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Abstract
In real-world Information Retrieval (IR) experiments, the Evaluation Environment (EE) is exposed to
constant change. Documents are added, removed, or updated, and the information need and the search
behavior of users is evolving. Simultaneously, IR systems are expected to retain a consistent quality.
The LongEval Lab seeks to investigate the longitudinal persistence of IR systems, and in this work, we
describe our participation. We submitted runs of five advanced retrieval systems, namely a Reciprocal
Rank Fusion (RRF) approach, ColBERT, monoT5, Doc2Query, and E5, to both sub-tasks. Further, we cast
the longitudinal evaluation as a replicability study to better understand the temporal change observed.
As a result, we quantify the persistence of the submitted runs and see great potential in this evaluation
method.
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1. Introduction

This paper describes our contribution to the CLEF 2023 LongEval Lab [1].1 The lab seeks to
investigate the temporal persistence of retrieval systems. It, therefore, provides a first-of-its-
kind web retrieval collection with three sub-collections from different points in time [2]. We
participated in the retrieval task by providing runs of five systems to both sub-task.

A retrieval system’s Evaluation Environment (EE) is under constant change. Not only but
especially web retrieval systems are exposed to this due to the dynamic nature of the web.
Documents, i.e., websites, get created, updated, or created [3, 4]. But besides the evolving
collection, all other aspects of an EE underlay change as well, from the information need and
search behavior of the users [5] all the way to the evolving language itself [6]. These changes
raise questions about the persistence and generalizability of IR system effectiveness evaluations.

By requiring a temporarily reliable system to perform consistently over time, evaluating this
can be understood as a replicability task. Oriented at the ACM definition of replicability2, the
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goal is to achieve the same measurements in a different experimental setup, in this case, at a
proceeded point in time.

To investigate temporal persistence, we submitted runs of five advanced retrieval systems to
both sub-tasks of the LongEval Lab. The systems are not specifically adapted to changes in the
LongEval dataset to validate the temporal reliability of system-oriented IR evaluations following
the Cranfield paradigm. Further, as a proof of concept, we use the replicability measures Delta
Relative Improvement (Δ RI) and the Effect Ratio (ER) [7] to investigate the temporal persistence.
In short, the contributions of this work are:

• Descriptions of five state-of-the-art systems submitted to both retrieval sub-tasks,
• an extensive evaluation of retrieval effectiveness,
• an adaptation of replicability measures to evaluate temporal persistence,
• an open-source release of the experimental setup.

The remainder of this paper is structured as follows. Section 2 contains an analysis of the
LongEval dataset. The five retrieval systems are described in Section 3. Further, Section 4
provides the results on the train slice and a preliminary evaluation of the results. In Section 5,
we describe the replicability efforts. This paper concludes with a short discussion and some
future work in Section 6. The code is publicly available on GitHub.3

2. LongEval Dataset

To our knowledge, the LongEval dataset [2] is the first dataset specifically designed to investigate
temporal changes in IR. On a high level, the collection consists of three sub-collections from
different points in time. Each collection contains topics and qrels. The documents as well as
the topics and qrels originate from the French, privacy-focused search engine Qwant.4 For this
work, we entirely rely on the English automatic translations of the dataset. The documents
contain the cleaned content of websites. They are filtered for adult and spam content, but
no further processing was done, sometimes leaving unconnected phrases, keywords, or code
artifacts in the documents.

The topics are selected according to “popularity, stability, generality, and diversity” [2]. For
these topics, queries are selected from the Qwant search engine logs if they contain the topic as
a sub-string. The qrels for the shared task are simulated based on the Cascade Click Model [8, 9].
Documents are assessed as not relevant, relevant, and highly relevant. Further, human-assessed
gold labels are announced for September (2023). More details can be found in the original
publication [2].

The sub-collections are sequential snapshots of an evolving search environment for temporal
comparison. The topics are constructed once, but the queries are partially changing across
sub-collections. The documents, i.e., the websites identified by the URL, are also mainly static
across sub-collections but the content of the documents changes.

The collections are organized into a WT, ST, and LT sub-collection. The WT (within time) sub-
collection was created in June 2022. The ST (short-term) sub-collection was created in July 2022,
3https://github.com/irgroup/CLEF2023-LongEval-IRC
4https://www.qwant.com/
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Table 1
LongEval subcollection statistics. The length of documents and queries are measured in tokens, split by
white spaces. The query WT q062213307 and ST q072211861 is excluded as outlier since it only contains
the token leg 108 and 110 times.

