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Abstract
We introduce context-free grammar with sentinels, CF( |c,$)-grammar, as a generalization of recently introduced LR( |c,$)-
grammar. Original LR( |c,$)-grammars can be used to construct deterministic pumping restarting automata performing
correctness and error preserving pumping analysis by reduction on each word over its input alphabet. Pumping analysis
by reduction involves step-wise simplification of an input word by removing at most two continuous parts of the current
word while preserving the correctness or incorrectness of the word. Each such simplification step corresponds to removing
portions of the current word that can be “pumped” according to the pumping lemma for context-free languages, and thus, it
does not use any nonterminals.

One-side pumping grammars are CF( |c,$)-grammars that allow removing just one continuous part in each step of pumping
reduction. A complete CF( |c,$)-grammar generates both a language and its complement with sentinels. We show that complete
one-side pumping CF( |c,$)-grammars characterize the class of regular languages, while LR( |c,$)-grammars that allow two-side
pumping reductions characterize the class of deterministic context-free languages. LR( |c,$)-grammars that do not allow any
one-side pumping reduction generate non-regular languages only.
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1. Introduction
This paper builds upon and improves the findings from
papers [1, 2, 3] that introduced and investigated certain
restrictions for deterministic monotone restarting pump-
ing automata (det-mon-RP-automata). The motivation
for introducing general restarting automata was to model
analysis by reduction.

Analysis by reduction is a method from linguistics.
Here it serves for checking the correctness of an input
word by step-wise rewriting some part of the current
tape with a shorter one until we obtain a simple word
for which we can decide its correctness easily. In gen-
eral, analysis by reduction is nondeterministic, and in
one step, we can rewrite a sub-string of a length limited
by a constant with a shorter string. An input word is
accepted if there is a sequence of reductions such that
the final simple word is from the target language. Then,
intermediate words obtained during the analysis are also
accepted. Each reduction must be error preserving, i.e., no
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word outside the target language can be rewritten into a
word from the language.

Our interest in studying pumping restarting automata
was awakened by papers [4, 5] investigating the complex-
ity of parsing deterministic context-free languages. This
paper’s linguistic and non-linguistic motivations can al-
ready be found in [1, 2, 6]. We aim to develop formal
tools supporting the characterization and localization
of syntactical errors in artificial and natural languages.
This paper should contribute to a complete taxonomy of
different types of syntactical errors encountered when
parsing deterministic context-free languages.

In this paper, we study some types of deterministic
analysis by reduction. We are mainly interested in a
strongly constrained version of analysis by reduction
called pumping analysis by reduction. Pumping analysis
by reduction is a reduction analysis with the following
additional restriction. In each step of pumping analysis by
reduction, the current word is not completely rewritten.
Instead, at most two continuous segments of the current
word are deleted.

When a restarting automaton works on a word, the
word is always delimited by sentinels – |c on the left and
$ on the right end of its tape. Therefore, we consider here
context-free grammars with sentinels, shortly CF( |c,$)-
grammars, that generate only words of the form { |c} ·𝑤 ·
{$}, where 𝑤 is a word over an alphabet Σ containing
neither |c nor $.

Here, we use so-called complete CF( |c,$)-grammars
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that generate all words from { |c} · Σ* · {$}. Informally,
a complete CF( |c,$)-grammar 𝐺𝐶 has two initial nonter-
minals, 𝑆𝐴 and 𝑆𝑅. The set of words derived from the
nonterminal 𝑆𝐴 is a language of the form { |c} · 𝐿 · {$},
for some language 𝐿 ⊆ Σ*. The language 𝐿 is called the
inner language of 𝐺𝐶 . The set of words derived from the
nonterminal 𝑆𝑅 is complementary to { |c} · 𝐿 · {$} with
respect to { |c} · Σ* · {$}, that is { |c} · (Σ* ∖ 𝐿) · {$}.

Pumping lemma for context-free languages [7] implies
that, for each complete CF( |c,$)-grammar 𝐺, there exists a
constant 𝑝 such that each word 𝑤 generated by 𝐺 derived
from 𝑆𝐴 (or 𝑆𝑅, respectively) of length greater than 𝑝
can be written as a concatenation of some words 𝑥1, 𝑥2,
𝑥3, 𝑥4, and 𝑥5, where 𝑥2𝑥4 is nonempty, and all words
𝑥1𝑥

𝑖
2𝑥3𝑥

𝑖
4𝑥5, for all integers 𝑖 ≥ 0, can be derived from

𝑆𝐴 (or 𝑆𝑅, respectively). Hence, during reducing pump-
ing analysis, 𝑥1𝑥2𝑥3𝑥4𝑥5 can be reduced into 𝑥1𝑥3𝑥5.
If 𝑥2 or 𝑥4 is empty, we say the pumping reduction is a
one-side reduction.

