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Abstract

Pre-trained transformer-based language models (PLMs) have revolutionised text classification tasks,
but their performance tends to deteriorate on data distant in time from the training dataset. Continual
supervised re-training help address this issue but it is limited by the availability of newly labelled samples.
This paper explores the longitudinal generalisation abilities of large generative PLMs, such as GPT-3
and T5, and smaller encoder-only alternatives for sentiment analysis in social media. We investigate the
impact of time-related variations in data, model size, and fine-tuning on the classifiers’ performance.
Through competitive evaluation in the CLEF-2023 LongEval Task 2, we compare results from fine-tuning,
few-shot learning, and zero-shot learning. Our analysis reveals the superior performance of large
generative models over the benchmark RoBERTa and highlights the benefits of limited exposure to
training data in achieving robust predictions on temporally distant test sets. The findings contribute
to understanding how to build more temporally robust transformer-based text classifiers, reducing the
need for continuous re-training with annotated data.
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1. Introduction

Pre-trained transformer-based language models (PLMs) such as BERT [1] have been extremely
successful on text classification tasks. However, their performance tends to deteriorate when
they are tested on data that is distant in time from the initial training dataset. This lack of
“temporal persistence” is often addressed by continuously updating the models with newly
annotated data [2, 3]. Simultaneously, recent progress in NLP has seen the rise of large-scale,
generative PLMs such as GPT-3 [4] and T5 [5], which have redefined the state-of-the-art in
a wide range of NLP tasks, even when only learning from a few examples. The enhanced
performance of these models comes at the expense of larger model sizes, making it increasingly
costly to update them with incoming samples. As such, understanding how to build more
temporally robust transformer-based text classifiers is essential to help alleviate the need for
continuous re-training with annotated data.
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With the aim of encouraging new research on temporally robust classifier systems, CLEF-2023
LongEval Task 2 [6] proposed to competitively evaluate the short and long-term persistence
in performance of models for sentiment analysis in social media. In this paper, we narrow
the research scope of the task to focus on the comparison of the longitudinal generalisation
abilities between that of large pre-trained generative models and those of smaller encoder-only
alternatives. Moreover, we strive to explore methods for training more temporally robust models.
We hypothesise that extensive fine-tuning over a short-term optimisation objective might result
in their decreased performance on new, evolving, datasets. Therefore, we address the following
research questions:

1. How well do generative PLMs adapt to variations in the time-related characteristics of
the test data?

2. How does the longitudinal drop in classification performance of encoder-only models
compare to that of decoder-only and encoder-decoder models?

3. Does model size contribute to better longitudinal generalisation in PLMs?

4. How does the amount of fine-tuning affect the effectiveness of PLMs in preventing
performance deterioration on temporally evolving datasets?

In an endeavour to address these questions while achieving competitive results in the task,
we focused on GPT-3 and T5. We present the results obtained by these models in the evaluation
phase of the competition with a comparative view of fine-tuning, few-shot, and zero-shot
learning. Furthermore, we provide a post-evaluation analysis of the impact of model size and
exposure to training data on the short and long-term classification scores. Our results show the
superiority of large transformer-based generative models over the task benchmark, RoOBERTa
[7], and show that model performance in the temporally distant test set benefited from limited
exposure to training data. This generalisation capability resulted in more robust predictions,
outperforming all other competing models in this task (see Section 5).

The body of this paper is organised as follows: Section 2 provides an overview of previous
related research. Section 3 summarises the details of the task. Our methodological approach is
described in Section 4, followed by the analysis of the results in every phase of the competition
in Section 5. Section 6 presents our conclusions.

