · 10−12, suggesting a highly significant difference in nDCG scores. Finally, the
comparison between run 3 and run 2 also demonstrates a low p-value of 3.33 · 10−8, indicating
a significant discrepancy in their nDCG scores.

In summary, the statistical analysis of the results obtained on the French collection revealed
that run 5 is the most effective one among the three, showing a noticeable overall strength in
retrieving and ranking relevant documents. This was easily predictable since this is the last and
most elaborate and promising implementation we did for the French Collection, as discussed in
Section 4. Anyway, by boxplots in Sections 5.1.1 and 5.1.2 emerged that our IR system can still
be optimized towards persistence over time.

5.2. Analysis of Results on the English Collection

5.2.1. Overall nDCG Comparison

The overall nDCG comparison for runs 1 and 4 on the English collection is depicted in Figure
11, which uses the same notation as Figure 7.

Upon analyzing the overall nDCG comparison, we first notice that the results on the English
Collection are notably worse compared to those observed for the French Collection in Section
5.1.1. This discrepancy is not unexpected, since we focused most of our work into improving
the retrieval and ranking performances of our IR system on the French Collection.

Examining the boxplot in Figure 11, we can observe that run 4 consistently outperforms
run 1 and achieves higher nDCG scores across both the Short and Long Term evaluations on
the English Collection. The clear separation between the two runs in the boxplot suggests
significant differences in their retrieval performance, indicating the superior effectiveness of
Run 4 in retrieving relevant documents.

Furthermore, by considering the RnD deltas represented by the values inside the boxes, we
can observe that run 4 exhibits a good level of stability between the Short and Long Term
evaluations, with minimal changes in its nDCG scores. On the other hand, run 1 shows a
notable increase in RnD from the Short to the Long Term, more than doubling the delta value.
This indicates that run 1’s performance significantly deteriorates when transitioning from the
Short to the Long Term evaluation of the English Collection.

In summary, the overall nDCG comparison confirms that run 4 performs better than run 1 in
all evaluation settings on the English Collection. Run 4 demonstrates higher nDCG scores and
exhibits greater stability between the Short and Long Term evaluations, while run 1 experiences

Figure 11: Overall nDCG Comparison for runs 1 and 4 on the English Collection

a noticeable decline in performance when moving from the Short to the Long Term. These
findings highlight the importance of the improvements achieved in run 4 and emphasize its
superior retrieval effectiveness compared to run 1.

5.2.2. OverallMAP Comparison

We now turn our attention to the overall MAP comparison of runs 1 and 4 on the English
collection, as illustrated in Figure 12. The boxplot showcases the distribution of MAP scores,
using the same notation as Figure 8.

Analyzing the boxplot in Figure 12, we observe that run 4 consistently outperforms run 1
on all three collections: Short Term, Heldout, and Long Term. Run 4 exhibits higher median
MAP scores in both the Short Term and Long Term evaluations, indicating its better overall
effectiveness in retrieving relevant documents on the English Collection.

However, in terms of the Heldout Collection, both runs 1 and 4 display comparable median
MAP scores, indicating similar retrieval performance within this collection.

It’s also noticeable how run 1 slightly reaches a MAP score of 20%, while run 4 is able to
reach around 30% on all the time periods considered.

These findings reinforce the conclusions drawn in Section 5.2.1 regarding the superior
performance of run 4 compared to run 1 on the English Collection.

Figure 12: Overall MAP Comparison of runs 1 and 4 on the English Collection

5.2.3. Two-way ANOVA on the Long Term English Collection

The results of the two-way ANOVA performed on the Long Term English Collection are shown
in Figure 13, which illustrates the nDCG and AP scores for Run 1 in red on the left and Run 4 in
blue on the right.

Figure 13: Two-way ANOVA for runs 1 and 4 on the Long Term English Collection

At first, we can see that, as expected, there is no interaction between these two runs. To
reinforce this, we can also see that there is no overlap between their column means. This was
fairly expectable, since the improvements done from run 1 to run 4 are numerous (see Table 1).

Continuing into analyzing the two-way ANOVA plot, we find that run 4 achieves higher
nDCG scores compared to run 1 across different evaluation points. This suggests the superiority
of run 4 in retrieving relevant documents in the long term on the English collection, keep
confirming what we found in Section 5.2.1.

To provide additional statistical information, we refer to Tables 10 and 11, which present the
results of multiple comparisons between run 1 and run 4 for the Long Term English Collection.
The tables show the lower limit, A-B difference, upper limit, and p-value for the comparisons.
In this case, the table presents a single row since it consists in only one comparison between
two runs.

