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Abstract
This paper addresses two tasks aimed at enhancing language comprehension. First, we address the
problem of identifying complexity in the text. This task consists of two parts: identifying complex terms
and explaining them. To accomplish this task, we used a variety of methods. Different approaches are
compared using both manual and automated evaluation. The second task deals with text simplification.
GPT, Bloom and Simple T5 are compared on a variety of automated metrics. After analyzing performance
of different models, we concluded that it is possible to achieve decent results with most of the methods,
even when the free and trial versions of the products are used.
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1. Introduction

Understanding and going through a lot of scientific literature is often crucial in domain under-
standing and quality research. However, understanding scientific texts can be a challenging
task. They are often dense, and the researchers are usually not able to keep up, especially in the
era where most of the research is interdisciplinary.

In this paper, we address two interconnected tasks aimed at solving this problem[1] [2]. Task 2
focuses on the identification and explanation of difficult concepts, aiming to help understanding
specialized terminology and technical jargon. By automatically identifying difficult words,
deciphering abbreviations, and explaining them in context, this project tries to help researchers
understand scientific jargon that falls out of their area of expertise.

Task 3, on the other hand, revolves around the rewriting of scientific text to simplify complex
information. Using natural language processing and machine learning, we hope to simplify
passages from scientific abstracts in order to help identify the relevant articles and keep up
with the ever-growing library of knowledge accessible through the Internet.
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The outcomes of our research have numerous implications across various domains. By im-
proving language comprehension, we can enhance education and learning experiences, enable
more effective information retrieval, and contribute to the standardization of terminology. More-
over, our work holds significance for natural language processing applications such as machine
translation and question-answering systems, where accurate understanding and explanation of
difficult terms are critical.

In the subsequent sections of this paper, we delve into the methodologies employed for
both Task 2 and Task 3. We present our dataset, describe the techniques utilized, and provide
experimental results and evaluations.

2. Field Overview

2.1. Complexity Spotting

There are different approaches to complexity spotting. Some of the more popular ones are listed
below:

Linguistic Features Approach: Traditional approaches use linguistic features to determine
text complexity. These features include word length, sentence length, syntactic complexity (e.g.,
number of clauses), lexical diversity, and readability formulas (e.g., Flesch-Kincaid readability
score)[3]. Machine learning algorithms, such as decision trees or support vector machines, can
be trained on labeled datasets using these features to predict text complexity.

Domain-Specific Features Approach: Scientific texts often have domain-specific characteris-
tics that contribute to their complexity. These features can be identified using rule-based or
statistical methods. [4]

Corpus-Based Approaches: Corpus-based methods use large-scale text corpora to analyze
and model text complexity. These approaches usually measure the frequency and distribution
of complex linguistic patterns. They often use statistical models and clustering to predict
complexity.[5]

Neural Networks Approach: Deep learning models: recurrent neural networks (RNNs) and
transformers can be trained on labeled datasets to use linguistic and contextual features to
predict complexity. They have shown very good results as they can assess the difficulty of the
terms in context.

Previously mentioned methods are further explained in this review article. [6]
Ensemble Approaches: Ensemble methods combine multiple models or techniques to improve

prediction accuracy.
Cross-Domain Transfer Learning Approach: Transfer learning techniques, such as pre-trained

language models like BERT[7] or GPT[8], are by far the most popular approach nowadays. They
have been trained on large amounts of data and can be used to accomplish almost any NLP task.
They show the best results with a bit of fine-tuning.

2.2. Text Simplification

Neural Machine Translation (NMT)[9]: Models trained on parallel corpora consisting of complex
and simplified sentences. They learn to generate simplified versions of input sentences by



leveraging the alignment between the two languages.
Seq2Seq Models with Attention Mechanism[10]: Sequence-to-sequence (Seq2Seq) models

equipped with attention mechanisms capture dependencies between words in the source sen-
tence and generate simplified output sentences more accurately.