It is well-known that each deterministic context-free
language can be generated by an LR(0) grammar ([7]). In
[3], it was shown that for each deterministic context-free
language 𝐿, there exists a complete CF( |c,$)-grammar,
which is an LR(0) grammar with the inner language 𝐿.
Moreover, the language 𝐿 is accepted by a deterministic
restarting RP-automaton 𝑀 that performs pumping anal-
ysis by reduction on all input words (both from 𝐿 and its
complement). The last phase of the computation of 𝑀
on an input word 𝑤 produces a terminal word 𝑤′ that is
not longer than the above constant 𝑝. If |c𝑤′$ is derived
from 𝑆𝐴 according to 𝐺𝐶 , then 𝑤′ (and thus also 𝑤) is
accepted by 𝑀 . Otherwise if |c𝑤′$ is derived from 𝑆𝑅

according to 𝐺𝐶 , then 𝑤′ (and thus also 𝑤) is rejected
by 𝑀 .

CF( |c,$)-grammars that allow only left-side pumping
reductions (𝑥4 is empty in all possible pumping reduc-
tions) or only right-side pumping reductions (𝑥2 is empty
in all pumping reductions) generate only regular lan-
guages. On the other hand, we show that two-side pump-
ing CF( |c,$)-grammars that are LR(0) and do not allow
one-side pumping at all generate non-regular languages
only.

The paper has the following structure. Section 2 intro-
duces the main notions of CF( |c,$)-grammars, LR(0) gram-
mars, and pumping notions. In Section 3, we show that
the class of inner languages of one-side CF( |c,$)-grammars
coincides with the class of regular languages. Conversely,
Section 4 shows that the inner language of a complete
CF( |c,$)-grammar, which is LR(0) and does not allow any
one-side pumping reduction, is not regular. Section 5
presents further results dealing with one- and two-side
pumping grammars. Section 6 concludes the paper and
sketches directions for further research.

2. Basic Notions and Results
In what follows, we will work with the class of context-
free languages and some of its subclasses, like determin-
istic context-free languages (see [8]). Let Σ be a finite
nonempty alphabet. A language 𝐿 ⊆ Σ* is context-
free if it is generated by a context-free grammar 𝐺 =
(𝑁,Σ, 𝑆,𝑅), where 𝑁 is a finite set of nonterminals, Σ
is a finite set of terminals, 𝑁 ∩ Σ = ∅, 𝑆 ∈ 𝑁 is the
initial symbol, and 𝑅 is a finite set of rules of the form
𝑋 → 𝛼, for 𝑋 ∈ 𝑁 and 𝛼 ∈ (𝑁 ∪ Σ)*.

We say that 𝛼 directly derives 𝛽 (denoted as 𝛼 ⇒ 𝛽)
by 𝐺 if 𝛼 = 𝜈𝐴𝜉, 𝛽 = 𝜈𝛾𝜉 for some 𝛼, 𝛽, 𝛾, 𝜈, 𝜉 ∈
(𝑁 ∪ Σ)*, 𝐴 ∈ 𝑁 and 𝐴 → 𝛾 ∈ 𝑅. The reflexive and
transitive closure of the relation ⇒ is denoted as ⇒*.
If, additionally, 𝜉 is a terminal word, we say that the
derivation step 𝛼 = 𝜈𝐴𝜉 ⇒ 𝜈𝛾𝜉 = 𝛽 is a rightmost
derivation step and denote it as 𝛼 ⇒r 𝛽. Obviously, ⇒r*

denotes the reflexive and transitive closure of the relation
⇒r.

For each context-free grammar 𝐺 = (𝑁,Σ, 𝑆,𝑅),
there exists a context-free grammar𝐺′ = (𝑁 ′,Σ, 𝑆′, 𝑅′)
that generates the same language as 𝐺 such that for
each nonterminal 𝑋 from 𝑁 ′, there is at least one word
𝑤 ∈ Σ* for which it holds 𝑋 ⇒* 𝑤 and there exist
words 𝛼, 𝛽 ∈ (𝑁 ′∪Σ)* for which it holds 𝑆′ ⇒* 𝛼𝑋𝛽.
We say that grammar 𝐺′ is reduced [8].