Table 10
nDCG Multiple comparisons for the Long Term English Collection

Run A Run B Lower Limit A-B Difference Upper Limit P-value
4 1 0.0409 0.0508 0.0608 1.49× 10−24

Table 11
AP Multiple comparisons for the Long Term English Collection

Run A Run B Lower Limit A-B Difference Upper Limit P-value
4 1 0.0364 0.0464 0.0565 4.44× 10−20

Table 10 suggests a significant difference between run 1 and run 4 in terms of nDCG scores for
the Long Term English Collection. The positive A-B difference indicates that run 4 consistently
achieves higher nDCG scores than run 1 across different evaluation points. This consideration
is further supported by the small p-value of 6.77× 10−25.

These findings further support the conclusion that run 4 performs better than run 1 in terms
of retrieving relevant documents over the long term on the English collection, as discussed in
Sections 5.2.1 and 5.2.2.

5.2.4. Two-way ANOVA on the Short Term English Collection

Similarly, the results of the two-way ANOVA for nDCG and AP performed on the Short Term
English Collection are depicted in Figure 14.

These results are really close to the ones shown in FIgure 13, therefore we can consider this
as confirming everything we have found until now, indicating the superiority of run 4 on both
short-term and long-term Collection.

To provide additional statistical information, Tables 12 and 13 present the results of the
multiple comparisons between run 1 and run 4.

Table 12 shows that there is a significant difference in the nDCG scores between run 1 and
run 4 on the Short Term English Collection. The A-B difference, which represents the difference

Figure 14: Two-way ANOVA for runs 1 and 4 on the Short Term English Collection

Table 12
Multiple comparisons for the Short Term English Collection

Run A Run B Lower Limit A-B Difference Upper Limit P-value
4 1 0.0458 0.0564 0.0671 0.00

Table 13
Multiple comparisons for the Short Term English Collection

Run A Run B Lower Limit A-B Difference Upper Limit P-value
4 1 0.0412 0.052 0.0628 1.05× 10−21

in nDCG scores between the two runs, is 0.0564, indicating that run 4 performs substantially
better than run 1. The p-value of zero further supports the significance of this difference.

These findings consistently demonstrate the superiority of run 4 over run 1 in terms of nDCG
and AP scores in both short and long-term evaluations of the English collection.

5.3. Final Considerations on Statistical Analysis

In this section, we conducted a comprehensive statistical analysis of the retrieval performance
of our system on both the French and English collections. We focused on evaluating the overall
nDCG and MAP scores, as well as conducting two-way ANOVA tests to examine the effects of
different factors on the performance.

For the French collection, the analysis revealed that run 5 consistently exhibited slightly
better or comparable performance compared to run 3 across all evaluation points. This suggests
that the modifications in the stoplist made in run 5 resulted in improved retrieval effectiveness.
Still, we noticed this change introduced some instability in the temporal persistence of the
system, so we cannot be sure a further expansion of the stoplist can be a promising option for
future development.

On the other hand, run 2 displayed significantly worse performance compared to the other

runs. Recalling that run 3 and run 5 are basically improved versions of run 1 which implements
query expansion and query re-ranking, we can see this as a good result: the implemented
changes had a significant positive impact in our IR system.

Turning to the English collection, we focused on comparing runs 1 and 4. The results
consistently demonstrated that run 4 outperformed run 1 in every aspect of the analysis. It
achieved higher nDCG and lower RnD scores, indicating its superior effectiveness in retrieving
relevant documents, remaining persistent at changes over time. Additionally, run 4 displayed a
higher median MAP score, confirming its superior overall performance in both short and long
windows of time. These findings establish run 4 as the more successful option for retrieval on
the English collection. This is an expectable result, since it confirms what we have seen with
the French collection: the implementation of query expansion and query re-ranking improved
by a lot the performances of our, at the time greedy and basic, IR system.

The two-way ANOVA tests further supported our conclusions. In the French collection, the
two-way ANOVA analysis confirmed the superiority of run 5 over run 3 in terms of nDCG
scores. This finding aligns with the overall comparison results.

In the English collection, the two-way ANOVA did not provide any new unexpected result, as
the performance differences between run 1 and run 4 were consistently evident in all previous
aspects of the analysis.