2. Related Work

Performance deterioration over time. Recent work has demonstrated the lack of temporal
persistence of machine learning models on NLP tasks. Lukes and Segaard [8] studied how
shifts in lexical polarity negatively impacted the performance of sentiment classifiers that use
logistic regression. Florio et al. [9] dynamically tested BERT for hate speech detection, showing
that shifts in the topical composition of the test data resulted in a decrease in classification
scores. Lazaridou et al. [2] showed that the performance degradation of transformer-based
language models over time transfer into downstream tasks such as part-of-speech (POS) tagging
or question answering (QA), which cannot be prevented with a larger model size. This last result
is in line with the findings of Agarwal and Nenkova [10], who also found evidence against the
performance deterioration of pre-trained language representations in tasks with more stable



label definitions such as sentiment and domain classification. More recently, Alkhalifa et al. [3]
extended the analysis of longitudinal persistence to a larger set of models for text classification,
including autorregressive architectures such as Hierarchical Attention Network (HAN) [11] and
Generative Pre-trained Transformer 2 (GPT-2) [12]. They observed a generalised performance
drop across models, with transformer-based classifiers consistently yielding better results. Our
work brings new evidence on the longitudinal performance of two generative models that, to
the best of our knowledge, have not been tested for this task: GPT-3 and T5.

Improving temporal persistence. In relation to building classification models that dynam-
ically adapt to non-stationary NLP tasks, Lukes and Segaard [8] proposed a feature selection
approach based on estimating the lexical polarity rank for a given period of time to induce
temporal robustness in sentiment classification. He et al. [13] introduced two evolutionary
learning methods for neural networks based on temporal parameter smoothing and diachronic
propagation when training on temporarily split data. Other approaches focus on the continual
adaptation of language representations to prevent performance loss in new streams of data
[14, 15]. Alkhalifa et al. [16] mitigated performance drop in neural stance detection by incre-
mentally updating n-gram based embeddings. Alternatively, integrating temporal information
into contextual representations; as a result of masked pre-training [17, 18, 19], a combination
with temporal embeddings [20], or by its inclusion into the model’s attention mechanism [21],
effectively reduced temporal deterioration in downstream tasks. In this regard, Rottger and Pier-
rehumbert [19] found that although temporal adaptation did contribute to improved language
modelling and text classification, it was less effective than domain adaptation.

3. Task Description

The CLEF-2023 LongEval Task 2 [6] provided participants with a binary sentiment classification
challenge, wherein the test data was progressively more distant in time from the training data.
The training data comprised a corpus of approximately 50,000 distantly-annotated English
Tweets from 2016, extracted from the TM-Senti Dataset [22]. Model performance was assessed
using the Macro-F1 score and the relative performance drop (RPD)!. The evaluation datasets used
by [6] consisted of human-annotated development and test sets associated with three temporal
benchmarks: 2016 ("within time" as this overlapped the training data), 2018 ("short-term"),
and 2021 ("long-term"). To facilitate the utilisation of unsupervised methods, an additional
set of around 1 million unlabelled data samples, along with their corresponding creation year
spanning from 2013 to 2021, was provided.

The task encompassed three distinct phases. During the development phase, participants
were granted access to the training and development data, thereby enabling them to develop and
pre-evaluate their classifiers. In the evaluation phase, candidate models underwent testing
against one test set per temporal benchmark. The number of submission attempts was limited
to a maximum of five. Finally, the post-evaluation phase facilitated further analysis of model
performance by disclosing the ground truth labels of the test sets.

The RPD is calculated as the relative change in the F1-score between two testing periods.



4. Methods

We focused on three well established transformer-based architectures for natural language
tasks: (1) RoBERTa4, (2) T5, and (3) GPT-3. Table 1 provides an overview of the models used in
the present work.

Table 1

Summary of models
Model Type Param. Size  Vocab Size (EN)
RoBERTa_base Encoder 125M 50K
RoBERTa_large Encoder 355M 50K
T5_ base Encoder-Decoder 222M 32K
T5_large Encoder-Decoder 737M 32K
GPT-3 (babbage) Decoder 1.3B 52K
GPT-3 (curie) Decoder 6.7B 52K
GPT-3 (davinci) Decoder 175B 52K

RoBERTa, serving as our baseline and representative encoder-only model, has consistently
exhibited robust performance in natural language understanding tasks. We fine-tuned” two
sequence classifiers with RoBERTa_base and RoBERTa_large encoders, respectively. Given
the nature of the competition, we selected the best model check-point and hyper-parameters
attending to loss minimisation in the “within-time" development set (2016). All RoBERTa
classifiers were trained by using AdamW with linear learning rate decay (decay=1e-3). We
found 2e-05 and 1e-05 to be the best learning rates for ROBERTa_base and RoBERTa_large,
respectively.

