CEUR-WS.org/Vol-3498/paperl2.pdf

Efficient Fine-tuning of SlovakBERT with Epinet

Jozef Kubik’, Daniel Kyselica’ and Martin Taka¢!

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

Abstract

The popularity of creating artificial intelligence models has been incredibly rising. These tools can be used in many different
areas, including text analysis. Most modern models offer great accuracy in many different text-based tasks but are limited by
a huge number of data required to not only pre-train but also fine-tune these models. This problem only deepens in models
trained on data from low and mid-resource languages, such as Slovak. In this paper, we examined the fine-tuning process of
such models and tried to enhance it by connecting to Epinet to create Epistemic neural network, a relatively new concept that
helps the model to detect its own uncertainty to make better decisions in the long run.

1. Introduction

Text data can be analyzed in many different ways. The
most popular approach is to pre-train the so-called Large
language models. Some of the most popular are based
on original BERT [1] architecture, e.g. RoOBERTa [2], AL-
BERT [3], DeBERTa [4] and others. Most of these models
are monolingual. i.e. they are pre-trained on the corpus
of only one language. Although it is not necessary, ev-
ery language would potentially benefit from having its
own monolingual Large language model pre-trained (and
consequently fine-tuned) on available data in this exact
language.

Not all languages are equal in this aspect, though. For
example, the most popular languages, such as English,
are easier to use with these kinds of models as the data
available in this language is abundant. That’s one of the
main reasons why almost every new model is first trained
in such high-resource language. Subsequently, models
can achieve better results as they can be trained longer
and better on a variety of different topics, each possibly
enhancing the models’ language understanding potential.
That leaves low-resource languages in a tough spot -
either to use multilingual models, pre-trained on text
corpus consisting of different languages, or pre-train their
own models with a high probability of under-training
them. Under-training a model can lead to worse results
and thus lowers its usefulness.

SlovakBERT [5], based on RoBERTa architecture, is the
first and only strictly monolingual Large language model
trained on Slovak text data. It achieved state-of-the-art
results in several Natural language processing tasks, such
as Sentiment analysis, Document classification, and oth-
ers. Compared to other models pre-trained in English, its
results in many tasks (including the ones with state-of-

ITAT23: Information technologies — Applications and Theory, Septem-
ber 22-26, 2023, Tatranské Matliare, Slovakia
(@) jozef kubik@fmph.uniba.sk (J. Kubik);
daniel.kyselica@fmph.uniba.sk (D. Kyselica);
martin.takac@fmph.uniba.sk (M. Takac)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).
=] CEUR Workshop Proceedings (CEUR-WS.org)

the-art results) lacked behind, though. The most probable
reason for this is the lack of data in its pre-training phase,
where compared to the original RoBERTa, the amount
of data used was nearly 10 times less. This undertrain-
ing thus reflects in fine-tuning phase, where the highly
limited amount of annotated data often doesn’t allow the
model to adapt to the task as well as in other models
pre-trained in other languages.

To mitigate this problem, it would be beneficial to
somehow help the model in the fine-tuning phase. This
could be done in several ways, one of which is to let the
model know more about its own uncertainty. One of
the most promising concepts working with uncertainty
estimation via estimating joint predictions was recently
introduced in Epistemic neural networks [6]. The authors
managed to lower the joint logarithmic loss of the model
by connecting it to the so-called ’Epinet’ network. This
network uses another input, the epistemic index, to help
the model differ between aleatoric (relating to chance)
and epistemic (relating to knowledge) uncertainty. In ex-
periments, network ResNet connected to Epinet reached
substantially lower values of joint logarithmic loss.