WT ST LT Intersection

Timeframe June 2022 July 2022 September 2022

Number documents 1,570,734 1,593,376 1,081,334 1,011,613
Mean document length 794.11 793.96 807.28
Min document length 0 0 1
Max document length 7065 12210 7255

Number queries 753 860 910 124
Mean query length 2.73 2.71 2.52
Min query length 1 1 1
Max query length 6 11 9

Figure 1: The evolution of the LongEval dataset documents across the three sub-collections. Transi-
tioning from one sub-collection to the next, documents are added, removed, or updated. All documents
were harmonized by their URLs.

immediately after the WT collection. The third sub-collection, LT (long term), contains more
distant data as it was created with a two-month gap from ST in September 2022. Table 1 gives
an overview of the sub-collections.

The LongEval dataset contains over 1.5 million documents. Not every document is present in
every sub-collection, but most documents are. The core document collection contains 1,011,613
documents, as identified by matching their URLs. Versions of these documents are present in



Figure 2: Distribution of qrels per query for the 672 WT train sub-collection queries.

every sub-collection but do not necessarily contain exactly the same content. The documents
evolve over time, meaning that the content of one website might change over time. To capture
this change on a general level, Figure 1 shows how many documents increase or decrease in
character length and how many documents are added, deleted, or stay the same in length. We
note that between ST and LT considerably more documents are removed from the collections
than between WT and ST.

Like the documents, the queries change over time as well. However, relatively fewer core
queries that appear in all sub-collections exist. In total, only 124 unique query strings appear
in all collections. However, the overlap of query IDs is larger due to duplicate queries that are
probably caused by automatic translations.

The relevance judgments (qrels) classify the documents’ relevance on a three-graded scale,
including not relevant, relevant, and highly relevant labels. In general, the dataset has few
assessed documents per topic. While the mean number of qrels is 14 per topic, the absolute
number fluctuates between 2 and 59. Figure 2 shows the distribution of all qrels per query.
Most of the documents are marked as not relevant, and the distribution of relevant and highly
relevant qrels is skewed as well. Especially the highly relevant qrels are rare, with a maximum of
only four and a mean of only one highly relevant document per topic. In the evaluations, these
single documents heavily influence the final outcome as their position in the ranking especially
impacts the score of rank-based measures like nDCG. While relevant qrels are generally rare,
16 queries do not have a single relevant document.

3. Approaches and Implementations

We compared different ranking functions and multi-stage retrieval systems on the WT train
slice of the LongEval dataset. The systems were chosen as they represent state-of-the-art,
off-the-shelf methods that are used in many recent IR experiments. Therefore, it is especially
interesting how these systems behave over time without being specifically adapted to a changing
environment.



3.1. Statistical Ranking Functions

Different ranking functions were used as baselines in their default configurations. Special
attention was given to the BM25 [10] ranking function as it is a robust, efficient, and often
hard-to-beat baseline. We use this run to compare advanced systems to it. Since we use the
PyTerrier [11] framework for experiments, the default parameters 𝑘1 = 1.2 and 𝑏 = 0.75 were
kept. Further we included PL2 [12], TF-IDF and DFR 𝜒2 [13].

To further improve these ranking functions, two query expansion methods are employed.
Namely, RM3 [14] and Bo1 [12] are used to extend the queries through pseudo-relevance
feedback. The default PyTerrier parameters are also kept here; three feedback documents were
used to gather ten feedback terms.

3.2. Rank Fusion

Multiple runs were combined into a single ranking to profit from the diversity of multiple
ranking functions. First, BM25, DFR 𝜒2 and PL2 are fused through Reciprocal Rank Fusion
(RRF) [15] with the ranx Python library [16]. Further runs are created by using the pseudo-
relevance-feedback methods on top of BM25. The default parameters 𝑚𝑖𝑛𝑘 = 10, 𝑚𝑎𝑥𝑘 = 100
and 𝑠𝑡𝑒𝑝 = 10 were used for the RRF.