In summary, for the French collection run 5 exhibited slightly better or comparable perfor-
mance compared to run 3, while run 2 displayed significantly worse performance. On the other
hand, for the English collection run 4 consistently outperformed run 1 in every aspect of the
analysis.

6. Conclusions and Future Work

In this work, we presented our approach to the CLEF Long Eval LAB 2023 task, which aimed to
develop an effective and efficient search engine for web documents.
Our approach consisted of using a combination of different techniques, including query expan-
sion, re-ranking, and the use of large language models such as ChatGPT and SBERT.
Our experiments showed that our approach achieved good results in terms of effectiveness and
efficiency, outperforming the baseline system provided by CLEF. Specifically, we found that
combining two different scores in the re-ranking phase led to significant improvements in the
retrieval performance. Moreover, we identified several areas for future work that could further
improve the effectiveness and efficiency of our approach.
One possible direction for future work is to find better ways to combine scores or add other
scores to the re-ranking phase. We plan to explore different combinations of scores and investi-
gate the use of other large language models, such as other available BERT models trained, or to
train some specifically for this task.
Another area for future work is to find better prompts [42] to use in ChatGPT for improving
query expansion. We also plan to investigate the use of other Large Language Model (LLM)
techniques for query expansion.
We also want to explore ways to increase the similarity in SBERT [39], to increase the number
of relevant documents found in the re-ranking phase. One possible approach is to fine-tune the

SBERT [39] model on our specific task.
Another direction for future work is to index documents as vectors and use them directly,
instead of calculating them in re-ranking. This trade-off would result in the loss of one of the
scores, but it would increase the re-ranking speed.
Finally, we plan to use links inside documents to extract details that may improve the searching
results. We may try to find keywords in the URL path and use them to find their domain
authority and take this aspect into account in the score computation.

References

[1] C. Organizers, Longeval clef 2023 lab, https://clef-longeval.github.io/, 2023. Accessed:
2023-05-20.

[2] Qwant, About qwant, https://about.qwant.com/en/, 2023. Accessed: 2023-05-20.
[3] M. D. Network, Regular expressions, https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Guide/Regular_expressions, 2023. Accessed: 2023-05-20.
[4] A. Lucene, Lucene analyzer, https://lucene.apache.org/core/8_0_0/core/org/apache/lucene/

analysis/Analyzer.html, 2023. Accessed: 2023-05-20.
[5] A. Lucene, Lucene whitespacetokenizer, https://lucene.apache.org/core/7_4_0/

analyzers-common/org/apache/lucene/analysis/core/WhitespaceTokenizer.html,
2023. Accessed: 2023-05-20.

[6] A. Lucene, Lucene lettertokenizer, https://lucene.apache.org/core/7_3_1/
analyzers-common/org/apache/lucene/analysis/core/LetterTokenizer.html, 2023.
Accessed: 2023-05-20.

[7] A. Lucene, Lucene standardtokenizer, https://lucene.apache.org/core/6_6_0/core/org/
apache/lucene/analysis/standard/StandardTokenizer.html, 2023. Accessed: 2023-05-20.

[8] A. S. Foundation, Apache solr, https://solr.apache.org/, 2023. Accessed: 2023-05-20.
[9] A. S. Foundation, Apache solr englishminimalstemfilter, https://solr.apache.org/guide/6_

6/filter-descriptions.html#FilterDescriptions-EnglishMinimalStemFilter, 2023. Accessed:
2023-05-20.

[10] A. S. Foundation, Apache solr kstemfilter, https://solr.apache.org/guide/6_6/
filter-descriptions.html#FilterDescriptions-KStemFilter, 2023. Accessed: 2023-05-20.

[11] A. S. Foundation, Apache solr porterstemfilter, https://solr.apache.org/guide/6_6/
filter-descriptions.html#FilterDescriptions-PorterStemFilter, 2023. Accessed: 2023-05-20.

[12] A. S. Foundation, Apache solr frenchlightstemfilter, https://solr.apache.org/guide/6_6/
language-analysis.html#LanguageAnalysis-FrenchLightStemFilter, 2023. Accessed: 2023-
05-20.

[13] A. S. Foundation, Apache solr frenchminimalstemfilter, https://solr.apache.org/guide/6_6/
language-analysis.html#LanguageAnalysis-FrenchLightStemFilter, 2023. Accessed: 2023-
05-20.