In this paper, we present several experiments of con-
necting the SlovakBERT language model to the Epinet
network to create an Epistemic neural network suited for
text classification. Although in original experiments with
the ResNet network, the classification error did not lower,
possibly under-trained low-resource language models
such as SlovakBERT could theoretically improve also in
accuracy of classification when given external help to es-
timate uncertainty. Improving joint log-loss values could
also indicate possible better decision-making in the long
run. We present the results of the Epinet + SlovakBERT
network with different hyperparameters and conclude
its possible usefulness in this combination.

mailto:jozef.kubik@fmph.uniba.sk
mailto:daniel.kyselica@fmph.uniba.sk
mailto:martin.takac@fmph.uniba.sk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Networks details

2.1. SlovakBERT

SlovakBERT is the first monolingual Large language
model (LLM) trained on Slovak text data. It was intro-
duced in the year 2021, although many different BERT-
line of models were known for a longer period of time.
As it is in fact RoBERTa model, its strength comes from
the clever design of Transformer architecture [7], more
concretely its encoder part. The attention mechanism
used in this architecture not only provides great means
of text understanding but also allows for partial process
parallelization, accelerating the training process. The
training process, which can be divided into pre-training
and fine-tuning parts, allows for flexibility not only in a
variety of possible tasks but also in the language of input
data. The size of these models, measured in hundreds
of millions of parameters, was higher when compared
to older architectures, but is a little compared to other
models, such as GPT [8] models with the number of pa-
rameters counting in hundreds of billions. Although the
size of data used for pre-training seems reasonably big (al-
most 20GB), it is little compared to the original RoBERTa
(160GB), which is the base architecture for this model.

2.2. Epistemic neural network

Epistemic neural network (ENN) differs from the tradi-
tional network by taking additional input called epistemic
index. This index, usually sampled by some reference
distribution such as normal distribution or a finite set of
values, is used to help the model recognize its own epis-
temic uncertainty. This uncertainty is easier to show in
the joint probability distribution, where multiple samples
(inputs to the network) are considered.

Positive | Negative

Positive | 025 025

Negative | 025 02

D Ambiguous text
"Aman in love is incomplete

until he has married. Then he's —
finished.”

Positve
]

. Conventional neural
network

Positive | Negative

Positive | 05

Negative | 0 0s

Insufficient data

Figure 1: Example of resulting probability distributions for
text classification with conventional neural networks [6].

In figure 1, for the text classification task, the conven-
tional neural network takes as an input a text sequence
and outputs a vector containing probability distribution
for 2 classes - positive or negative sentiment. In an edge
case (the table in the middle), the probabilities assigned

are the same - 0.5. This shows the model’s uncertainty
for the prediction, but the reason for this uncertainty
is not clear. If we took the text sequence and put it as
an input for the neural network a second time, we can
model joint probability distribution by the table of size
2x2. In this case, we can get two different edge cases (the
tables on the right). In the upper table, all possible com-
binations of classes when given two input samples show
the same probability of 0.25. Summing up for marginal
prediction, for each sample network assigns a probability
of 0.5. This case suggests aleatoric uncertainty which
most probably won’t be solved with future training. The
more interesting case is shown in the table at the bottom
right. Here, the networks’ choice is always consistent -
when the class for the first sample is chosen, the same
class is assigned for the same sample for the second time.
The only problem is that the network is not sure which
class to assign in the first place. The sum of the marginal
predictions is, as in the first case, 0.5, but the difference
in distribution is visible. This second example suggests
epistemic uncertainty, i.e. more training could resolve
models’ uncertainty.

The epistemic index comes as an additional input to
ENN to help with epistemic uncertainty. In figure 2, we
see two different use cases. In the first case, ENN doesn’t
use the epistemic index to its benefit and thus indicates
ambiguous data. The possible use of the epistemic index
is shown in the tables below it. Here, according to the
sign of epistemic index, the class is chosen - that holds
true not only for prediction of one input but also when
the same input is given two times in a row. If a prediction
of the network can be manipulated in this way by some
additional input, then we can assume that future training
will resolve some of its uncertainty.

“Aman in love is incomplete.

Positive | Negative

Epistemic index

“Aman in love is incomplete.

Negative

0.5 (z> 0}

Positive

ENN }_-J

05@=0)| 0
Negative

05 (220}

Negative 0 |os=q)

positve | 05
ENN Positve | 025 | 025
. Negstve | 05
Negatve | 025 | 025
AMbiguOUs text

Epistemic index Insufficient data

Figure 2: Example of resulting probability distributions for
text classification with epistemic neural networks [6].