3.3. ColBERT

ColBERT [17] applies the BERT [18] Language Model (LM) to overcome the lexical gap [19]
by creating semantic representations of queries and documents as embeddings. In contrast
to traditional BERT-based approaches like cross-encoders, the interaction mechanism used
to calculate the similarity between a document and a query is detached from the embedding
creation process. However, in contrast to bi-encoder systems, nuanced similarities can be
calculated. To do so, semantic representations for a query or a document are calculated as a set
of token embeddings. The relevance score between a query and a document is then calculated
as the sum of the max of the cosine similarity or the L2 distance between all embeddings for
the query and the document.

By separating the scoring from the embedding process, the efficiency at run time can be
greatly improved as all document embeddings can be calculated beforehand offline. ColBERT
can also be used in a later retrieval stage as a reranker. The PyTerrier version of ColBERT 5 was
used in a zero-shot fashion. Besides using ColBERT as a first-stage retriever, where the whole
corpus is converted to embeddings, ColBERT was also used to rerank the top 1000 BM25 results.

3.4. monoT5

The potential of sequence-to-sequence models can be fostered for the ranking task by providing a
query and a document as input and asking the model to decide if the document is relevant for this
query by generating "true" or "false." The softmax of the generated token probability is then used
as confidence for the predicted class to compute the final relevance of the document [20]. The
T5 [21] model was fine-tuned in this fashion on the MS Marco passage retrieval dataset [22] as

5https://github.com/terrierteam/pyterrier_colbert
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monoT5 by Pradeep et al. [23]. This model is then used in a second stage to rerank BM25 rankings
and achieves great results, even as a pre-trained model on other datasets and domains [23].

The T5 model supports 512 sub-word tokens, and the LongEval dataset consists of documents
with an average length of around 800 tokens. To avoid arbitrary truncation, the document
retrieval task is formulated as a passage retrieval task, and the top 1000 BM25 results are split
into (still arbitrary but shorter) passages with an overlap half the size of the passage. By that,
the whole document texts are reranked by monoT5. Further, the maximum relevance score of
all passages from one document is used as the relevance score of the document for the final
ranking.

For comparison and to avoid arbitrary sequences, the full documents are used instead as well.
This approach seems reasonable since not too much text is cut off from the average document,
and the title and introductions with high-level terms, similar to the query terms, are often
located at the beginning of a document and are therefore captured by the model.

3.5. Doc2Query

Instead of applying a language model at the reranking stage, Doc2Query [24] uses the T5 model
to generate likely queries that a document could answer. These additional queries are then
indexed along the document itself. By that, natural language queries can result in exact matches
using traditional ranking functions, and alleged relevant terms are boosted. This results in an
advanced index that can be efficiently searched independent of methods.

The effectiveness is highly dependent on the number of queries that are added to the docu-
ments during indexing since this determines how much content is added. For this experiment,
we used three and ten queries. While Rodrigo and Lin [24] used up to 80 queries, a maximum
of ten queries were chosen to match the available resources. Three queries are the default of
the implementation and were used as a lower bound to test the effect.

3.6. E5

Recently Wang et al. [25] achieved superior performance with the E5 model family. It is the
first model that outperforms BM25 in a zero-shot retrieval setting on the BEIR [26] benchmark.
The performance is attributed to the large and high-quality dataset, the contrastive pre-training
and the advanced fine-tuning process. The new paired dataset CCPairs [26] of query passage
pairs was used for training. It contains 1.3 billion query document pairs from Reddit, Wikipedia,
SemanticScoolar, CommonCrawl, Stack Exchange, and news websites.

The models E5small and E5base are used in a zero-shot fashion to create embeddings for all
queries and documents. The documents are truncated at 512 sub-word tokens to fit in the model
and not split into passages for efficiency. A Faiss6 flat index was created from all embeddings,
and L2 was used to score the query document similarity.



Table 2
Results on the train slice of the WT sub-collection. The best results per group are highlighted in bold, and
significant differences with Bonferroni correction to the BM25 baseline are denoted by an asterisk (*).