2.1. CF(¢,$)-grammars
In [3], we introduced LR( |c,$)-grammars and complete
LR( |c,$)-grammars to provide a formal tool for identifying
syntax errors within the analysis-by-reduction process
performed by RP-automata. Additionally, we sought to
characterize and differentiate deterministic context-free
languages (DCFL) from regular languages based on the
decidable syntactic properties of the formal model. The
concept of pumping reduction emerged as a crucial ele-
ment in achieving these goals. In this section, we present
the definitions and results from [3] concerning LR( |c,$)-
grammars but now in a new, more general setting of
CF( |c,$)-grammars.

Definition 1. Let 𝑁 and Σ be two disjoint alphabets,
|c, $ /∈ (𝑁 ∪ Σ) and 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a
context-free grammar generating a language of the form
{ |c} · 𝐿 · {$}, where 𝐿 ⊆ Σ*, and 𝑆 does not occur in the
right-hand side of any rule from 𝑅. We say that 𝐺 is a
CF( |c,$)-grammar. The language 𝐿 is the internal language
of 𝐺, and it is denoted as 𝐿in(𝐺). W.l.o.g., we suppose that
a CF( |c,$)-grammar does not contain rewriting rules of the
form 𝐴 → 𝜆 for any nonterminal 𝐴 ∈ 𝑁 , where 𝜆 denotes
the empty word.

Closure properties of the class of context-free lan-
guages imply that for a CF( |c,$)-grammar 𝐺, both lan-



guages 𝐿(𝐺) and 𝐿in(𝐺) are context-free. The added
right sentinel $ facilitates recognition of languages. E.g.,
if 𝐿 is a deterministic context-free language, then it can
be generated by an LR(1)-grammar (see [7]). But 𝐿 · {$}
and { |c}·𝐿·{$} are both generated by simpler LR(0) gram-
mars. The left sentinel |c is included in CF( |c,$)-grammars
for compatibility with RP-automata.

2.2. Pumping Notions of
CF(¢,$)-grammars

This section studies the pumping properties of CF( |c,$)-
grammars. We start with several definitions and nota-
tions.

Let 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a CF( |c,$)-grammar,
𝑥, 𝑢1, 𝑣, 𝑢2, 𝑦 be words over Σ, |𝑢1|+ |𝑢2| > 0, |𝑣| > 0,
and 𝐴 ∈ 𝑁 be a nonterminal. If

𝑆 ⇒* |c𝑥𝐴𝑦$ ⇒* |c𝑥𝑢1𝐴𝑢2𝑦$ ⇒* |c𝑥𝑢1𝑣𝑢2𝑦$ (1)

we say that (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) is a pumping infix by 𝐺,
𝑥𝑢1𝑣𝑢2𝑦 ⇝𝑃 (𝐺) 𝑥𝑣𝑦 is a pumping reduction by 𝐺 and
the word |c𝑥𝑢1𝑣𝑢2𝑦$ is a pumped word according to 𝐺.

Note that we omitted the sentinels in the pumping
infix and pumping reduction, and 𝑥𝑢1𝑣𝑢2𝑦 ∈ 𝐿in(𝐺).

The relation⇝*
𝑃 (𝐺) is the reflexive and transitive clo-

sure of the relation⇝𝑃 (𝐺).
On the other hand, if (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) is a pumping

infix by 𝐺, then all words of the form |c𝑥𝑢𝑖
1𝑣𝑢

𝑖
2𝑦$, for all

integers 𝑖 ≥ 0, belong to 𝐿(𝐺).
We call pumped each derivation tree corresponding

to a derivation of the form (1). Likewise, we say that
the word |c𝑥𝑢1𝑣𝑢2𝑦$ is pumped, and the derivation (1)
is pumped.

Let 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a CF( |c,$)-grammar,
𝑡 be the number of nonterminals of 𝐺, and 𝑘 be the maxi-
mal length of the right-hand side of the rules from 𝑅. Let
𝑇 be a derivation tree according to 𝐺. If 𝑇 has more than
𝑘𝑡 leaves, a path exists from a leaf to the root of 𝑇 such
that it contains at least 𝑡+ 1 nodes labeled by nontermi-
nals. As 𝐺 has only 𝑡 nonterminals, at least two nodes
on the path are labeled with the same nonterminal 𝐴. In
that case, there is a derivation of the form (1), and 𝑇 is
a pumped derivation tree. We say that 𝐾𝐺 = 𝑘𝑡 is the
grammar number of 𝐺.

Note that for any word from 𝐿(𝐺) of length greater
than 𝐾𝐺, some pumping infix by 𝐺 must correspond.
On the other hand, each word generated by 𝐺 that is not
pumped is of length at most 𝐾𝐺.