One concrete use of ENN was introduced with the
Epinet [6] network. Visualized in figure 3, Epinet con-
sists of two networks: learnable and prior. Both of the
networks use the aforementioned epistemic index.

In most cases, these networks are standard Multi-layer

[Input x ‘

Learnable o*

Reference
Z~P

Figure 3: Visualization of the Epinet network [6].

perceptrons with the same architecture but different start-
ing parameters. The prior network has no trainable pa-
rameters and aims to introduce initial knowledge about
uncertainty. Over time, learnable networks’ parameters
are updated, whereas prior networks’ parameters stay
the same. Both of these networks take two inputs: epis-
temic index z and so-called features Z of the base net-
work. These features are usually the last layers or (parts
of them) of the base network, which we are trying to
train. These two inputs are concatenated and fed into
the learnable and prior network, which results are then
summed. The final result of ENN f is the sum of the
Epinet networks o result and result of the base network

7%

o(z,2) = o' (& 2) + o~ (%, 2)
[z, 2) = p(z) + o(Z, 2)

3. Experiments

In our experiments, we use the base version of the pre-
trained SlovakBERT network. On top of it, we add a
Multi-layered perceptron (MLP) with one hidden layer of
size 50. When connecting to Epinet to create an Epistemic
neural network, the result of the SlovakBERT network
present in the representation of [CLS] token at the last
layer is used as the input to this MLP network and also
as ’features’ for the Epinet.

In Epinet, we follow the original implementation in
[6]. We use two MLP networks - the learnable one is
initialized with parameters via Glorot initialization [9]
and takes arguments, which are concatenated together:

o"(i,2) = MLP(CONCAT (%, 2))

The prior network has no trainable parameters. Its
design is the same as for the learnable network:

o"(z,2) = MLP(CONCAT (%, 2))

Both of these networks are the same in size as the MLP
network connected to the SlovakBERT. The epistemic
index is sampled from a uniform distribution.

For the size of epistemic indices, we iterate through
multiple possible values. In our experiments, we try to
sample this vector with sizes 10, 30, 50, and 100. The
number of indices sampled in each stochastic gradient
descent step is always 5. With each size we fine-tune
the model from scratch, giving us the best setting for a
reasonable comparison.

For optimization we use Adam [10] optimizer with
starting learning rate o« = 5 - 1075,

We fine-tune our model for sentiment analysis classi-
fication task on CSFD [11] dataset, a publicly available
collection of movie reviews. For this, we preprocess the
dataset in two ways:

« we keep only two data features: text review and
rating

as the rating column contains values ranging
from 0 to 6, we edit these values to get sentiment
analysis task of 3 possible classes: 0 - negative, 1
- neutral, and 2 - positive. We do this by mapping
original values to predefined classes - values 0
and 1 are mapped to 1, values 2 and 3 are mapped
to 1, and values 4 and 5 are mapped to 2.

No other changes to the text data itself were made. We
fine-tune the model for 5 epochs on 25k train data and
validate the model after every epoch on 5k validation
data. The loss function used is the standard cross-entropy
function. For determining joint logarithmic loss value
during validation we use the vanilla version of the dyadic
sampling heuristic as described in [6]. In this method, we
first sample k independent random samples. After that,
we sample another 7 — k samples with equal probability
from these two points to create a batch of size 7 which
we use for calculating joint loss. This heuristic is a good
alternative to classic calculation as in high-dimensional
space the size of the batch required to distinguish joint
prediction would be too large to compute in a reasonable
time.

We recognize that other settings could be potentially
better suited for our experiments, but this exact prepro-
cessing allowed us to easily train the model while keeping
reasonable values for the potential sentiment in the text.

4. Results

In this section, we present the results of our experiments.
To easily recognize the networks, we will always refer
to SlovakBERT connected to only standard MLP as ’base
SlovakBERT’ and SlovakBERT connected not only to
standard MLP but also to Epinet network as ’SlovakBERT
Epinet’ or simply ’Epinet’. Each different SlovakBERT

Epinet will also contain in its name the size of the epis-
temic index used.