Transformer Models: Transformer-based architectures, such as the Transformer model
introduced in the ”Attention is All You Need” paper[11], have been applied to text simplification
tasks. These models use self-attention mechanisms to capture contextual information and
generate simplified sentences.

Rule-Based Approaches: Rule-based methods incorporate predefined simplification rules
and patterns to transform complex text. These rules can be based on linguistic principles or
domain-specific guidelines. Rule-based approaches are often used in combination with other
methods to enhance the performance of the simplification models.

3. Data Description

Data used for tasks was sent to us by CLEF[1] as a part of our shared tasks. Data was different
for each of the tasks, and it consisted of 3 test sets: small, medium and large. The small dataset
is included in the medium one, while the latter is included in the large one.

For the first task, train data consists of 2 documents. The first is the Citation Network Dataset.
The second is Qrels. This file extends the qrels released with a significant increase of the depth
of judgments of abstracts per query. Relevance annotations are provided on a 0-2 scale (the
higher, the more relevant) for 29 queries associated with the first 15 articles from the Guardian,
totalling 203 examples. The test data consisted of 152072 for large dataset, for medium dataset
4797, and 2234 for small dataset.

For the third task, train data is a parallel corpus of 648 manually simplified sentences. Test
data consists of 152072 in large dataset, 4976 in medium dataset, and 2413 in small dataset.

4. Method Description

We used a variety of methods for each of the tasks. In this section, we will provide a short
summary for all methods used.

4.1. Difficult concept identification

The goal of this sub-task is to identify the words that might be difficult for people to understand
and extract them from the given sentences. Since there are not a lot of papers written on this
topic, we decided to use methods used for keyword extraction as there is a strong correlation
between keywords and difficult words in the sentences. It is important to note that the definition
of difficult words was not provided, so we had to work on what seemed to be logical for us. For
us, difficulty often meant scientific jargon and domain specific terms.



4.1.1. KeyBERT

KeyBERT is a minimal and easy-to-use keyword extraction technique that leverages BERT
embeddings to create keywords and keyphrases that are most similar to a document.[12]. Model
used was ’all-MiniLM-L6-v2’ with English stop words excluded.

4.1.2. RAKE

Rapid Automatic Keyword Extraction (RAKE) is an algorithm to automatically extract keywords
from documents. [13]. Implementation used was from rake nltk package for python[14].

4.1.3. YAKE

YAKE is a unsuppervised statistic based model for keyword extraction implemented based on
the following paper[15].

4.1.4. Bloom

BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) is a
transformer-based large language model.[16]. Prompt in appendix.

4.1.5. Simple T5

Simple T5 is a model that enables quickly and simply training T5 models. Some of its features
are reduced compared to T5.[17]. For this task, sentences were labled as ’source text’ and terms
as ’target’

4.1.6. TextRank

TextRank is a graph based model for keyword extraction, implemented based on paper by
Mihalcea and Tarau.[18]. Implementation used the pke package for python.[19]

4.2. Difficult concept scoring

For this sub-task we used data derived from different approaches mentioned in the first sub-task.
This section highlights some of the methods used in scoring. We had to use manual interventions
to adjust the scores, as the project required the score to be between 0 and 2. Since, as mentioned
before, we were given just the vague definitions of difficulty, our adjustment of the results was
very subjective.

4.2.1. The Flesch Reading Ease formula

The Flesch Reading Ease formula in one of the formulas used for assessing reading-ease, higher
scores are calculated for material that is easier to read; lower numbers are calculated for texts
that are more difficult to read.[20]

206.835 − 1.015 ∗ ( total words
total sentences

) − 84.6 ∗ (
total syllables
total words

) (1)



4.2.2. Flesch–Kincaid grade level

Flesch–Kincaid grade level is one of the formulas used for assessing reading-ease, scores indicate
the grade a person would have to be in US education system to understand the text[3].

0.39 ∗ ( total words
total sentences

) + 11.8 ∗ (
total syllables
total words

− 15.59) (2)

4.2.3. Coleman–Liau index

Similar to Flesch-Kincaid grade level, Coleman–Liau index calculates the grade a person would
have to be to comprehend the text. It uses the number of letters instead of the number of
syllables[21].