System MAP Bpref RR P@20 nDCG nDCG@20

BM25 0.1452 0.3245 0.2604 0.0654 0.2884 0.2087

PL2 0.1408 0.3352 0.2572 0.0650 0.2884 0.2064
TF-IDF 0.1467 0.3259 0.2637 0.0660 0.2907 0.2109
DFR 𝜒2 0.1428 0.3265 0.2629 0.0633 0.2871 0.2042

BM25+Bo1 0.1470 0.3341 0.2534 0.0661 0.2922 0.2075
BM25+RM3 0.1426 0.3295 0.2408 0.0658 0.2867 0.2035

RRF(BM25, DFR 𝜒2, PL2) 0.1462 0.3380* 0.2646 0.0656 0.2967* 0.2101
RRF(BM25+Bo1, DFR 𝜒2, PL2) 0.1511 0.3466* 0.2686 0.0673 0.3040* 0.2156
RRF(BM25+RM3, DFR 𝜒2, PL2) 0.1472 0.3472* 0.2589 0.0676 0.3008* 0.2125

BM25+passages+monoT5 0.1540 0.3369 0.2743 0.0708* 0.2969 0.2196
BM25+monoT5 0.1809* 0.3494* 0.3216* 0.0768* 0.3208* 0.249*

d2q(3)>BM25 0.1578 0.3411 0.2630 0.0752* 0.2940 0.2284*
d2q(10)>BM25 0.1638* 0.3382 0.2862* 0.0707* 0.3070* 0.2287*

colBERT 0.1652 0.3435 0.3045* 0.0689 0.2989 0.2290
BM25+colBERT 0.1682* 0.3447 0.3046* 0.0692 0.3082* 0.231*

E5_small 0.1437 0.3265 0.2705 0.0619 0.2762 0.2039
E5_base 0.1545 0.3483 0.2826 0.0634 0.2910 0.2128

4. Evaluation

In the following, results for the initial experiments on the train slice of the WT sub-collection
are reported, and the submitted systems are analyzed. Then, the runs and results on the full
dataset are described.

4.1. System Selection

Table 2 gives an extensive overview of the initial experiments. BM25 appeared to be a strong
baseline, outperformed only by some systems and most often not statistically significant on all
measures. The best runs of the different types were chosen for submission, also with the goal in
mind to provide a diverse set of runs for the planned pooled gold annotation [2].

For the official ranking, we submitted to both sub-tasks the five systems:

1. RRF(BM25+Bo1, DFR 𝜒2, L2) as IRC_RRF(BM25+Bo1-XSqrA_M-PL2)
2. BM25+colBERT as IRC_BM25+colBERT
3. BM25+monoT5 as IRC_BM25+monoT5
4. d2q(10)>BM25 as IRC_d2q(10)>BM25
5. E5base as IRC_E5_base

6https://faiss.ai/
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Figure 3: The ARP of nDCG (left), Bpref (center), and Reciprocal Rank (right) from the submitted
systems at WT, ST, and LT.

The BM25 baseline achieved an nDCG of 0.2884 on the WT train sub-collection slice. A
MAP of 0.1452 is reported, but as initially shown in the data analysis in Section 2, only a few
qrels per query are available; we relied on the bpref [27] measure instead. Here, a score of
0.3245 is achieved. Notably, compared to BM25, TF-IDF outperforms BM25 slightly but is not
statistically significant. Regarding the runs with additional pseudo-relevance feedback, no
significant improvements are made as well.

The RRF runs show the first significant improvements. The fusion run of the three runs
BM25+Bo1, DFR 𝜒2, and PL2 significantly outperform the BM25 baseline on MAP and nDCG to
some extent. Larger improvements and the overall best results are achieved with BM25+monoT5.
This run is significantly better on all measures and archives a 0.0324 higher nDCG. The passage
retrieval version of the run performs considerably worse, similar to the baseline. The gap
between the BM25 results on the two Doc2Query extended indexes is similar. While the results
on the version with three additional queries per document make statistically no difference
to the baseline, the results on the ten queries indexes are almost as good as the ones with
BM25+monoT5 on all measures, except for P@20, which is even better. BM25+ColBERT performs
slightly worse overall. Focusing on P@20, the system differs not from the baseline. Employing
ColBERT as a first-stage ranker impairs the performance further. The results achieved with the
E5 models as first-stage rankers are not significantly different from the baseline. Still, the base
version outperforms the baseline in all measures, and the small version does on Bpref and RR.