Training accuracy nor training loss did not improve
significantly when using SlovakBERT Epinet. The result-
ing values did not differ in a major way, which holds
not only when comparing to base SlovakBERT, but also
different index size parameters of SlovakBERT Epinet.
As calculated training loss is in its nature marginal (each
sample is independent), it seems logical that no major
improvements are observed. Results can be seen in fig-
ure 4 and 5. Similarly as in [6], the difference in results
between the base networks with Epinet and only the
base network is negligible. Nevertheless, after training
for only 5 epochs on a small dataset, training accuracy
seems to reach great results around 90%.

90

85

80+

754

SlovakBERT Epinet 1
SlovakBERT Epinet 10
SlovakBERT Epinet 20
SlovakBERT Epinet 30
SlovakBERT Epinet 50
SlovakBERT Epinet 100
base SlovakBERT

Training accuracy [%]

70 4

65+

1 2 3 4 5
Epoch

Figure 4: Training accuracy of SlovakBERT models.

0.8 —— SlovakBERT Epinet 1
SlovakBERT Epinet 10
—— SlovakBERT Epinet 20
0.7 —— SlovakBERT Epinet 30
—— SlovakBERT Epinet 50
@ —— SlovakBERT Epinet 100
£ 06+ base SlovakBERT
H
@
E
2054
c
£
=
0.4
0.31

Epoch

Figure 5: Training loss of SlovakBERT models.

In the case of validation accuracy, we also see no ap-
parent improvement when using Epinet. This confirms
the results of the original authors of Epinet, who also did

not find any significant change in accuracy while using
Epinet. Although it is logical as in the case of training
accuracy, longer training could still potentially reveal the
problem with under-training. On our small dataset, no
major changes were discovered, though.

3

72 4

7 //\\(\\’(
0 __——

69 1
68
67 1
66 4

SlovakBERT Epinet 1
SlovakBERT Epinet 10
SlovakBERT Epinet 20
SlovakBERT Epinet 30
SlovakBERT Epinet 50
SlovakBERT Epinet 100
base SlovakBERT

60 T T T T T
1 2 3 4 5

Epoch

65 1

Validation accuracy [%6]

64
63 -
62 -
61 -

Figure 6: Validation accuracy of SlovakBERT models.

For values of final joint logarithmic loss, calculated
on validation dataset, results show that the networks
using epistemic index performed much better than base
SlovakBERT without Epinet in average. We also found
out that the networks are really sensitive to the size of
the epistemic index. In the table 1 below, we present
the percent value of the final joint logarithmic loss of
Epinet networks when compared to the value of the base
SlovakBERT.

Table 1
Difference in final joint logarithmic loss with respect to base
SlovakBERT model

Network Index size % value
SlovakBERT Epinet 1 +30.98
SlovakBERT Epinet 10 -12.12
SlovakBERT Epinet 20 -10.77
SlovakBERT Epinet 30 +2.30
SlovakBERT Epinet 50 -17.63
SlovakBERT Epinet 100 -3.67

These results in joint logarithmic loss indicate improve-
ment, but more experiments are needed to determine
the exact improvement potential and reasons for incon-
sistency in results among different index sizes through
training. This inconsistency can be observed when com-
paring the loss values of some networks during training
depicted in 7. For clarity, we only show a comparison of
two Epinet networks with biggest epistemic indices and
the base SlovakBERT model. In general, reasonable big
epistemic indices (such as index of size 50) produce better

(i.e. lower) joint loss values as networks with small epis-
temic indices sizes such as 10. It doesn’t mean that each
consecutive epoch in training helps in lowering joint loss
value, though. This can be also seen in the final loss val-
ues for Epinet 1 and 30, where the final value was actually
higher than the final loss value of base SlovakBERT. As in
[6] the authors worked with image data, is hard to make
a meaningful comparison to their results, nevertheless,
our results show that benefit of using Epinet expands to
Large language models as well.