Lemma 1. Let 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a CF( |c,$)-
grammar. If 𝐺 generates 𝑤, then there exists a sequence
of words 𝑤1, . . . , 𝑤𝑛 from 𝐿(𝐺), for some integer 𝑛 ≥ 1,
such that 𝑤 = 𝑤1, there are pumping reductions
𝑤𝑖 ⇝𝑃 (𝐺) 𝑤𝑖+1, for all 𝑖 = 1, . . . , 𝑛 − 1, and there
is no 𝑤𝑛+1 ∈ Σ* such that 𝑤𝑛 ⇝𝑃 (𝐺) 𝑤𝑛+1.

Proof: (Sketch) Let 𝑤 ∈ 𝐿(𝐺) and 𝑇 be a derivation
tree with the symbols of 𝑤 in its leaves.

In 𝑇 , if there is no path from its root to a leaf on which
two nodes are labeled with the same nonterminal, then
the lemma statement holds for 𝑛 = 1, as there is no
pumping reduction possible.

Suppose there is a path from the root of 𝑇 to a leaf such
that two nodes on the path are labeled with the same
nonterminal 𝐴. In that case, we can build a pumping
infix (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) (for some 𝑥, 𝑢1, 𝑣, 𝑢2, 𝑦 ∈ Σ*

and 𝐴 ∈ 𝑁 ) by 𝐺 such that 𝑤 = 𝑥𝑢1𝑣𝑢2𝑦, then 𝑤 =
𝑥𝑢1𝑣𝑣𝑢2𝑦 ⇝𝑃 (𝐺) 𝑥𝑣𝑦 and the derivation tree 𝑇 can be
modified into the derivation tree 𝑇1 for the word 𝑥𝑣𝑦 by
replacing the subtree corresponding to the derivation of
𝐴 ⇒* 𝑢1𝑣𝑢2 with the subtree for the derivation 𝐴 ⇒*

𝑣. Further, we can again try to find a path with repeating
nonterminal in tree 𝑇1 and construct another pumping
reduction. In this way, we can continue until we obtain
a word with a derivation tree, in which there is no path
with repeating nonterminal. In this way, we obtain the
desired sequence of pumping reductions. □

Definition 2. Let (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) be a pumping infix
by a CF( |c,$)-grammar 𝐺. We say that the pumping infix
is a core pumping infix if there is a derivation tree 𝑇 by
𝐺 that corresponds to the derivation

𝑆 ⇒* |c𝑥𝐴𝑦$ ⇒* |c𝑥𝑢1𝐴𝑢2𝑦$ ⇒* |c𝑥𝑢1𝑣𝑢2𝑦$ (2)

such that the path between the root 𝑟1 of the subtree corre-
sponding to the derivation of 𝑢1𝐴𝑢2 from 𝐴 in (2) to the
root 𝑟2 of the subtree corresponding to the derivation of 𝑣
(but without 𝑟2) does not contain two distinct nodes labeled
with the same nonterminal.

We write 𝑥𝑢1𝑣𝑢2𝑦 ⇝𝑃 (𝐺,core) 𝑥𝑣𝑦, and say that the
reduction 𝑥𝑢1𝑣𝑢2𝑦 ⇝𝑃 (𝐺,core) 𝑥𝑣𝑦 is a core pumping
reduction by 𝐺. The transitive and reflexive closure of
⇝𝑃 (𝐺,core) is denoted in the standard way as⇝*

𝑃 (𝐺,core).

Note that in the above derivation (2), the length of the
words 𝑥, 𝑢1, 𝑣, 𝑢2, 𝑦 is not limited. A general pump-
ing reduction 𝑤 ⇝𝑃 (𝐺) 𝑤

′ corresponds to removing a
segment between any nodes 𝑟1 and 𝑟2 labeled with the
same nonterminal 𝐴 occuring on a path from the root of
a derivation tree for 𝑤. The pumping reduction is core if
there is no other node labeled with 𝐴 between 𝑟1 and 𝑟2,
and all nodes between 𝑟1 and 𝑟2 are labeled with distinct
nonterminals. The statement of Lemma 1 can be easily
extended to pumping analysis using core reductions only.

Corollary 1. Let 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a
CF( |c,$)-grammar. If 𝐺 generates 𝑤, then there exists a
sequence of words 𝑤1, . . . , 𝑤𝑛 from 𝐿(𝐺), for some in-
teger 𝑛 ≥ 1, such that 𝑤 = 𝑤1, there are core pumping
reductions 𝑤𝑖 ⇝𝑃 (𝐺,core) 𝑤𝑖+1, for all 𝑖 = 1, . . . , 𝑛− 1,
and there is no 𝑤𝑛+1 ∈ Σ* such that 𝑤𝑛 ⇝𝑃 (𝐺) 𝑤𝑛+1.