For the evaluation of encoder-decoder models, we chose T5. Specifically, we fine-tuned
T5_base and T5_large for binary text-to-text classification. T5 models were optimised with
Adafactor, and a learning rate of 1e-04. The maximum sequence length was fixed to 128 during
RoBERTa and T5 training.

Finally, we used GPT-3 to test the performance of decoder-only models at scale. In addition,
so as to evaluate the in-context and fine-tuned effectiveness of LLMs, we evaluated GPT-3 in
three distinct learning paradigms: zero-shot (0-S) and few-shot (F-S) learning with instruction
prompting, as well as fine-tuning. We selected the largest GPT-3 model, ‘davinci’?, for prompted
inference; and the smaller ‘babbage’ and ‘curie’ versions for supervised re-training. GPT-3 models
were re-trained using the OpenAl API, with learning rates of 4e-5 for GPT-3 babbage and 2.2e-5
for GPT-3 curie. For the few-shot scenario, we retrieved fifteen random samples from the
annotated training data. The prompts used for zero and few-shot inference can be found in
section A of the appendix.

*Only the labelled sets were used during training in this work. Therefore, future mentions to training data exclude
the additional unlabelled samples provided in the competition.
*https://platform.openai.com/docs/models
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5. Results and Analysis

We present the results of the 2023 CLEC-LongEval * classification in Table 2.

Table 2
Final leader board for LongEval 2023 Task 2.
Position Team F1 Within F1 Short F1 Long Overall Drop Overall Score

1 This work 0.7377 0.6739 0.6971 -0.0708 0.7029
2 CLEF-LE (baseline)  0.7459 0.6839 0.6549 -0.1025 0.6945
3 Cordyceps 0.7246 0.6771 0.6549 -0.0669 0.6923
4 saroyehun 0.7203 0.6674 0.6874 -0.0596 0.6917
5 pakapro 0.533 0.4648 0.4910 -0.0504 0.4863

Our winning model is T5, which, surprisingly was not the best performing on the development
set. The results in the development and evaluation splits are presented in Tables 3 and 4.
During the development phase, we observed that the fine-tuned versions of GPT-3 and T5
achieved higher F1 scores compared to the baseline RoOBERTa model. However, due to the
typical formulation of sentiment analysis as a three-class problem, the zero-shot predictions of
GPT-3 often included the ‘neutral’ label despite our efforts in prompt design, which negatively
impacted its score. Although GPT-3 achieved the highest overall F1 score, T5 demonstrated
better short-term stability.

Table 3
Results on the development set, both within (2016) and short-term (2018).

F1 Within F1 Short RP Drop Overall Score

RoBERTa_base (baseline) 0.788 0.761 -0.034 0.775
T5_base 0.791 0.771 -0.025 0.781
GPT3_davinci (0-S) 0.718 0.693 -0.035 0.706
GPT3_davinci (F-S) 0.746 0.697 -0.066 0.722
GPT3_babbage (F-T) 0.823 0.798 -0.030 0.811

In the evaluation phase, T5 emerged as the best-performing model overall, achieving an
average F1 score of 0.703 across the three temporal benchmarks. However, it was outperformed
by GPT-3 in the short-term evaluation. Fine-tuned GPT-3’s overall performance was inferior to
the benchmark, which we attribute to overfitting towards the 2016 score during the development
phase. Notably, GPT-3Afs largest version outcompeted the baseline when prompted with a
few examples in the within time period, but this performance was not sustained further in
time. Regarding longitudinal performance drop, the fine-tuned version of GPT-3 exhibited more
robust predictions. Surprisingly, the zero and few-shot versions of GPT-3 displayed the highest
performance drop among all models.

To explore the impact of model size on performance, we also investigated the results obtained
by the large versions of these models in the post-evaluation phase. For that, we selected the

*https://codalab.lisn.upsaclay.fr/competitions/12762#results
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Table 4
Results on the Test set, within, short, and long term.