𝐶𝐿𝐼 = 0.0588 ∗ 𝑎𝑣𝑔Letters per 100words − 0.296 ∗ 𝑎𝑣𝑔Sentences per 100words − 15.8 (3)

4.2.4. Automated readability index

Readability test for English text, also uses the US education system as a scale[22].

4.71 ∗ (characters
words

) + 0.5 ∗ ( words
sentences

) − 21.43 (4)

4.2.5. Dale-Chall Readability Score

Method that uses the lookup table of 3000 words and calculates the grade based on the for-
mula[23]:

0.1579 ∗ (difficult words
words

∗ 100) + 0.0496 ∗ ( words
sentences

) (5)

4.3. Task 2.2: Difficult Term Explanation

The goal of this task was to provide explanation to the terms extracted and scored in the previous
tasks. The methods we used in explanations are listed below.

4.3.1. Bloom

BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) is a
transformer-based large language model.[16]

4.3.2. WordNet

WordNet[24] is large English language dictionary that can be used in python as a part of NLTK
library[14].

4.3.3. PyDict

PyDictionary is a dictionary module for Python.



4.3.4. Wikipedia

Wikipedia is a Python library that enables users to search and parse Wikipedia pages.

4.4. Task 3

The goal of the third task was to simplify complicated sentences. We only used 3 models: Bloom,
GPT and SimpleT5. As we were relying on our own accounts and had to save on tokens we
only used 100 examples with GPT and Bloom.

4.4.1. Bloom

BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) is a
transformer-based large language model.[16]

4.4.2. GPT

GPT is a pretrained transformer large scale language learning model[8]

4.4.3. SimpleT5

Simple T5 is model that enables quickly and simply training T5 models. Some of its features are
reduced compared to T5.[17]

5. Limitations

This project was done as a collaboration between two students as a part of Erasmus+ Blended
Intensive Program. Both of us are fairly new in the field of Natural Language Processing and
due to equipment limitations we couldn’t implement any of the more complex models. We were
using our own laptops and the free version of Google Collaboratory environment, which limits
the data allocation and session duration for its users. We used a free version of the models and
had to keep track of tokens in order to complete all the tasks, and thus we decided to use a
reduced number of examples to work with BLOOM and GPT. Keeping that in mind, we tried
to represent as many different approaches so, our project would give a good comparison for
models that can be implemented with limited resources.

6. Results

6.1. Difficult words identification and scoring

For these tasks, our results were scored by selecting a smaller subset of all submitted difficult
terms. Afterward the selected terms were scored on three metrics: number of ok terms, number
of correctly scored terms and number of terms that satisfy both criteria.



6.1.1. Number of ok terms

Number of correct terms reflect how many terms are correctly identified as difficult.
As a team, for this task we submitted 10 runs using a combination of methods. Number of

extracted, evaluated and ok terms are shown in a table below.

Table 1: The table showing the number of all extracted terms, evaluated terms and the number
of correct terms.

Extraction Method Total Terms Evaluated Terms Terms OK
keyBERT + The Flesch-Kincaid Grade Level 11099 1109 975
keyBERT+The Flesch Reading Ease formula 11099 1109 975
TextRank+The Flesch-Kincaid Grade Level 10056 770 687
YAKE+The Flesch Reading Ease formula 11112 828 591

YAKE+Dale-Chall Readability Score 11112 828 591
RAKE+The Flesch Reading Ease formula 10660 618 505
RAKE+Automated Readability Index 10660 618 505

SimpleT5 2234 321 289
SimpleT5+The Coleman-Liau Index 2234 321 289

Bloom 100 0 0

As is visible from the table above different methods returned different number of words so, it
is best to take into the account how many of the actual terms were ok. The relation between
number of extracted and correct terms is shown below.

Table 2: The table showing percentage of correct terms.