Definition 3. Let 𝐺 be a CF( |c,$)-grammar. We say that
a pumping infix (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) by 𝐺 is:

• a one-side pumping infix if 𝑢1 = 𝜆, or 𝑢2 = 𝜆,
• a two-side pumping infix if 𝑢1 ̸= 𝜆, and 𝑢2 ̸= 𝜆,
• a left-side pumping infix if 𝑢2 = 𝜆, and
• a right-side pumping infix if 𝑢1 = 𝜆.

Correspondingly, we say that a pumping reduction is a one-
side (two-side, left-side, or right-side) pumping reduction
if the corresponding pumping infix is a one-side (two-side,
left-side, or right-side) pumping infix.

One-side/Two-side pumping grammars. Let 𝐺 be a
CF( |c,$)-grammar. We say that 𝐺 is a left-side pumping
CF( |c,$)-grammar if all its core pumping infixes are left-
side pumping infixes. Similarly, we say that 𝐺 is a right-
side pumping CF( |c,$)-grammar if all its core pumping
infixes are right-side pumping infixes. We say that 𝐺
is a one-side pumping CF( |c,$)-grammar if it is left-side
or right-side pumping CF( |c,$)-grammar. If 𝐺 is neither
left-side nor right-side pumping grammar, we say that
𝐺 is a two-side pumping CF( |c,$)-grammar.

Example 1. Let 𝐺 = ({𝑆, 𝑆′, 𝐴}, {𝑎, 𝑏, 𝑐, |c, $}, 𝑆,𝑅)
be a CF( |c,$)-grammar, where 𝑅 is the set of rules:

𝑆 → |c𝑆′$, 𝑆′ → 𝑐 | 𝐴, 𝐴 → 𝑎𝑆′ | 𝑆′𝑏.

The grammar 𝐺 is a two-side pumping grammar. All its
core pumping infixes are of one of the following forms:
(𝑥, 𝑎, 𝑆′, 𝑣′, 𝜆, 𝑦), (𝑥, 𝜆, 𝑆′, 𝑣′, 𝑏, 𝑦), (𝑥, 𝑎,𝐴, 𝑣, 𝜆, 𝑦) or
(𝑥, 𝜆,𝐴, 𝑣, 𝑏, 𝑦), for any words 𝑥 ∈ {𝑎}*, 𝑦 ∈ {𝑏}*,
𝑣, 𝑣′ ∈ {𝑎}* · 𝑐 · {𝑏}*, |𝑣| ≥ 2. All the core pumping
infixes are one-side, but the grammar is two-side pumping
as it has both left-side and right-side pumping infixes.

There also exist two-side pumping infixes by 𝐺, like
𝜋1 = (𝜆, 𝑎, 𝑆′, 𝑐, 𝑏, 𝜆) or 𝜋2 = (𝑎𝑎, 𝑎,𝐴, 𝑎𝑎𝑐, 𝑏, 𝑏𝑏𝑏).
The former is not core pumping infix since there is a path
between two nodes labeled with 𝑆′ (from which 𝑎𝑆′𝑏 and 𝑐
are derived) in the corresponding derivation tree containing
another node labeled with 𝑆′. Similarly, the derivation tree
corresponding to the pumping infix 𝜋2 contains a sub-path
between nodes labeled with 𝐴 (from which 𝑎𝐴𝑏 and 𝑎𝑎𝑐
are derived) that contains another node labeled with 𝐴.

Example 2. Let 𝐺′ = ({𝑆,𝐴,𝐵}, {𝑎, 𝑏, |c, $}, 𝑆,𝑅) be
a CF( |c,$)-grammar with the following set of rules:

𝑆 → |c𝐴$ | |c𝐵$,
𝐴 → 𝑎𝐴𝑏 | 𝑎𝑏,
𝐵 → 𝑎𝐵 | 𝑏𝐵 | 𝑎 | 𝑏.

Evidently, 𝐿(𝐺′) = { |c} · {𝑎, 𝑏}+ · {$}.
Consider the pumping infix (𝑎𝑎, 𝑎,𝐴, 𝑎𝑎𝑏𝑏, 𝑏, 𝑏𝑏). This

pumping infix is a core and two-side pumping infix; there-
fore, grammar 𝐺′ is a two-side pumping grammar.

However, every word from 𝐿(𝐺′) can be reduced to |c𝑎$
or |c𝑏$ using left-side core pumping reductions, where the
nonterminal 𝐴 is not used.

Interestingly, after omitting all rules that include 𝐴 from
the grammar, we obtain a one-side (more precisely, left-
side) pumping grammar generating the same language as
the original grammar.