[14] A. Lucene, Lucene lovinsstemmer, https://lucene.apache.org/core/6_3_0/
analyzers-common/org/tartarus/snowball/ext/LovinsStemmer.html, n.d. Accessed:
2023-05-20.

https://clef-longeval.github.io/
https://about.qwant.com/en/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_expressions
https://lucene.apache.org/core/8_0_0/core/org/apache/lucene/analysis/Analyzer.html
https://lucene.apache.org/core/8_0_0/core/org/apache/lucene/analysis/Analyzer.html
https://lucene.apache.org/core/7_4_0/analyzers-common/org/apache/lucene/analysis/core/WhitespaceTokenizer.html
https://lucene.apache.org/core/7_4_0/analyzers-common/org/apache/lucene/analysis/core/WhitespaceTokenizer.html
https://lucene.apache.org/core/7_3_1/analyzers-common/org/apache/lucene/analysis/core/LetterTokenizer.html
https://lucene.apache.org/core/7_3_1/analyzers-common/org/apache/lucene/analysis/core/LetterTokenizer.html
https://lucene.apache.org/core/6_6_0/core/org/apache/lucene/analysis/standard/StandardTokenizer.html
https://lucene.apache.org/core/6_6_0/core/org/apache/lucene/analysis/standard/StandardTokenizer.html
https://solr.apache.org/
https://solr.apache.org/guide/6_6/filter-descriptions.html#FilterDescriptions-EnglishMinimalStemFilter
https://solr.apache.org/guide/6_6/filter-descriptions.html#FilterDescriptions-EnglishMinimalStemFilter
https://solr.apache.org/guide/6_6/filter-descriptions.html#FilterDescriptions-KStemFilter
https://solr.apache.org/guide/6_6/filter-descriptions.html#FilterDescriptions-KStemFilter
https://solr.apache.org/guide/6_6/filter-descriptions.html#FilterDescriptions-PorterStemFilter
https://solr.apache.org/guide/6_6/filter-descriptions.html#FilterDescriptions-PorterStemFilter
https://solr.apache.org/guide/6_6/language-analysis.html#LanguageAnalysis-FrenchLightStemFilter
https://solr.apache.org/guide/6_6/language-analysis.html#LanguageAnalysis-FrenchLightStemFilter
https://solr.apache.org/guide/6_6/language-analysis.html#LanguageAnalysis-FrenchLightStemFilter
https://solr.apache.org/guide/6_6/language-analysis.html#LanguageAnalysis-FrenchLightStemFilter
https://lucene.apache.org/core/6_3_0/analyzers-common/org/tartarus/snowball/ext/LovinsStemmer.html
https://lucene.apache.org/core/6_3_0/analyzers-common/org/tartarus/snowball/ext/LovinsStemmer.html

[15] A. Lucene, Lucene lengthfilter, https://lucene.apache.org/core/7_0_1/analyzers-common/
org/apache/lucene/analysis/miscellaneous/LengthFilter.html, 2023. Accessed: 2023-05-20.

[16] A. Lucene, Lucene englishpossessivefilter, 2023. Accessed: 2023-05-20.
[17] A. Lucene, Lucene stopfilter, 2023. Accessed: 2023-05-20.
[18] G. Code, Luke, https://code.google.com/archive/p/luke/, 2023. Accessed: 2023-05-20.
[19] A. Lucene, Lucene ngramtokenfilter, https://lucene.apache.org/core/8_1_1/

analyzers-common/org/apache/lucene/analysis/ngram/NGramTokenFilter.html, 2023.
Accessed: 2023-05-20.

[20] A. Lucene, Lucene shinglefilter, https://lucene.apache.org/core/4_3_0/analyzers-common/
org/apache/lucene/analysis/shingle/ShingleFilter.html, 2023. Accessed: 2023-05-20.

[21] A. S. Foundation, Apache solr opennlp part of speech filter, https://solr.apache.org/guide/
7_3/language-analysis.html#opennlp-part-of-speech-filter, 2023. Accessed: 2023-05-20.

[22] A. S. Foundation, Solr opennlp lemmatizer filter, https://solr.apache.org/guide/7_3/
language-analysis.html#opennlp-lemmatizer-filter, 2023. Accessed: 2023-05-20.

[23] A. Lucene, Lucene elisionfilter, https://lucene.apache.org/core/7_3_1/analyzers-common/
org/apache/lucene/analysis/util/ElisionFilter.html, 2023. Accessed: 2023-05-20.

[24] A. Lucene, Lucene lowercasefilter, https://lucene.apache.org/core/8_0_0/
analyzers-common/org/apache/lucene/analysis/core/LowerCaseFilter.html, 2023.
Accessed: 2023-05-20.