—— SlovakBERT Epinet 50
SlovakBERT Epinet 100
base SlovakBERT

Joint legarithmic loss
=
(=]

Epoch

Figure 7: Joint logarithmic loss of SlovakBERT models during
training.

As the results suggest, ENN can serve as an improve-
ment to conventional neural networks, but our results
indicate some sort of instability, possibly caused by a lack
of fine-tuning data or weak adaptability of the network
parameters when used with a low-resource language
model. Both of these possible causes can be solved with
additional research, though. Still, finding this instability
is an interesting aspect of the ENN network, which was
not presented yet. The argument that in [6] the experi-
ments were focused mainly on image data can be made,
although it doesn’t seem very likely that this can be a
cause for instability. A more reasonable conclusion is
that the under-trained model itself creates this instability.

5. Conclusion

We showed that Large language models pre-trained in
low-resource languages, such as Slovak, can benefit from
modeling their uncertainty in the fine-tuning process
to reach better results. This was made possible by con-
necting this model to the Epinet network, creating an
Epistemic neural network. Results don’t indicate a major
improvement in classification accuracy, but joint logarith-
mic loss seems to improve substantially. More research
and experiments on this topic are needed, though. Our
next potential step is to not only enhance these kinds of

LLMs in terms of raw joint log-loss values but also pos-
sibly lower the amount of annotated data needed in the
fine-tuning process, e.g. with the help of Active learning
methods. As most of these methods try to estimate mod-
els’ uncertainty on the input data, their combination and
uncertainty estimation with epistemic index and Epinet,
in general, can bring interesting results when fine-tuning
low-resource language models.

Acknowledgement

This research has been supported by grants APVV-21-
0114 and UK/96/2023.

References

[1] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova,
Bert: Pre-training of deep bidirectional transform-
ers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, V. Stoyanov,
Roberta: A robustly optimized bert pretraining ap-
proach, arXiv preprint arXiv:1907.11692 (2019).
Z.Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma,
R. Soricut, Albert: A lite bert for self-supervised
learning of language representations, arXiv
preprint arXiv:1909.11942 (2019).

P. He, X. Liu, J. Gao, W. Chen, Deberta: Decoding-
enhanced bert with disentangled attention, arXiv
preprint arXiv:2006.03654 (2020).

M. Pikuliak, S. Grivalsky, M. Konépka, M. Blstak,
M. Tamajka, V. Bachraty, M. Simko, P. Balazik,
M. Trnka, F. Uhlarik, SlovakBERT: Slovak masked
language model, arXiv preprint arXiv:2109.15254
(2021).

L. Osband, Z. Wen, S. M. Asghari, V. Dwaracherla,
M. Ibrahimi, X. Lu, B. Van Roy, Epistemic neural
networks, arXiv preprint arXiv:2107.08924 (2021).
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, 1. Polosukhin, At-
tention is all you need, Advances in neural infor-
mation processing systems 30 (2017).

A.Radford, K. Narasimhan, T. Salimans, I. Sutskever,
Improving language understanding by generative
pre-training (2018).

X. Glorot, Y. Bengio, Understanding the difficulty
of training deep feedforward neural networks, in:
Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics, JMLR
Workshop and Conference Proceedings, 2010, pp.
249-256.

[10] D.P.Kingma, J. Ba, Adam: A method for stochas-

tic optimization, arXiv preprint arXiv:1412.6980
(2014).

Fewshot-goes-multilingual, 2022. Data retrieved
from Huggingface site, https://huggingface.
co/datasets/fewshot-goes-multilingual/sk_
csfd-movie-reviews.

https://huggingface.co/datasets/fewshot-goes-multilingual/sk_csfd-movie-reviews
https://huggingface.co/datasets/fewshot-goes-multilingual/sk_csfd-movie-reviews
https://huggingface.co/datasets/fewshot-goes-multilingual/sk_csfd-movie-reviews

	1 Introduction
	2 Networks details
	2.1 SlovakBERT
	2.2 Epistemic neural network

	3 Experiments
	4 Results
	5 Conclusion