2.3. Complete CF(¢,$)-grammars
In this subsection, we generalize complete LR( |c,$)-gram-
mars from [3] to complete CF( |c,$)-grammars.

A complete CF( |c,$)-grammar is a grammar that en-
ables analysis of a language and its complement. If a
complete CF( |c,$)-grammar is used in an analytic mode, it
returns a derivation tree for each input word of the form
|c𝑤$, where 𝑤 ∈ Σ*. The nonterminal under their root
distinguishes the accepting and rejecting analytic trees.
That means that the accepted words have accepting trees
only, and the rejected words have rejecting trees only.

Definition 4. Let 𝐺𝐶 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a
CF( |c,$)-grammar. Then 𝐺𝐶 is called a complete CF( |c,$)-
grammar if

1. 𝑆 → 𝑆𝐴 | 𝑆𝑅, where 𝑆𝐴, 𝑆𝑅 ∈ 𝑁 , are the only
rules in 𝑅 containing the initial nonterminal 𝑆. No
other rule of 𝐺𝐶 contains 𝑆𝐴 or 𝑆𝑅 in its right-
hand side.

2. The languages 𝐿(𝐺𝐴) and 𝐿(𝐺𝑅) generated by
the grammars 𝐺𝐴 = (𝑁,Σ ∪ { |c, $}, 𝑆𝐴, 𝑅)
and 𝐺𝑅 = (𝑁,Σ ∪ { |c, $}, 𝑆𝑅, 𝑅), respectively,
are disjoint and complementary with respect to
{ |c} · Σ* · {$}. That is, 𝐿(𝐺𝐴)∩𝐿(𝐺𝑅) = ∅ and
𝐿(𝐺𝐶) = 𝐿(𝐺𝐴) ∪ 𝐿(𝐺𝑅) = { |c} · Σ* · {$}.

We will denote the grammar as 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅). Further,
we will call 𝐺𝐴 and 𝐺𝑅 as accepting and rejecting gram-
mar of the complete CF( |c,$)-grammar 𝐺𝐶 , respectively.

Obviously, for each word of the form |c𝑤$, where 𝑤 ∈
Σ*, there is some derivation tree 𝑇 according to 𝐺𝐶 . The
node under the root of 𝑇 is labeled either by 𝑆𝐴 or 𝑆𝑅. If
it is 𝑆𝐴, the word is generated by the accepting grammar
𝐺𝐴. Otherwise, it is generated by the rejecting grammar
𝐺𝑅.

Moreover, for each word, two or more derivation trees
can exist, but all of them are accepting, or all of them are
rejecting.

The following lemma will be used below to show that
we can decide if a given complete CF( |c,$)-grammar is
one-side CF( |c,$)-grammar.

Lemma 2. Let 𝐺 be a reduced CF( |c,$)-grammar. If there
is a core two-side (left-side or right-side, respectively) pump-
ing infix by 𝐺, then there is a two-side (left-side or right-
side, respectively) core pumping infix by 𝐺 for a word of
length at most 𝐾3

𝐺.



Proof: Let 𝜋 = (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) be a two-side core
pumping infix by 𝐺. There is a derivation tree 𝑇 corre-
sponding to a derivation

𝑆 ⇒* |c𝑥𝐴𝑦$ ⇒* |c𝑥𝑢1𝐴𝑢2𝑦$ ⇒* |c𝑥𝑢1𝑣𝑢2𝑦$ (3)

where the sub-path 𝑃𝑟1,𝑟2 between the root 𝑟1 of the
subtree corresponding to a derivation of 𝑢1𝐴𝑢2 from
𝐴 to the root 𝑟2 of the subtree corresponding to the
derivation of 𝑣 (but without 𝑟2) in (3) does not contain
two distinct nodes labeled with the same nonterminal.

Suppose there are two distinct nodes on the path 𝑃𝑟1

between the root of 𝑇 and the node 𝑟1 labeled with the
same nonterminal. In that case, we can perform the
corresponding pumping reduction and still preserve a
two-side pumping infix in the reduced derivation tree.

Similarly, let 𝑃 be a path between an arbitrary leaf
(including leaves under 𝑟2) and the closest node on the
path 𝑃𝑟2 between the root of 𝑇 and 𝑟2. If 𝑃 contains
two distinct nodes labeled with the same nonterminal,
we perform the corresponding pumping reduction. In
the obtained derivation tree, we can still find a two-side
core pumping reduction, as the pumping reduction does
not delete any node from the sub-path 𝑃𝑟1,𝑟2 . Note that
𝐺 is reduced and, according to Definition 1, 𝐺 does not
contain any rule of the form 𝑋 → 𝜆. Hence, a reduction
on a path 𝑃 from a leaf to a node on the path 𝑃𝑟2 (path
𝑃 contains only one node from 𝑃𝑟2 ) cannot delete all
terminal leaves of the corresponding subtree.

