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Abstract
In these working notes, we present our contributions to the “Profiling Cryptocurrency Influencers with
Few-shot Learning” shared task at PAN 2023 under the team name pan23-dogecoin, where we participated

in all three subtasks. We focused on leveraging Metric Learning and Parameter-Efficient Fine-Tuning

of Transformer-based models. We conducted extensive hyper-parameter search for both techniques,

resulting in early-bird results of a tri-encoder model with 0.508 of macro-f1 for our best-performing

system for subtask 1, and an application of PEFT techniques to Transformer-based language models

which obtained 0.517, and 0.526 of macro-f1 for subtasks 2 and 3 respectively. We observed that our

proposed metric learning-based system exhibited enhanced generalization capabilities with respect

to the fine-tuning of Transformer-based models. Notably, despite the larger parameter size of some

Transformer-based models, we obtained robust performance by utilizing smaller models pre-trained on

domain-specific knowledge.
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1. Introduction

Social media has become a fundamental part of our day-to-day lives. Through these services,

millions of users connect and discuss various topics. Over the last decade, there has been an

increasing interest in cryptocurrencies, providing the frame for the emergence of new digital

communities sharing information. Consequently, understanding the behavior of these commu-

nities has become crucial for individuals invested in cryptocurrencies who wish to understand

market trends, identify influential figures, and predict the success of new cryptocurrencies.

Numerous studies have explored the relationship between social media and the cryptocur-

rency ecosystem, highlighting the profound impact that online communities can have on the

market [1, 2]. These studies have shown that influential figures, such as well-known cryptocur-

rency analysts, traders, and enthusiasts, can significantly influence the sentiment and adoption

of specific cryptocurrencies through their social media activities. Positive or negative opinions
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expressed by these individuals can sway public perception, impacting the value and market

demand for different digital assets.

Furthermore, social media platforms serve as a vital source of information for individuals

seeking to stay informed about the latest news, developments, and trends within the cryptocur-

rency space. Hashtags, dedicated forums, and communities surrounding cryptocurrencies on

platforms such as Twitter provide a space for discussions, news dissemination, and the sharing

of insights among community members.

All above form the basis of the shared task “Profiling Cryptocurrency Influencers with Few-
shot Learning” [3] at PAN 2023 [4], where the primary objective is to profile Twitter users to

determine their impact on cryptocurrency communities.

These working notes describe our participation in the shared task. More specifically, in

Section 2 we review previous studies related to author profiling and few-shot learning before

delving deeper into the tasks. In Section 3, we describe the subtasks and datasets provided by

the organizers. Afterward, in Section 4 we introduce our approaches to tackle the challenge,

and in Section 5 we describe our experimental setup and the achieved results. Finally, we draw

some conclusions and present future lines of research in Section 6.

2. Related Work

When profiling users through semantic and stylometric features extracted from their textual

constructions on a social media platform such as Twitter, one must consider that single message

information is usually not enough for accurate profiling. Aggregating and contrasting this

information from Twitter feeds is a matter explored along several shared tasks at PAN. These

tasks have involved analyzing demographic characteristics of social media users [5, 6, 7, 8],

such as gender, language variety, age, etc.

In recent years more complex tasks aiming at identifying personal traits and psychosocial

behavior of users have been explored, ranging from profiling fake news [9] and hate speech [10]

spreaders, to users using irony to target social groups according to stereotypical categorizations

[11].

In the past, most proposed works applied traditional machine learning techniques to profile

authors, relying mainly upon Support Vector Machines [12, 13], Logistic Regression [14] and

Random Forest [15] over representations of the profiles as Bag of Words, n-grams and their

term-frequency based vector representation combined with linguistic features.

However, given further developments in neural models and their ability to extract a more

adequate vector representation of text, many works also introduced neural techniques to both

model the set of tweets into a profile representation, and classify these profiles. These works, in

many cases, did not exclude the use of linguistic features to combine them with architectures

like Long Short Term Memory neural networks [16, 17], Convolutional Neural Networks [18],

and Transformer-based models [19, 20, 21].

In this year’s edition of PAN, the complex task of handling psychosocial aspects of subjects is

studied in a low-resource scenario, where the amount of information about users belonging

to each class is very limited. The latter makes the challenge of profiling users a few-shot task.