4.2. Results

For the evaluation of the result, the main goal is not a high but rather persistent performance.
The underlying assumption is that the system would continuously achieve the same performance.
To evaluate this, the Result Delta (ℛ𝑒Δ) between the averaged retrieval performances at two
different points in time is measured as proposed by Sáez et al. [28]. The results are presented in
Table 3 and visualized in Figure 3.
IRC_RRF(BM25+Bo1-XSqrA_M-PL2): The fused run contains at least 1000 results for all

topics in the WT sub-collection. For the ST sub-collection the system could not find any docu-



Table 3
Results on the three (test) sub-collections as well as the deltas between them. The best system per
measure and group is highlighted in bold, and significant differences from the BM25 baseline are
denoted with an asterisk*.

ARP ℛ𝑒Δ
WT ST LT WT, ST WT, LT

B
pr

ef

BM25 0.2924 0.3154 0.3171 -0.0230 -0.0247
RRF 0.3122 0.3264* 0.3220 -0.0142 -0.0098
ColBERT 0.3246 0.3445* 0.3288 -0.0392 -0.0336
monoT5 0.3093 0.3485* 0.3429* -0.0244 -0.0228
d2q 0.3109 0.3353* 0.3337* -0.0199 -0.0042
E5 0.3270 0.3519* 0.3554* -0.0249 -0.0284

P@
20

BM25 0.0648 0.0658 0.0722 -0.0010 -0.0074
RRF 0.0658 0.0657 0.0738 0.0001 -0.0080
ColBERT 0.0704 0.0705* 0.0775* 0.0013 -0.0075
monoT5 0.0781* 0.0768* 0.0856* -0.0021 -0.0109
d2q 0.0684 0.0705* 0.0793* -0.0001 -0.0071
E5 0.0673 0.0652 0.0726 0.0021 -0.0053

nD
C

G

BM25 0.2697 0.2871 0.2989 -0.0174 -0.0292
RRF 0.2842* 0.2939* 0.3068* -0.0097 -0.0226
ColBERT 0.2883 0.3132* 0.3209* -0.0222 -0.0342
monoT5 0.3034 0.3256* 0.3376* -0.0326 -0.0465
d2q 0.2746 0.3072* 0.3211* -0.0249 -0.0326
E5 0.2891 0.2970 0.3131 -0.0079 -0.0240

ments for four queries. Namely the queries to, a, the and the7 resulted in empty rankings. These
queries consist only of stopwords, which leave an empty query string after query processing.
These queries are most likely bad translations from the terms verseau, argentique, nanterre and
falloir, mostly containing named entities. For the two LT sub-collection topics cadreemploi and
a8, no BM25 first stage ranking could be created. While a is again just a stopword, for the term
cadreemploi no results were found, which could possibly be explained by a spelling error of the
French job exchange website cadremploi. Similarly, the topic cadreemploi is also present in the
French queries.

The Average Retrieval Performance (ARP) — defined by the mean retrieval performance over
multiple topics — improves slightly over time. In general, the measured differences between the
sub-collections are fairly small. The Δ nDCG between WT and ST is only -0.0097 and between
WT and LT -0.0226.
IRC_BM25+colBERT : Based on the WT sub-collection for the topic ducielalaterre9 no docu-

ments were found, and for all other topics, at least 1000 documents could be retrieved. Since
ColBERT was employed as a reranker on top of BM25, the four topics to, a, the and the10 still

7LongEval ST qid: q072214697, q072222604, q072224942, q072212314
8LongEval LT qid: q0922511 and q092219105
9LongEval WT held out qid: q062216851
10LongEval ST qid: q072214697, q072222604, q072224942, and q072212314



remain empty. For 28 other topics, only less than 1000 documents, ranging between three and
663, could be found. Like before, the LT sub-collection topics cadreemploi and the topic a11

remain empty. For further 22 topics, less than 1000 results were found. For example, the fewest
results were found for the topic the audeau.12

The ARP is increasing over time, as already observed for the RRF system. However, the
differences are larger for this system. Between WT and ST the Δ nDCG is -0.0249, and between
WT and LT -0.0326.
IRC_BM25+monoT5: The composition of the runs stayed mostly the same for these runs.