Extraction Method Number of correct terms
Bloom 0

SimpleT5+The Coleman-Liau Index 90%
SimpleT5 90,0%

RAKE+Automated Readability Index 81,7%
RAKE+The Flesch Reading Ease formula 81,7%

YAKE+Dale-Chall Readability Score 71,3%
YAKE+The Flesch Reading Ease formula 71,3%

TextRank+The Flesch-Kincaid Grade Level 89,2%
keyBERT+The Flesch Reading Ease formula 87,9%
keyBERT + The Flesch-Kincaid Grade Level 87,9%



Figure 1: Relationship between the number of all evaluated and correct terms

A lot of the methods achieved good results. Bloom had the worst results and Simple T5 had
the best, scoring 90%. This is somewhat surprising as we expected Bloom to achieve better
results. However, this could also be explained with the number of total terms that we submitted,
which were only 100 for Bloom and way more for other methods (1109 for keyBERT). The
reason for this was the token limitation that forced us to use less examples with Bloom. Since
there were fewer examples to evaluate, it seems like none of the examples matched the ones
provided by Bloom.

6.1.2. Number of correctly scored terms

The number of correctly scored terms reflects if the complexity of the term is adequately labeled.
Scoring the terms proved a bit more challenging as it was dependent on the results of the

previous task.
As is shown in the table below, scoring was quite poor across all methods. This is probably

due to the fact that the train set consisted of only 203 examples and didn’t include any examples
of class 0. The Task description stated that participants should score terms ”... on a scale 0-2 (2
to be the most difficult terms, while the meaning of terms scored 0 can be derived or guessed)”
so we had to adjust the scores to reflect a different scoring system.

6.1.3. Correct LIMITS & Correct difficulty scores

Correct LIMITS & Correct difficulty scores reflects how many terms satisfy both criteria.



Table 3: The table showing the number of correctly identified terms, number of correctly scored
and terms that satisfy both criteria.

Extraction Method Identified Scored Both % both
Bloom 0 0 0 0

SimpleT5+The Coleman-Liau Index 289 51 44 15,22%
SimpleT5 289 87 77 26,6%

RAKE+Automated Readability Index 505 184 157 31,1%
RAKE+The Flesch Reading Ease formula 505 216 186 36,8%

YAKE+Dale-Chall Readability Score 591 187 126 21,3%
YAKE+The Flesch Reading Ease formula 591 302 229 38,7%

TextRank+The Flesch-Kincaid Grade Level 687 198 179 26,1%
keyBERT+The Flesch Reading Ease formula 975 298 262 26,9%
keyBERT + The Flesch-Kincaid Grade Level 975 374 352 36,1%

Figure 2: Relationship between the number of all correctly identified terms and correctly scored terms

All the methods required manual intervention, which could be another source of error. Our
scores were adjusted by looking at the output of each of the methods and manually deciding on
where to draw a line of most difficult terms.

The best results were achieved using Flesch Reading Ease formula paired with RAKE and
YAKE extraction methods.

6.2. Difficult Term Explanation

For this task our results were calculated using a combination of BLEU [25], ROUGE[26] and
matching scores.



6.2.1. Matching scores

Matching scores are scores that evaluate how many definitions are exactly, partially or seman-
tically equivalent to target definitions. Terms that were identified in the previous tasks were
explained in this task using a variety of methods. The following figure shows the number of
evaluated explanations that semantically matched target definitions. This task was done on 3
sets of data. Smaller subset of test set, extended version of the test set and non-unique words
that also appeared in the train data set.

Figure 3: Relationship between the number evaluated definitions and number of sentences that
semantically match the target in the smaller subset.

Table 4: The table showing the percentage of correctly explained terms in smaller subset.

Method Semantic match
Bloomz 0%

keyBERT + PyDictionary 43%
YAKE + WordNet 28%
RAKE + WordNet 67%

keyBERT + WordNet 35%
keyBERT + Wiki 53%

RAKE+Wiki 67%
SimpleT5 70 %

YAKE+Wiki 66%
TextRank+Wiki 69%

Most of the methods performed really good on the smaller dataset, achieving a semantic
match in most cases. Runs containing Simple T5 proved to be the best method, scoring around
70%. Wiki generally scored better than other methods, excluding SimpleT5, due to the large
database it has the access to. All the methods showed the best results with single word terms.