F1 Within F1 Short F1Long Overall Drop Overall Score

*in evaluation phase

RoBERTa (baseline) 0.727 0.670 0.687 -0.067 0.695
T5_base 0.738 0.674 0.697 -0.071 0.703
GPT3_davinci (0-S) 0.706 0.632 0.647 -0.094 0.662
GPT3_davinci (F-S) 0.728 0.664 0.656 -0.093 0.683
GPT3_babbage (F-T) 0.720 0.682 0.675 -0.058 0.692
*in post-evaluation phase

RoBERTa_large 0.742 0.679 0.681 -0.084 0.701
T5_large 0.747 0.682 0.725 -0.058 0.718
GPT3_curie (F-T) 0.725 0.689 0.687 -0.051 0.700

6.7B-parameter version of GPT-3, ‘curie’; T5_large; and RoBERTa_large. All models yielded
higher F1 scores than their smaller versions in the three temporal benchmarks. However, a
larger number of parameters did not prevent longitudinal performance drop. Again, the encoder-
decoder option provided the best overall classification results, showcasing its superiority among
the considered models.

5.1. Longitudinal Overfitting

Given the significant difference in the model performance between the development and the
longitudinally-distant test sets, we investigate the possible causes for performance drop using
three tests. The first is a statistical analysis of the similarity of each of the data splits, inspired
by Tayyar Madabushi et al. [23]. The second consists of comparing the topical distribution in
each temporal split, inspired by Florio et al. [9], who show that such topical differences result
in a drop in performance across temporal splits. Finally, we explore the impact of the number
of training samples on T5, our best performing model on the test set, given the fact that the
training data is, by virtue of the task, similar only to one of the evaluation sets (“within”).

For our statistical exploration of splits, we use the Wilcoxon signed-rank test [24]. The
process involves randomly sampling observations from different data splits and comparing
their frequency counts to assess whether the datasets exhibit a statistically similar distribution
of words. Table 5 presents the range of minimum and maximum p-values obtained from ten
runs of each pair, along with their corresponding interpretations. It can be observed that the
statistical similarity between the “within dev” (what is optimised for) and the “long test” is the
least with a p-value of less than 0.05, which is also what is reflected in terms of the performance
drop of our model.

For our analysis of the topical distribution of the different evaluation splits, we use a BERT-
based pre-trained topic classifier to extract topical information [25]. This result, presented in
Table 6, shows that the distribution of most common topics does not exhibit significant changes
along the temporal data splits, except for the “News" category, likely associated to the COVID-19
pandemic. Thus, we conclude that while the broader topics were similar, the nature of these



Table 5
Results from the Wilcoxon Signed-rank test for Corpus Similarity and corresponding p-values.

Corpus Pair Min p value  Max p value %Same
Train vs Train 0.2302 0.9314 100
Train vs Within_eval 0.2244 0.9347 100
Train vs Short_eval 0.1673 0.2969 100
Train vs Long_eval 0.0123 0.6077 90
Within_dev vs Within_eval 0.2629 0.9987 100
Within_dev vs Short_eval 0.0284 0.6752 90
Within_dev vs Long_eval 0.0108 0.0761 40

Table 6
Frequence (%) of top 10 most common of topics in all data splits.

Daily Life Relationships Celebrities Music  Film and TV

Train 57.34 11.48 8.24 7.40 5.33
Within_dev 57.89 11.77 6.03 6.70 4.02
Short_dev 54.46 8.33 6.47 7.07 5.73
Within_eval 62.54 10.57 4.74 5.84 5.84
Short_eval 54.96 7.71 5.84 6.61 6.50
Long_eval 48.79 6.17 7.16 6.28 6.72
Food Sports Education  News Family
Train 4.72 4.39 3.72 3.24 3.23
Within_dev 5.06 4.84 4.76 3.72 3.20
Short_dev 5.51 6.18 2.68 3.27 3.35
Within_eval 5.18 4.41 4.08 4.52 3.19
Short_eval 5.29 6.61 2.53 3.63 2.53
Long_eval 4.19 4.18 3.30 8.37 3.30

discussions, subtopic distributions, or their associated sentiment might have evolved, resulting
in a drop in our classifier performance.