[25] A. Lucene, Lucene asciifoldingfilter, https://lucene.apache.org/core/4_9_0/
analyzers-common/org/apache/lucene/analysis/miscellaneous/ASCIIFoldingFilter.html,
2023. Accessed: 2023-05-20.

[26] A. Lucene, Lucene synonymgraphfilter, https://lucene.apache.org/core/6_4_1/
analyzers-common/org/apache/lucene/analysis/synonym/SynonymGraphFilter.html, 2023.
Accessed: 2023-05-20.

[27] A. Lucene, Lucene synonymmap, https://lucene.apache.org/core/7_3_0/
analyzers-common/org/apache/lucene/analysis/synonym/SynonymMap.html, 2023.
Accessed: 2023-05-20.

[28] A. Lucene, Lucene bm25similarity, https://lucene.apache.org/core/7_0_1/core/org/apache/
lucene/search/similarities/BM25Similarity.html, 2023. Accessed: 2023-05-20.

[29] H. Face, Hugging face ’all-minilm-l6-v2’ model, https://huggingface.co/optimum/
all-MiniLM-L6-v2, 2023. Accessed: 2023-05-20.

[30] S. Wang, H. Scells, G. Zuccon, B. Koopman, Can chatgpt write a good boolean query for
systematic review literature search?, Journal of Information Retrieval 1 (2023). Accessed:
2023-05-24.

[31] OpenAI, Openai text completion api documentation, https://platform.openai.com/docs/
guides/completion/introduction, n.d.. Accessed: 2023-05-20.

[32] OpenAI, How do text davinci-002 and text davinci-003 differ?, OpenAI Help Center (n.d.).
Accessed: 2023-05-20.

[33] A. Lucene, Lucene booleanquery, https://lucene.apache.org/core/8_1_1/core/org/apache/
lucene/search/BooleanQuery.html, 2023. Accessed: 2023-05-20.

[34] A. Lucene, Lucene boostquery, https://lucene.apache.org/core/7_3_1/core/org/apache/
lucene/search/BoostQuery.html, 2023. Accessed: 2023-05-20.

[35] UKPLab, Sentence transformers, https://github.com/UKPLab/sentence-transformers, 2023.

https://lucene.apache.org/core/7_0_1/analyzers-common/org/apache/lucene/analysis/miscellaneous/LengthFilter.html
https://lucene.apache.org/core/7_0_1/analyzers-common/org/apache/lucene/analysis/miscellaneous/LengthFilter.html
https://code.google.com/archive/p/luke/
https://lucene.apache.org/core/8_1_1/analyzers-common/org/apache/lucene/analysis/ngram/NGramTokenFilter.html
https://lucene.apache.org/core/8_1_1/analyzers-common/org/apache/lucene/analysis/ngram/NGramTokenFilter.html
https://lucene.apache.org/core/4_3_0/analyzers-common/org/apache/lucene/analysis/shingle/ShingleFilter.html
https://lucene.apache.org/core/4_3_0/analyzers-common/org/apache/lucene/analysis/shingle/ShingleFilter.html
https://solr.apache.org/guide/7_3/language-analysis.html#opennlp-part-of-speech-filter
https://solr.apache.org/guide/7_3/language-analysis.html#opennlp-part-of-speech-filter
https://solr.apache.org/guide/7_3/language-analysis.html#opennlp-lemmatizer-filter
https://solr.apache.org/guide/7_3/language-analysis.html#opennlp-lemmatizer-filter
https://lucene.apache.org/core/7_3_1/analyzers-common/org/apache/lucene/analysis/util/ElisionFilter.html
https://lucene.apache.org/core/7_3_1/analyzers-common/org/apache/lucene/analysis/util/ElisionFilter.html
https://lucene.apache.org/core/8_0_0/analyzers-common/org/apache/lucene/analysis/core/LowerCaseFilter.html
https://lucene.apache.org/core/8_0_0/analyzers-common/org/apache/lucene/analysis/core/LowerCaseFilter.html
https://lucene.apache.org/core/4_9_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/ASCIIFoldingFilter.html
https://lucene.apache.org/core/4_9_0/analyzers-common/org/apache/lucene/analysis/miscellaneous/ASCIIFoldingFilter.html
https://lucene.apache.org/core/6_4_1/analyzers-common/org/apache/lucene/analysis/synonym/SynonymGraphFilter.html
https://lucene.apache.org/core/6_4_1/analyzers-common/org/apache/lucene/analysis/synonym/SynonymGraphFilter.html
https://lucene.apache.org/core/7_3_0/analyzers-common/org/apache/lucene/analysis/synonym/SynonymMap.html
https://lucene.apache.org/core/7_3_0/analyzers-common/org/apache/lucene/analysis/synonym/SynonymMap.html
https://lucene.apache.org/core/7_0_1/core/org/apache/lucene/search/similarities/BM25Similarity.html
https://lucene.apache.org/core/7_0_1/core/org/apache/lucene/search/similarities/BM25Similarity.html
https://huggingface.co/optimum/all-MiniLM-L6-v2
https://huggingface.co/optimum/all-MiniLM-L6-v2
https://platform.openai.com/docs/guides/completion/introduction
https://platform.openai.com/docs/guides/completion/introduction
https://lucene.apache.org/core/8_1_1/core/org/apache/lucene/search/BooleanQuery.html
https://lucene.apache.org/core/8_1_1/core/org/apache/lucene/search/BooleanQuery.html
https://lucene.apache.org/core/7_3_1/core/org/apache/lucene/search/BoostQuery.html
https://lucene.apache.org/core/7_3_1/core/org/apache/lucene/search/BoostQuery.html
https://github.com/UKPLab/sentence-transformers