The field of few-shot learning has gained significant attention as a promising approach for



Table 1
Dataset statistics for each subtask. UPC denotes Users Per Class, TPU denotes Tweets per User.

Subtask Classes UPC TPU
(i) Profiling 5 32 10
(ii) Interest Id. 5 64 1
(iii) Intent Id. 4 64 1

addressing the challenge of limited data availability. Few-shot learning aims to develop models

that can learn from only a few examples per class, mimicking the human ability to generalize and

recognize new concepts with limited exposure. One notable advancement in few-shot learning

is the introduction of Large Language Models (LLMs), such as OpenAI’s GPT-3 [22]. These

models have been leveraged to tackle various natural language processing (NLP) tasks unseen

at training time, including text classification, sentiment analysis, and language generation, by

using strategies such as in-context learning [23].

Nevertheless, to obtain competitive results, these few-shot techniques require models with

considerably large context lengths and usually perform better as they are scaled to larger

number of learned parameters. Hence, appealing to models whose training relies on prior

knowledge about the similarity between the instances of the corpus, such as Bi-Encoder [24]

and Tri-Encoder networks [25], constitute a viable solution for many low resources tasks in

terms of computational resources and performance [26], especially for author profiling tasks

[27].

3. Data

We participate in the three subtasks proposed in the “Profiling Cryptocurrency Influencers with
Few-shot Learning”shared task: (i) low-resource influencer profiling, (ii) low-resource influencer

interest identification, and (iii) low-resource influencer intent identification. We only employ

the data provided by the task organizers [28], whose statistics are presented in Table 1. Here we

clearly observe that subtask 1 corresponds to the regular schema of a profiling task, whereas

the remaining two subtasks can also be framed as text classification tasks instead of author

profiling ones, given that for each author, we only have a single tweet instance.

4. Submitted Systems

The systems described in these working notes rely on the use of Large Language Models (LLMs),

using them in two different approaches: (i) as text encoders to find relationships in a high-

dimensional embedding space and (ii) as backbones to be fine-tuned for the three downstream

subtasks. We frame the first subtask as an author profiling task, treating the remaining ones as

classification tasks. To this end, we acquire textual definitions of the target classes to characterize

a type of author profile attending to the scale in which their tweets influence the cryptocurrency

community (see in Appendix A). We leverage the definitions for each category independently



of the actual task of profiling, taking into account the behavior of a Twitter user
1
. While these

definitions do not reflect the writing style or content of a tweet, we appealed to the capability of

LLMs to determine useful relationships from these descriptions such that they can discriminate

between classes in a zero-shot setting.

4.1. Metric Learning

According to previous works on author profiling and few-shot learning [29, 26, 30], our first

approach consisted in experimenting with various configurations of bi-encoder and tri-encoder

networks.

For this, we opted for a pre-trained Transformer-based [31] language model as a backbone

to obtain profile-level embeddings, and learning a transformation in a latent space. Here, we

optimize such that samples from the same class are closer together
2
, whereas samples from

different classes are farther apart. Finally, an instance of a user profile is classified into the class

of its closest prototype, i.e., an instance from the training set or user definition.

In the contrastive training of this metric learning approach, we explored both a bi-encoder

strategy and a triplet-based approach. A user’s profile, [AUTHOR-PROFILE], was constructed

by concatenating their tweets with the a newly introduced [SEP-TWEET] token, embedding

the resulting text as follows:

Represent the cryptocurrency Tweet posts for profiling their authors into the classes nano
micro macro mega non-influencer; Input: [AUTHOR-PROFILE]
We also took into account the definitions, [USER-DEFINITION], mentioned in Section 4 as

elements of our metric space when building the pairs (or triplets) for training. These definitions

were considered as instances belonging to their corresponding class. To obtain the embeddings

of definitions, we used the following prompting scheme:

Represent the cryptocurrency influencers definition for comparing it with the representation
of their tweets; Input: [USER-DEFINITION]
Finally, we introduced an online computation of the training pairs and triplets by recomputing

them after a fixed number of epochs to stress the learned transformation function towards

higher inter-class sparsity. For contrastive pairs we approach the construction of negative

examples under a hard criterion by selecting pairs of elements from different classes that are

closer in the newly-learned embedding space. Similarly for triplets, given an anchor example,

we select five random examples from its own class as positive points, and get the five closest

examples from the complementary classes as negatives, also ensuring a balanced distribution.