Finally, we investigate the impact of additional training steps on the longitudinal robustness
of T5, our best performing model. Figure 1 illustrates the F1-Score obtained in the “within"
development set and the three test splits as the model is fine-tuned with the training data
during three epochs. We averaged the results of three training instances initiated with different
random seeds and the hyperparameters described in section 4. We note that T5 pre-trainning is
enough to offer competitive results in this task. However, this capability includes predicting
the label “neutral”, which can be adapted to the binary specification within a few hundred
steps. All subsequent training results in over-fitting, and consequently, in a drop in longitudinal
performance. We believe this to be a result of catastrophic forgetting of the information
embedded during pre-training in favour of the new samples and conclude that, for pre-trained
models, additional training data might not always be helpful when temporal robustness is at

play.



Figure 1: F1 Score on the evaluation sets along T5 fine-tuning.
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6. Conclusions and Future work

In this work, we evaluate the robustness of several well-known PLMs to temporal variations
in text classification. We find that generative PLMs outperform encoder-only alternatives
such as RoBERTa (the task baseline) across most temporal splits. Additional analysis confirms
our hypothesis that increased training on the downstream short-term objective can hinder the
generalisation capabilities of the pre-trained model, despite the similarity of topical distributions
across the different temporal splits. Our findings on the role of model size in this task are in
line with previous results in the field, showing that a larger number of parameters does not
prevent performance drop.

In the future, we intend to more thoroughly test and improve the temporal robustness of
generative PLMs under a larger set of carefully controlled temporal splits. In particular, exploring
methods to improve their zero and few-shot capabilities; such as prompt fine-tuning, chain-of-
thought prompting, or informative sample selection, might effectively reduce the re-training
requirements of these models. Alternatively, we regard unsupervised methods for identifying
polarity shifts towards topics and named entities as a promising research direction towards
building more temporally-aware sentiment classifiers.
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A. Appendix

GPT-3 Prompts

Prompt for zero-shot classification.

Please
-Tweet:
-Label:

label the following tweet as either positive or negative.
< Text_sample>

Prompt for few-shot (15 examples) classification.

Please
-Tweet:
-Label:
-Tweet:
-Label:
-Tweet:
-Label:
-Tweet:

You
-Label:
-Tweet:

label the following tweet as either Positive or Negative.

Where else can I get a pumpkin coffee in the morning because DD does not have their shit together.
negative

my mentions though I couldn’t be more grateful for what happened tonight I love Shawn so much
negative

I sneezed on the beat and the beat got sicker

positive

@MENTION Hi Niall, I hope you’re fine, I love you so much! Thanks for everything.

make me smile can you follow me please? 1450

positive

@MENTION Are You bored by listening pop and radio music ?

Join us, This Channel let’s You discover new emotions in each track

-Label:
-Tweet:
Pretty
-Label:
-Tweet:
-Label:
-Tweet:

positive
So it smells of weed in the car.

sure it’s coming from a certain someone’s reading rucksack @MENTION
positive

hate to see a good guy get fucked over like wyd girl

negative

wWhen Nike leaves the security tag on your shoes and you back to get it off,

and the alarm goes off, but didn’t go off when you left.

-Label:
-Tweet:
-Label:
-Tweet:
-Label:
-Tweet:
-Label:
-Tweet:
-Label:
-Tweet:
-Label:
-Tweet:
-Label:
-Tweet:
-Label:
-Tweet:
-Label:

negative

Coz’ I was born for you.. @MENTION @MENTION HAH joke..

positive

Can’t fault her the last nigga spoiled her.

positive

Trying to have the #bun #hairstyle. Gotta wait a few months but the wait gonna be worth it
positive

Fan was soooo AMAZING Loved it You MUST watch it @MENTION was again the BEST actor in the world
positive

Bout to take a nap n then wake up n do some with my life!!

positive

Send emojis for a tbh because I’m bored asf

negative

Pahabol essays and hw are the worst
negative
< Text_sample>
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