Accessed: 2023-05-20.
[36] J.-P. Fauconnier, French word embeddings, 2015. URL: http://fauconnier.github.io.
[37] Apache Lucene, Lucene knnvectorfield, Online documentation, 2021. URL: https://lucene.

apache.org/core/9_0_0/core/org/apache/lucene/document/KnnVectorField.html.
[38] A. Lucene, Lucene multisimilarity, https://lucene.apache.org/core/8_0_0/core/org/apache/

lucene/search/similarities/MultiSimilarity.html, n.d. Accessed: 2023-05-20.
[39] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-networks,

2019. URL: https://arxiv.org/abs/1908.10084.
[40] PyTorch, Pytorch cosinesimilarity, Online documentation, 2023. URL: https://pytorch.org/

docs/stable/generated/torch.nn.CosineSimilarity.html.
[41] National Institute of Standards and Technology, Manhattan distance, Online dictionary,

2019. URL: https://xlinux.nist.gov/dads/HTML/manhattanDistance.html.
[42] S. Wang, H. Scells, B. Koopman, G. Zuccon, Can chatgpt write a good boolean query for

systematic review literature search?, 2023. arXiv:2302.03495.

http://fauconnier.github.io
https://lucene.apache.org/core/9_0_0/core/org/apache/lucene/document/KnnVectorField.html
https://lucene.apache.org/core/9_0_0/core/org/apache/lucene/document/KnnVectorField.html
https://lucene.apache.org/core/8_0_0/core/org/apache/lucene/search/similarities/MultiSimilarity.html
https://lucene.apache.org/core/8_0_0/core/org/apache/lucene/search/similarities/MultiSimilarity.html
https://arxiv.org/abs/1908.10084
https://pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html
https://pytorch.org/docs/stable/generated/torch.nn.CosineSimilarity.html
https://xlinux.nist.gov/dads/HTML/manhattanDistance.html
http://arxiv.org/abs/2302.03495

	1 Introduction
	2 Methodology
	2.1 General Overview of Our IR System
	2.2 Class Diagram
	2.3 Parser
	2.4 Analyzer
	2.5 Searcher
	2.5.1 Query Expansion
	2.5.2 Query Boosting
	2.5.3 Document Re-Ranking

	3 Experimental Setup
	3.1 Collections
	3.2 Evaluation Measures
	3.3 Git Repository

	4 Results and Discussion
	4.1 Results on Training Data
	4.2 Results on Test Data

	5 Statistical Analysis
	5.1 Analysis of Results on the French Collection
	5.1.1 Overall nDCG Comparison
	5.1.2 Overall MAP Comparison
	5.1.3 Two-way ANOVA on the Long Term French Collection
	5.1.4 Two-way ANOVA on the Short Term French Collection

	5.2 Analysis of Results on the English Collection
	5.2.1 Overall nDCG Comparison
	5.2.2 Overall MAP Comparison
	5.2.3 Two-way ANOVA on the Long Term English Collection
	5.2.4 Two-way ANOVA on the Short Term English Collection

	5.3 Final Considerations on Statistical Analysis

	6 Conclusions and Future Work