Since they also use BM25 as the first-stage ranking, the issue of empty or short rankings remains.
As already observed on the train slice of the WT sub-collection, the ARP is the highest

achieved on all measures and sub-collections compared to the other submitted systems, with
small exceptions. One strong exception is the Bpref of only 0.3093 on the WT sub-collection,
the smallest score achieved overall. However, the results are inconsistent; the deltas are higher,
especially for Bpref.
IRC_d2q(10)>BM25: Through the document expansion with Doc2Query, at least 37 docu-

ments were found for the previously empty WT sub-collection topic ducielalaterre.13 However,
for the other sub-collections, the results stayed similar. Doc2Query performed weaker than
initially on the train slice before, especially in comparison to monoT5. The result deltas between
WT and ST and WT and LT are among the highest for nDCG and P@20.
IRC_E5_base: Since the E5 model is based on k-NN and no stopwords were removed, for

every topic, 1000 results were found. Compared to the train slice of the WT sub-collection, the
system performed better. It achieved the highest Bpref on all three sub-collections and a high
overall nDCG. The results are especially consistent between sub-collections with a Δ nDCG of
0.0079 between WT and ST and -0.0240 between WT and LT.

5. Temporal Persistence as Replicability

Building upon the result delta evaluation as introduced by Sáez et al. [28], we propose to use
replicability measures to investigate the environment effect on the systems further. As described
and implemented by Breuer et al. [7, 29], the ARP may hide differences between the topic
score distributions. For example, the RRF system achieved a high nDCG (0.28) at WT and
is relatively stable considering the ℛ𝑒Δ(𝑊𝑇,𝑆𝑇 ) of 0.001. However, the per-topic results
fluctuate between -0.4 and 0.8, as shown in Figure 4. For some topics, the retrieval performance
improves, while the changes in the EE harm retrieval performance for other topics. We note
that these circumstances require a more in-depth evaluation.

For a more detailed analysis of how the topic score distributions change, we cast the temporal
comparison into a replication task, i.e., we evaluate the same set of systems on different data.
Naturally, a direct comparison based on different sub-collections is difficult since it remains
unclear if the observed effects should be attributed to the system or the changing EE. To
overcome this problem, a pivot system similar to that described by Sáez et al. [28] is used, and

11LongEval LT qid: q0922511, q092219105
12LongEval LT qid: q092220802
13LongEval WT held out qid: q062216851



Figure 4: RRF Δ𝑛𝐷𝐶𝐺 results per topic for WT to ST (top) and WT to LT (bottom). The topics are
ordered according to the delta.

likewise, the experimental system is kept fixed in both EE. Effects are measured in comparison
to this pivot system on one sub-collection and then compared to the same setup on a later
sub-collection. To align the terminology, the pivot system is a baseline run, BM25 for simplicity
in this example, and the advanced run is the experimental system investigated.

In addition to the ℛ𝑒Δ, as reported earlier in Table 3, we report the Effect Ratio (ER) and
the Delta Relative Improvement (Δ RI). The ER [7] is originally defined by the ratio between
relative improvements of an advanced run over a baseline run. The relative improvements are
based on the per-topic improvements, which are adapted for changing EEs as follows:

Δ𝑀𝐸𝐸1
𝑗 = 𝑀𝐸𝐸1

𝑗 (𝑆)−𝑀𝐸𝐸1
𝑗 (𝑃 ),Δ′𝑀𝐸𝐸2

𝑗 = 𝑀𝐸𝐸2
𝑗 (𝑆)−𝑀𝐸𝐸2

𝑗 (𝑃 ) (1)

where Δ𝑀𝐸𝐸1
𝑗 denotes the difference in terms of a measure 𝑀 between the pivot system 𝑃

and the experimental system 𝑆 for the 𝑗-th topic of the evaluation environment 𝐸𝐸1. Corre-
spondingly, Δ′𝑀𝐸𝐸2

𝑗 denotes the topic-wise improvement in the evaluation environment 𝐸𝐸2.
The ER is then defined as:

ER
(︀
Δ′𝑀𝐸𝐸2 ,Δ𝑀𝐸𝐸1

)︀
=

Δ′𝑀𝐸𝐸2

Δ𝑀𝐸𝐸1

=

1
𝑛𝐸𝐸2

∑︀𝑛𝐸𝐸2
𝑗=1 Δ′𝑀𝐸𝐸2

𝑗

1
𝑛𝐸𝐸1

∑︀𝑛𝐸𝐸1
𝑗=1 Δ𝑀𝐸𝐸1

𝑗

. (2)

More specifically, the mean improvement per topic between the pivot and experimental
system on one sub-collection (of 𝐸𝐸1) in comparison to the effect on the other sub-collection
(of 𝐸𝐸2) is measured. Thereby, the ER is sensitive to the effect size. If the effect size is completely
replicated in the second sub-collection, the ER is 1, i.e., the retrieval system is robust. If the ER
is between 0 and 1, the effect is smaller, indicating a less robust system with performance drops.