4.2. Fine-tuning

In addition to the metric learning strategy described in Section 4.1, we explored a straightfor-

ward classification approach by fine-tuning a language model for each subtask. For this, we

adapt a pre-trained Transformer-based text encoder to each subtask using the state-of-the-art

parameter-efficient fine-tuning technique LoRA [32]. This simpler approach allows us to avoid

1

Extracted and modified from https://greenhousemag.com/

2

Using the squared euclidean distance.
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the construction of contrastive examples, which can introduce some undesired bias into the

learning process even when we compute the triplets and pairs dynamically. Nevertheless, this

kind of language model is limited when dealing with long context sequences, forcing us to

truncate the user profile to 512 tokens. This means that most profile sequences will be truncated,

as can be seen in Figure 1.
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Figure 1: Length distribution for the profile sequences in the training set. The vertical red line is the
cutoff at 512 tokens.

5. Experiments and Results

To evaluate the performance of our models in the development process, we employed a 4-fold

cross-validation strategy while preserving class balance. No text pre-processing was carried

out for any approach because we were looking for an end-to-end methodology that avoids

conditioning the learning process of the models on hand-crafted heuristics. Following the task

organizers’ decision, we report mean macro-f1 between the validation results in each fold, as

well as the macro-f1 of the private test set in our early-bird submissions.

5.1. Metric Learning

The bi-encoder approach was only used for the first subtask. This subtask was the only one

among all the three where a simple transformer-based sentence encoder described in Section 4.2

was unable to handle the complete profile sequences, which we address by the use of Instruc-

tOR [33] as the profile encoder. However, given its maximum context length of 2048, truncation

was still necessary.

The profile encoder was kept frozen; only the transformation layer was learned using Adam

[34] with learning rates ranging from 1e-4 to 1e-1. The dimension of this latent space and the

frequency of pair or triplet recalculation was studied, in addition to whether the definitions as

prototypes should be included to train the network and classify new samples. To accomplish

this tuning process, we relied on Bayesian optimization as implemented in Optuna [35].

During the training, we used two loss functions, contrastive [36] or triplet loss [37] for

bi-encoder and triplet-based strategies, respectively. In Table 2 we present the results of the



best combination involving both perspectives under an online example construction schema,

which involved updating the training examples after every five epochs.

Table 2
Mean macro-f1 in a 4-fold cross-validation setting for metric learning in subtask 1. Def. refers to using
definitions as anchors, Ins. refers to employing also including all training instances as anchors.

Strategy Macro-F1
Contrastive + Ins. 0.332
Contrastive + Def. + Ins. 0.356
Triplet + Ins. 0.449
Triplet + Def. + Ins. 0.461

From this table, we observe how introducing the definitions from Section 4 improves the

results obtained by both pairs and triplet-based systems. Additionally, providing positive and

negative pairs, i.e., using triplet loss, results in considerable improvements in our metric learning

approach.

5.2. Fine-tuning

When fine-tuning language models, we compared their performance by also taking into account

the size of the models due to hardware restrictions in the submission platform. For those models

which allow it, we studied whether employing low-rank adapters outperforms conventional

fine-tuning.

In all the cases, the tuned parameters were optimized with RMSprop [38]. Particularly when

applying conventional fine-tuning of the whole network, we apply an increasing learning rate

from shallower layers to deeper ones [39], starting from 1e-5 and increasing it on each layer

with a factor of 0.1 units.

We experimented with full fine-tuning and LoRA as implemented in the HuggingFace ecosys-

tem [40] for three language models: CryptoBERT
3
, and two BLOOM [41] models, BLOOM-1b1

4

and BLOOM-7b1
5
. Table 3 shows the evaluation results after fine-tuning these models.

Table 3
Mean macro-f1 in a 4-fold cross-validation setting for fine-tuned models in all subtasks.