Blooms variant Bloomz performed the worst with a score of 0, which can be explained with the
fact that the Bloom run used only 100 examples due to token restrictions.

When the tests were repeated with the extended dataset, all of their results improved. The
biggest improvement was with Bloomz model that achieved 71% on this test and 0% on the
reduced dataset. Simple T5 remained as the best model with 73% semantic match. Runs and
their semantic match percentages are shown in the table below.

Table 5: The table showing the percentage of correctly explained terms on extended dataset .

Extraction method Semantic match
SimpleT5 73 %

keyBERT + Wiki 64%
RAKE+Wiki 68%

TextRank+Wiki 69%
Bloomz 71%

keyBERT + WordNet 44%
keyBERT + PyDictionary 51%

RAKE + WordNet 44%
YAKE+Wiki 69%

YAKE + WordNet 44%

However, since the number of evaluated terms differed significantly, it is also beneficial
to take into the account the number of evaluated terms. Even though the semantic match
percentage was lower for methods like TextRank + Wiki, the number of semantically matched
definition was higher. In both datasets, smaller and larger, extended dataset methods using
Word Net were consistently shown as the worst performers.

Figure 4: Relationship between the number of evaluated terms and the number of semantically matched
definitions in the extended dataset.

The last dataset on which the examples were evaluated consisted of non-unique words that



appeared in the train dataset. Percentages for this dataset mostly followed the ones that were
achieved on the extended dataset. With the largest deviation at around 5%. Methods are shown
with their semantic matched for all three cases in the figure below.

Figure 5: Percentages of correctly explained term in smaller dataset, extended test data set and non-
unique words dataset.

Other than overall definition matching, models also assessed on their performance in abbrevi-
ation extension. In this aspect, Bloomz performed the best with a score of 61% semantic match.
All runs using Wiki performed similarly, scoring around 10%. This was somewhat expected
as abbreviations could have different meaning based on the context and Wikipedia can not
decipher which one is correct. More powerful models as Bloomz are scoring better as they are
trained to pay attention to the context of the term. The only model that had any exact or partial
matches was Simple T5. It had 7 exact and 8 partial matches. All the results are shown in the
table below.

Table 6: The table showing the percentage of correctly explained abbreviations.

Method Semantic match
SimpleT5 39 %

keyBERT + Wiki 13%
RAKE+Wiki 14%

TextRank+Wiki 10%
Bloomz 61%

keyBERT + WordNet 27%
keyBERT + PyDictionary 34%

RAKE + WordNet 24%
YAKE+Wiki 11%

YAKE + WordNet 21%



Figure 6: Percentages of correctly explained abbreviations.

6.2.2. BLEU & ROUGE

BLEU is a score that is calculated by comparing the sentences to a number of reference sentences.
The output of BLEU score is a numerical value between 0 and 1 which denotes how similar are
the input sentences to the references. In this task, reference sentences represent the correct
explanations for extracted difficult terms.

ROUGE score is a set of metric that compared the generated text to reference sentences. For
this task 3 values contained in the set were used. Precision is a metric that calculates how
close are the predicted definitions to the true definitions. Recall is the metric that calculates the
proportion of the correct words used in predicted definitions. Fmeasure is a metric calculated
when recall and precision are combined in one metric.

Figure 7: BLEU scores for explanations.



Figure 8: ROUGE scores for explanations.

Sentences mostly differed from the reference sentences, which is evident for both BLEU and
ROUGE scores. On both scores the combination of SimpleT5 and Wiki scored the highest while
the rest of the methods scored similarly low.

6.3. Sentence simplification

We only selected 100 sentences to simplify using GPT and Bloom due to token limitations. We
simplified 648 sentences using Simple T5. For this task, the most metrics were used. The goal
was to evaluate the results on their meaning and complexity, and to identify the instances in
which the algorithm didn’t change anything between the original and simplified sentence. The
best method differed between each metric.