If the ER is larger than 1, the effect is larger, indicating performance gains caused by the change
of the EE. Additionally, we include the Δ RI [7], based on the relative improvements (RI) that
are adapted to the LongEval definitions as follows:

RI =
𝑀𝐸𝐸1(𝑆)−𝑀𝐸𝐸1(𝑃 )

𝑀𝐸𝐸1(𝑃 )
, RI′ =

𝑀𝐸𝐸2(𝑆)−𝑀𝐸𝐸2(𝑃 )

𝑀𝐸𝐸2(𝑃 )
(3)

where 𝑀𝐸𝐸 denotes the score of a measure 𝑀 determined with 𝐸𝐸, and 𝑆 and 𝑃 denote
the experimental and pivot system, respectively. The Δ RI is then defined as:

ΔRI = RI− RI′. (4)

Therefore, a comparison between different sub-collections is straightforward. The ideal Δ RI
of 0 is achieved if the RI is the same between both sub-collections, indicating a robust system.
The more Δ RI deviates from 0, the less robust is the system, whereas negative scores indicate a
more effective experimental system 𝑆 in the evaluation environment 𝐸𝐸2, and higher scores
correspond to a less effective experimental systems than in the evaluation environment 𝐸𝐸1.
All of the replicability measures were implemented with the help of repro_eval [29], which
is a dedicated reproducibility and replicability evaluation toolkit.

Even though the replicability measures do not necessarily require the same topics for each
sub-collection, we harmonized the topics. Therefore, we only rely on the core queries that
are shared between the sub-collections in this analysis. Given this methodology, the extended
results are presented in Table 4. For all systems, the ARP decreases slightly at first (WT to ST)
but increases in the long run (WT to LT) — a circumstance that is also reflected by the lower
ℛ𝑒Δ scores for WT to ST compared to WT to LT.

The ER and Δ RI complement ℛ𝑒Δ. For instance, monoT5 achieved similar P@20 scores on
WT and ST, resulting in a ℛ𝑒Δ score of 0, which indicates perfect robustness in terms of ℛ𝑒Δ.
However, when comparing ER and also Δ RI, more granular analysis is possible. In this case,
the scores are close to but different from the perfect scores of 1 and 0, respectively, which would
indicate perfect robustness. In general, the ℛ𝑒Δ scores do not always agree on the most robust
system with ER and Δ RI. By these findings, we conclude that the replicability measures provide
another perspective of the robustness, and we emphasize once again that it is also important to
consider the topical variance over time.

Furthermore, we see that it is not enough to consider the differences of a single retrieval
measure like nDCG. Depending on the evaluation measure, different systems perform best
in terms of robustness. For instance, ℛ𝑒Δ of nDCG is lower for ColBERT and Doc2Query
than that of monoT5, while ℛ𝑒Δ of P@20 is lower for monoT5. Similarly, the replicability
measures should be instantiated with different retrieval measures to get a more comprehensive
understanding of robustness. While our RRF-based submissions achieve the best ERnDCG on
both tasks, monoT5 is the most robust system in terms of ERP@20. Likewise, ER and Δ RI
identify different systems as the most robust for the same measures and tasks, which shows
that it is insightful to evaluate both replicability measures.

In addition, we also included the p-values of unpaired tests based on the topic score distribu-
tions from different EE that were determined with the same experimental system as proposed
in [7]. The general idea of these evaluations proposes to determine the quality of replicability



Table 4
Extended results on the core queries, including the replicability measures.