Strategy Subtask 1 Subtask 2 Subtask 3
CryptoBERT 0.554 0.405 0.647
CryptoBERT + LoRA 0.68 0.514 0.608
BLOOM-1b1 0.610 0.504 0.551
BLOOM-1b1 + LoRA 0.623 0.528 0.588
BLOOM-7b1 + LoRA 0.651 0.520 0.608

From these results, we observe that applying LoRA outperforms the full model fine-tuning for

CryptoBERT and BLOOM-1b1. Given BLOOM-7b1 model size, we were unable to experiment

3
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4
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5
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with full fine-tuning. We hypothesize that given the number of examples in this low-resource

dataset, catastrophic forgetting of learned information in the pre-training phase [42] may

become more critical given the bias imposed towards such a small training set.

Additionally, while BLOOM models exhibit many more parameters than CryptoBERT, given

the domain in which the latter has been pretrained and finetuned, this model achieves better

performance in two of the three tasks. Finally, we note that for subtask 1 all fine-tuned models

outperform our metric learning approach.

5.3. Official Results

Regarding the official submissions to the “Profiling Cryptocurrency Influencers with Few-shot
Learning” task in early-bird stages, we performed a majority vote for the models obtained by

finetuning each fold from the cross-validation process. In this way, we submitted one run for

subtask 1 involving the use of the best triplet-based model, obtaining a macro-f1 of 0.508 in the

test set. We also submitted runs using CryptoBERT-LoRA obtaining 0.465, 0.517 and 0.526 of

macro-f1 for subtasks 1, 2 and 3 respectively.

Interestingly, in contrast with the results from our cross-validation scheme, the tri-encoder

system obtains more robust results for subtask 1, which is aligned with our hypothesis related

to its capacity of processing long profile sequences. In addition to this, we believe the fact that

it only learns a transformation of the representation space, where objects from different classes

are distant, and that the constructed training examples grow in cubic orders, making tri-encoder

more robust and generalizable than fine-tuned language models. We find this is an important

lesson: a robust cross-validation scheme should be one of the topmost priorities, especially

when participating in competitions with private test sets.

6. Conclusions

In these working notes, we describe our submissions to the “Profiling Cryptocurrency Influencers
with Few-shot Learning” shared task at PAN 2023. We participated in all three subtasks, ex-

perimenting with bi-encoders and PEFT of transformer-based models. Our best-performing

systems achieved macro-F1 measurements of 0.508, 0.517, and 0.526 for tasks 1, 2, and 3 in the

early-bird stages, respectively, based on the official test set. From our study, we observed that

the proposed metric learning-based system demonstrated superior generalization capabilities

with respect to fine-tuned language models. Additionally, despite the large parameter size of

some Transformer-based models, we obtained more robust performance by employing models

pre-trained on knowledge aligned with the specific task domain.

While the primary focus of this task was to evaluate machine learning models’ ability to

learn in low-resource scenarios, for future work, we intend to investigate how augmenting the

training examples using methods such as back-translation impacts the systems’ generalization

capabilities. Furthermore, considering the decent results achieved by transformer-based models,

we plan to gather a more informative characterization of the classes in terms of writing style

and content. This characterization will help us select the elements that belong to the final profile

sequence by contrasting them with these defined characteristics. Subsequently, a condensed



and reduced version of the profile will be fed into the discriminative models.
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A. Textual definitions of target classes

In Table 4 we present the definitions of the target classes for subtask 1 used in our metric

learning approach. These definitions intend to capture information of types of Twitter accounts

attending to the scale of their impact in social media.

Table 4
Definitions of target classes for subtask 1.

Class Definition
mega An influencer with at least 1 million followers on at least one social media platform,

blog, podcast, or other Internet communication channel.
macro A creator with more than 100,000 followers and at least a 3% engagement rate,

often with a title such as celebrity, TV personality, athlete, or thought leader in
their community.

micro A social media user with between 1,000 and 100,000 followers, who has a larger
social media presence than a normal person, but smaller than a celebrity.

nano An everyday social media user with 100 to 10,000 followers, who shares typical
content such as photos of family, friends, cat videos, and memes.

non-
influencer

Someone who does not have the same level of authority or following within a niche
and does not have the same ability to influence their audience.


	1 Introduction
	2 Related Work
	3 Data
	4 Submitted Systems
	4.1 Metric Learning
	4.2 Fine-tuning

	5 Experiments and Results
	5.1 Metric Learning
	5.2 Fine-tuning
	5.3 Official Results

	6 Conclusions
	A Textual definitions of target classes