6.3.1. FKGL

Flesch-Kincaid Grade Level (FKGL) is a metric used to measure the readability of generated text.
It is used here to compare if the simplified sentences are more readable than the original. [3].

0.39 ∗ ( total words
total sentences

) + 11.8 ∗ (
total syllables
total words

− 15.59) (6)

In FKGL Simple T5 scored the best, with the score of 13, however the other models were
really close with the scores at 12 and 9.



Figure 9: Models with respective FKGL scores

6.3.2. SARI

SARI[27] is a metric used for evaluating text simplification. The metric compares the predicted
simplified sentences against the reference and the source sentences. It focuses on measuring
the words that are added, deleted or kept.

𝑆𝑎𝑟 𝑖 =
(𝐹1𝑎𝑑𝑑 + 𝐹1𝑘𝑒𝑒𝑝) + 𝑃𝑑𝑒𝑙)

3
(7)

F1-add is f1 score for the words that were added F1-keep is the equivalent for the words that
were kept P-del denotes the precision of deleted words

With SARI GPT scored the best with a score of 44, the second was Simple T5 with 40, and the
last Bloom with 36.



Figure 10: Models with respective SARI scores.

6.3.3. BLEU

BLEU is a score that is calculated by comparing the sentences to a number of reference sentences.
The output of BLEU score is a numerical value between 0 and 1 which denotes how similar are
the input sentences to the references. In this task, reference sentences represent the manually
simplified sentences.

With BLEU Simple T5 did by far the best with a score of 44. The other modes scored 22 and
21.

Figure 11: Models with respective BLEU scores.



6.3.4. Compression ratio

Compression ratio is a metric that calculates how much a sentence was shortened.

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
Number Of Words Original

Number Of Words Simplification
(8)

Simple T5 was also the model that compressed sentences the most with a compression rate
of 89%, GPT also compressed sentences but with a much lower rate of 70%. Bloom did similarly
with a compression rate of 68%.

Figure 12: Models with respective compression rate.

All of the models had compression rate around 1 with only slight differences.

6.3.5. Levenshtein similarity

Levenshtein [28] similarity is a metric that calculates how many insertions or deletions would
be needed to transform one text into another.

Levenshtein similarity was largest for Simple T5 where it was around 0,91. Second was Bloom
with the score of 0,71 and the last was GPT with 0,68.



Figure 13: Models with respective Levenshtein similarity.

6.3.6. Lexical complexity score

Lexical complexity score reflect how complex the simplified text is to understand to the average
person. This metric is also useful as a means of determining how much the text was simplified
when compared to the original.

Figure 14: Models with respective lexical complexity.

The only model with any kind of exact match was simple T5 that had 1% match. All of the
models has simillar lexical complexity at around 8,6.



7. Conclusion

In this report we have explained our approach for identifying, scoring and explaining difficult
words. We have also shown 3 different approaches in simplifying whole sentences. We have
submitted 10 runs for difficult term identification and scoring, 10 runs for term explanation and
3 for sentence simplification. We used a combination of models for each task, combining using
prompts and training.

Furthermore, we compared the results obtained with all these methods and concluded that it
is possible to achieve decent results with some of the methods, mainly Simple T5, which proved
to be the best method overall. Still, there is room for improvement. Since our runs were not
evaluated by us students, but by the teacher, we couldn’t provide deeper understanding of some
of the results. It would be beneficial for us to gain insight into how our results were evaluated
and which terms were, for example, the most difficult for each of the methods to score. We
think that this could be one of topic of future research.

Another topic that presented itself was, how appropriate was it to use automated metrics to
score definitions. This is a topic that could be very interesting to explore since, in our research,
semantic matches and automated metrics were scoring models very differently.

In the end, even though we only used free to use programs and our own equipment we
achieved pretty good results, proving that NLP tasks are not only for GPT and can be attempted
by anyone.
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Here you can find prompts that were used for Bloom and GPT.

