
Parallel virus machines
David Orellana-Martín1,2

1Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, Avda. Reina Mercedes s/n, 41012,
Universidad de Sevilla, Sevilla, Spain
2SCORE Laboratory, I3US, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

Natural Computing is a research field where different
computing paradigms arise from the inspiration of pro-
cesses occurring in Nature. DNA computing [1], Mem-
brane computing [2], artificial neural networks [3], and
evolutionary computing [4], among others, are widely
studied while looking for alternative methods for solv-
ing real-life problems that demand a large amount of
resources in more efficient ways.

In 2015, virus machines were introduced as a model of
computation inspired by the way viruses spread between
hosts and replicate their genetic code by “tricking” the
host entities.

A basic virus machine of degree (𝑝, 𝑞), 𝑝, 𝑞 ≥ 1,
graphically depicted as in Fig. 1, is a tuple Π =
(Γ, 𝐻, 𝐼,𝐷𝐻 , 𝐷𝐼 , 𝐺𝐶 , 𝑛1, . . . , 𝑛𝑝, 𝑖1, ℎ𝑜𝑢𝑡) where Γ =
{𝑣} is the working alphabet, whose unique element is
called a virus, 𝐻 = {ℎ1, . . . , ℎ𝑝} is the set of labels of
the hosts, that will contain the viruses, 𝐼 = {𝑖1, . . . , 𝑖𝑞}
is the set of labels of the instructions, that will control the
functioning of the system, 𝐷𝐻 is the graph of the hosts,
connecting them through channels, that will be opened
by the instructions and will let viruses pass from one host
to other one, 𝐷𝐼 is the graph of the instructions, that will
control the flow of the computation, 𝐺𝐶 connects the in-
structions with the channels they will open, 𝑛1, . . . , 𝑛𝑝

are the initial number of viruses in each host, 𝑖1 is the
initial instruction and ℎ𝑜𝑢𝑡 ∈ 𝐻 ∪ {ℎ0} is the output
region, that can be either a host or the environment. If
a virus passes through an open channel, then the next
instruction will be the one connected to the current in-
struction by the edge with the higher weight; otherwise,
the selected instruction will be connected by the edge
with the lower weight. If no instructions are connected
to the current instruction, the following instruction is
denoted by # and the computation halts.

In previous works, it has been demonstrated that this
model of computation is computationally complete; that
is, its power is equivalent to the power of a Turing ma-
chine. Apart from that, it has been demonstrated to be a
good model of computation for solving different types of

ITAT’23: Information technologies – Applications and Theory, Septem-
ber 22–26, 2023, Vysoké Tatry, Slovakia
" dorellana@us.es (D. Orellana-Martín)
� 0000-0002-2892-6775 (D. Orellana-Martín)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

h1 h2

h3 h4

2

2

i1

i2

i3

i4

i5

i6

2

2

2 2

Figure 1: Basic virus machine

computational problems. The basic model is, by defini-
tion, a sequential model of computation. Thus, it is easy
to see that from the computational complexity point of
view, these devices will only be able to solve from the
complexity class P.

Several bio-inspired models of computation have in-
cluded different features to increase their computational
efficiency, taking inspiration from some elements present
in real-life processes. The most basic variant changes the
initial instruction 𝑖1 of the tuple by a set of initial in-
structions 𝐼0, that will be executed at the same time. In
this generalization, when two instructions open the same
channel, both take the same decision concerning which
path to take for selecting the next instruction. Since only
one instruction can be selected from another instruction,
the number of active instructions will decrease through-
out the computation. The computation halts when the
set of current active instructions is the empty set.

Another interesting approach is to let instructions con-
trol more than one channel; that is, in the graph 𝐺𝐶 , one
instruction can be connected to more than one channel.
Different possibilities arise from this variant. Let us sup-
pose that the instruction 𝑖 is connected to 𝑘 channels.
When should 𝑖 select the edge with the higher weight?
When at least one virus goes through one channel? When
all the channels transport a virus? When the majority
of channels have moved a virus? The different choices
will lead to different models that work in a very different

mailto:dorellana@us.es
https://orcid.org/0000-0002-2892-6775
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


way.
Even when these variants are not able to solve NP-

complete problems efficiently, these new ingredients are
really interesting for some applications, improving the
running time for previously designed solutions. When
a real-life cell replicates its ADN, without realizing it,
it replicates also the genetic code of the virus. This be-
havior can be abstracted as a division of the host entity,
duplicating its entire genetic code (the connections and
internal elements). Potentially, this type of instruction
could lead to presumably efficient virus machines, as it
happens in the framework of membrane computing [5].

Acknowledgments
The research described in this work is supported by the
Zhejiang Lab BioBit Program (Grant No. 2022BCF05).

References
[1] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Comput-

ing, Springer Berlin Heidelberg, 1998.
[2] Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford

Handbook of Membrane Computing, Oxford Univer-
sity Press, Inc., USA, 2010.

[3] S. S. Haykin, Neural networks and learning ma-
chines, third ed., Pearson Education, Upper Saddle
River, NJ, 2009.

[4] A. Eiben, J. Smith, Introduction to Evolutionary Com-
puting, Springer Berlin Heidelberg, 2015.

[5] G. Păun, Computing with membranes: Attacking
np-complete problems, in: I. Antoniou, C. S. Calude,
M. J. Dinneen (Eds.), Unconventional Models of Com-
putation, UMC’2K, Springer London, London, 2001,
pp. 94–115.