ARP ℛ𝑒Δ ER Δ RI p-val
System WT ST LT WT, ST WT, LT WT, ST WT, LT WT, ST WT, LT WT, ST WT, LT

P@
20

BM25 0.070 0.067 0.085 0.002 -0.015 1.000 1.000 0.000 0.000 1.000 1.000
RRF 0.075 0.069 0.088 0.006 -0.013 0.311 0.544 0.051 0.041 0.591 0.269
colBERT 0.072 0.071 0.087 0.002 -0.015 1.244 0.933 -0.011 0.009 0.875 0.190
monoT5 0.081 0.081 0.096 0.000 -0.014 1.191 0.953 -0.039 0.037 0.998 0.229
d2q 0.079 0.072 0.091 0.007 -0.013 0.499 0.726 0.062 0.051 0.547 0.303
E5 0.071 0.066 0.088 0.005 -0.017 -1.452 2.903 0.040 -0.022 0.616 0.125

nD
C

G

BM25 0.269 0.272 0.306 -0.003 -0.037 1.000 1.000 0.000 0.000 1.000 1.000
RRF 0.285 0.282 0.314 0.003 -0.030 0.925 0.786 0.003 0.013 0.945 0.227
colBERT 0.276 0.275 0.297 0.001 -0.021 0.441 -1.198 0.015 0.053 0.967 0.412
monoT5 0.295 0.302 0.311 -0.007 -0.015 1.146 0.187 -0.013 0.083 0.817 0.580
d2q 0.285 0.287 0.327 -0.001 -0.042 0.916 1.317 0.006 -0.010 0.960 0.150
E5 0.290 0.300 0.313 -0.010 -0.023 1.333 0.362 -0.025 0.054 0.720 0.382

B
pr

ef

BM25 0.314 0.314 0.324 -0.000 -0.010 1.000 1.000 0.000 0.000 1.000 1.000
RRF 0.346 0.328 0.347 0.019 -0.001 0.574 1.007 0.032 0.002 0.784 0.756
colBERT 0.324 0.317 0.338 0.007 -0.013 0.286 1.278 0.024 -0.008 0.826 0.668
monoT5 0.337 0.344 0.337 -0.007 0.000 1.261 0.553 -0.019 0.034 0.850 0.997
d2q 0.335 0.331 0.368 0.004 -0.033 0.779 2.034 0.015 -0.067 0.894 0.300
E5 0.368 0.354 0.371 0.014 -0.003 0.738 0.863 0.045 0.028 0.692 0.931

Figure 5: The ER plotted against the Δ RI for the replication WT to ST (left) and WT to LT (right).

(in our case, robustness) by the p-values. It follows the assumption that lower p-values give
a higher probability of failed replications or systems that are not robust. As can be seen, the
highest p-values are achieved for the monoT5, ColBERT, or d2q, which generally agrees with
our earlier observations.

The full potential of the ER and Δ RI can be seen if plotted against each other as in Figure 5.
The closer the systems are located to the point (1, 0), the more persistent they are, with the
preferable regions bottom right and top left. For the comparison of WT to ST, the monoT5 system
performs well on all three measures. However, the effect and the absolute scores are larger. The



E5 system completely fails to replicate the absolute P@20 score and shows a generally larger
difference. The RRF system, like most others, shows smaller absolute scores according to the
Δ RI and a slightly decreased effect ratio. The plot regarding WT to LT shows more outliers
with larger effect sizes for P@20 for the E5 system and Bpref for the d2q system. The systems
are shifted to the top right of the plot, a trend similar to the increased ℛ𝑒Δ for WT to LT.

6. Conclusion and Outlook

In this work, we described our participation in the LongEval Lab at CLEF 2023. As the core
contribution, we applied five advanced retrieval systems to the LongEval dataset and submitted
the runs to both sub-tasks. As this is a new challenge, the interpretation of the results is difficult.
The results for the different systems are very similar. The measured differences are statistically
significant but appear small as compared to the same methods on different datasets as listed on
the IR experiment platform [30].14 Interestingly, an increasing ARP over time was observed for
most systems and measures. Still, the performance difference, measured by ℛ𝑒Δ, is smaller for
WT to ST compared to WT to LT, which complies with the natural assumption that persistence
deteriorates over time.

Further, we report preliminary results applying replicability measures to quantify temporal
persistence, an extension on common practices of these measures and their interpretation [31].
It was shown that the results based on different measures and likewise for different topics do
not necessarily agree with each other. Therefore, we see great potential in using replicability
measures to gain further insights into robustness and also saw similarities to the measured
result deltas. All in all, a strong environment effect on the systems was shown and could be
analyzed.

Future work will be regarding the selection of the pivot system and qualitative core queries.
Also, further harmonizing the dataset by unifying the document IDs would allow us to cast the
problem as a reproducibility task and investigate persistence on an even more specific level
with reproducibility measures.
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