A. Difficult concept identification

A.1. Bloom

Sentence: However, in information-centric networking (ICN) the end-to-end encryption makes
the content caching ineffective since encrypted content stored in a cache is useless for any
consumer except those who know the encryption key.\n\ Term: content caching.\n\ \n\
Sentence: Quantum circuits for arithmetic functions over Galois fields such as squaring are re-
quired to implement quantum cryptanalysis algorithms..\n.\ Term: quantum cryptanalysis.\n\
\n\ Sentence: The XECGA is then used to build the probabilistic model and to sample a new
population based on the probabilistic model.\n\ Term: probabilistic model\n\ \n\ Sentence:
We also present a subset demonstration of this model, TravelToken, which utilizes QR code that
stores and uses travel information in smart contract over Ethereum.\n\ Term: Ethereum\n\
\n\ Sentence: Treating search engines as editorial products with intrinsic biases can help un-
derstand the structure of information flows in new media.\n\ Term: intrinsic\n\ \n\ Sentence:
Penetration tests have become a valuable tool in the cyber security defence strategy in terms of
detecting vulnerabilities.\n\ Term:

A.2. GPT

”Find up to 5 difficult words:\n\n”+input
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B. Difficult concept explanation

B.1. Bloom

Term: content caching \n\ Explanation: Content caching is a performance optimization mecha-
nism in which data is delivered from the closest servers for optimal application performance.\n\
\n\ Term: logic qubit \n\ Explanation: A logical qubit is a physical or abstract qubit that
performs as specified in a quantum algorithm or quantum circuit subject to unitary transforma-
tions, has a long enough coherence time to be usable by quantum logic gates.\n\ \n\ Term:
quantum cryptanalysis \n\ Explanation: Quantum cryptanalysis is the study and evaluation of
cryptographic algorithms in the presence of a quantum enabled adversary.\n\ \n\ Term: prob-
abilistic model \n\ Explanation: Probabilistic modeling is a statistical technique used to take
into account the impact of random events or actions in predicting the potential occurrence of
future outcomes. \n\ \n\ Term: cyber-security \n\ Explanation: Ethereum is a decentralized,
open-source blockchain with smart contract functionality. Ether is the native cryptocurrency
of the platform.\n\ Term: intrinsic \n\ Explanation:

B.2. GPT

”Explain the meaning of these words:\n\n”+input

C. Sentence simplification

C.1. Bloom

Sentence: In the modern era of automation and robotics, autonomous vehicles are currently the
focus of academic and industrial research.\n\ Simplification: Current academic and industrial
research is interested in autonomous vehicles.\n\ \n\ Sentence: With the ever increasing
number of unmanned aerial vehicles getting involved in activities in the civilian and commercial
domain, there is an increased need for autonomy in these systems too.\n\ Simplification: Drones
are increasingly used in the civilian and commercial domain and need to be autonomous.\n\
\n\ Sentence: Due to guidelines set by the governments regarding the operation ceiling of civil
drones, road-tracking based navigation is garnering interest.\n\ Simplification: Governments
set guidelines on the operation ceiling of civil drones. So, road-tracking based navigation is
attracting interest.\n\ \n\ Sentence: In an attempt to achieve the above mentioned tasks, we
propose an imitation learning based, data-driven solution to UAV autonomy for navigating
through city streets by learning to fly by imitating an expert pilot.\n\ Simplification: Researchers
propose data-driven solutions allowing drones to autonomously navigate city streets, learning
to fly by imitating an expert pilot.\n\ \n\ Sentence: Based on the Inception-v3 architecture,
our system performs better in terms of processing complexity and accuracy than many existing
models for imitation learning.\n\ Simplification: The Inception-v3 architecture has better
accuracy than many existing models of imitation learning.\n\ \n\ Sentence: Permissions were
taken from required authorities who made sure that minimal risk (to pedestrians) is involved in
the data collection process.\n\ Simplification:



C.2. GPT

”Simplify this sentence:\n\n”+input
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