In this way, we obtain a derivation tree with a two-side
pumping infix of height at most 3𝑡, where 𝑡 is the number
of nonterminals of 𝐺. Such a tree has at most 𝑘3𝑡 = 𝐾3

𝐺

leaves.
The proofs for left-side and right-side pumping infixes

are similar. □

Lemma 2 implies that we can decide whether given
CF( |c,$)-grammar is one-side pumping grammar by in-
specting all pumping infixes in all derivation trees for
words of length at most 𝐾3

𝐺. Below we show how to do
such a test more efficiently.

For a context-free grammar 𝐺 = (𝑁,Σ, 𝑆,𝑅), we
define its size as |𝐺| =

∑︀
𝑟∈𝑅 |𝑟|, where |𝑟| denotes

the number of terminals and nonterminals in the rule 𝑟,
including the left-hand side nonterminal, i.e., if 𝑟 = 𝐴 →
𝛾, where 𝐴 ∈ 𝑁 and 𝛾 ∈ (Σ ∪𝑁)*, then |𝑟| = 1 + |𝛾|.

Theorem 1. Let 𝐺 = (𝑁,Σ∪{ |c, $}, 𝑆,𝑅) be a reduced
CF( |c,$)-grammar. An algorithm that runs in 𝑂(|𝐺|) time
can decide whether 𝐺 is one-side pumping.

Proof: As grammar 𝐺 is reduced and does not have any
rule with the empty right-hand side, each nonterminal
can be used in some derivation, and from each nontermi-
nal, only nonempty terminal strings can be derived.

We construct a directed graph 𝒢 = (𝒱, ℰ) as follows:
𝒱 = 𝑁 , and (𝐴,𝐵) ∈ ℰ if and only if there is a rule

𝐴 → 𝛾 in 𝑅, where 𝐵 ∈ 𝑁 is included in 𝛾. Note that
ℰ can contain loops and |ℰ| = 𝑂(|𝐺|).

Let Σ1 = Σ ∪ { |c, $}. Define the function ℓ : ℰ →
2{left,right,both} such that for each 𝑒 = (𝐴,𝐵) ∈ ℰ ,

• left ∈ ℓ(𝑒) if there is a rule 𝐴 → 𝛼𝐵 in 𝑅, where
𝐴,𝐵 ∈ 𝑁 and 𝛼 ∈ (𝑁 ∪ Σ1)

+,
• right ∈ ℓ(𝑒) if there is a rule 𝐴 → 𝐵𝛽 in 𝑅,

where 𝐴,𝐵 ∈ 𝑁 and 𝛽 ∈ (𝑁 ∪ Σ1)
+, and

• both ∈ ℓ(𝑒) if there is a rule 𝐴 → 𝛼𝐵𝛽 in 𝑅,
where 𝐴,𝐵 ∈ 𝑁 and 𝛼, 𝛽 ∈ (𝑁 ∪ Σ1)

+.

Let 𝑊 = (𝑒1, . . . , 𝑒𝑛) be a directed walk in 𝒢 such
that 𝑒𝑖 = (𝑣𝑖−1, 𝑣𝑖) ∈ ℰ , for 𝑖 = 1, . . . , 𝑛. As 𝐺 is
reduced, there exists a derivation tree 𝑇 for 𝐺 containing
a path 𝑃 = (𝑓1, . . . , 𝑓𝑛), where 𝑓𝑖 = (𝑢𝑖−1, 𝑢𝑖), for
some nodes 𝑢0, . . . , 𝑢𝑛 of 𝑇 such that the nodes on 𝑃
are labeled with nonterminals 𝑣0, . . . , 𝑣𝑛.

Based on Definition 2 of core pumping infix, we can
conclude that 𝐺 is a left-side pumping grammar if and
only if, for each walk 𝑊 = (𝑒1, . . . , 𝑒𝑚) in 𝒢 starting
and ending in the same node, it holds⋃︁

𝑒∈𝑊

ℓ(𝑒) ⊆ {left}. (4)

Similarly, 𝐺 is a right-side pumping grammar if and
only if for each walk 𝑊 = (𝑒1, . . . , 𝑒𝑚) in 𝒢 starting
and ending in the same node it holds⋃︁

𝑒∈𝑊

ℓ(𝑒) ⊆ {right}. (5)

Obviously, all edges from 𝑊 are in the same strongly
connected component of graph 𝒢. We can construct all
strongly connected components of graph 𝒢 using Tar-
jan’s algorithm [9] in time 𝑂(|𝒱|+ |ℰ|) = 𝑂(|𝐺|). Then,
for each strongly connected component 𝒞, we can test
whether 𝒞 satisfies the condition (4) or (5) in time lin-
ear with the size of 𝒞. Hence, we can decide whether
grammar 𝐺 is one-side in time 𝑂(|𝒱|+ |ℰ|) = 𝑂(|𝐺|).
□

2.4. LR(0) Grammars
One of the main results of this paper strongly utilizes the
theory of LR(0) grammars [7]. For any LR(0) grammar
𝐺, we can construct a deterministic parser that not only
accepts each word 𝑤 ∈ 𝐿(𝐺) but also produces a unique
derivation tree for 𝑤. Then, with such a derivation tree,
we can unambiguously associate the rightmost derivation
of the word 𝑤 according to 𝐺.

Let us recall the definition and properties of LR(0)
grammars from [7].



Definition 5 ([7]). Let 𝐺 = (𝑁,Σ, 𝑆,𝑅) be a context-
free grammar and 𝛾 ∈ (𝑁 ∪ Σ)*. A handle of 𝛾 is an
ordered pair (𝜌, 𝑖), 𝜌 ∈ 𝑅, 𝑖 ≥ 0 such that there exists
𝐴 ∈ 𝑁,𝛼, 𝛽 ∈ (𝑁 ∪ Σ)* and 𝑤 ∈ Σ* such that

(a) 𝑆 ⇒r* 𝛼𝐴𝑤 ⇒r 𝛼𝛽𝑤 = 𝛾,
(b) 𝜌 = 𝐴 → 𝛽, and
(c) 𝑖 = |𝛼𝛽|.

While a handle in a string is generally not uniquely de-
fined, this is not the case for LR(0) grammars.

Definition 6. Let 𝐺 = (𝑁,Σ, 𝑆,𝑅) be a reduced con-
text-free grammar such that 𝑆 ⇒r+ 𝑆 is not possible in 𝐺.
We say 𝐺 is an LR(0) grammar if, for each 𝑤,𝑤′, 𝑥 ∈ Σ*,
𝜂, 𝛼, 𝛼′, 𝛽, 𝛽′ ∈ (𝑁 ∪ Σ)*, and 𝐴,𝐴′ ∈ 𝑁 ,

(a) 𝑆 ⇒r* 𝛼𝐴𝑤 ⇒r 𝛼𝛽𝑤 = 𝜂𝑤, and
(b) 𝑆 ⇒r* 𝛼′𝐴′𝑥 ⇒r 𝛼′𝛽′𝑥 = 𝜂𝑤′

implies (𝐴 → 𝛽, |𝛼𝛽|) = (𝐴′ → 𝛽′, |𝛼′𝛽′|).

Thus, if 𝐺 is an LR(0) grammar, then the rightmost
derivation of the word 𝑤 by 𝐺 and the left-right analysis
are unique (deterministic). This paper considers 𝐿𝑅(0)
grammars to a significant extent as analytical grammars.
A language generated by an LR(0) grammar is called LR(0)
language.

It is shown in [7] that every LR(0) language is determin-
istic context-free, and for each deterministic context-free
language 𝐿 ⊆ Σ* and symbol $ ̸∈ Σ, the language
𝐿 · {$} is LR(0). The construction of an “LR-style parser”
is also given there. The parser is a deterministic push-
down automaton that reads the input word from left to
right and stores the partially processed prefix of the input
word in its stack until the right-hand side of the rewriting
rule of the grammar is identified, and the right-hand side
is then replaced with the corresponding left-hand side.
The input word is accepted if it is reduced to the starting
nonterminal in its stack.

In literature, several automata models were based on
the analysis by reduction. In [3], we introduced so-called
RP-automata, the restarting automata [2] that differ only
slightly from the original RW-automata introduced in
[10] and from reducing automata presented in [11]. RP-
automata perform only pumping reductions.

2.5. LR(¢,$)-grammars
Definition 7. Let |c, $ /∈ (𝑁 ∪ Σ) and 𝐺 = (𝑁,Σ ∪
{ |c, $}, 𝑆,𝑅) be a CF( |c,$)-grammar that is also LR(0)
grammar. We say that 𝐺 is an LR( |c,$)-grammar.

Classes of languages. In what follows, ℒ(𝐴), where 𝐴
is some (sub)class of grammars or automata, denotes the

class of languages generated/accepted by grammars/au-
tomata from 𝐴. Similarly, for (sub)class 𝐴 of CF( |c,$)-
grammars we denote ℒin(𝐴) = {𝐿 | { |c} · 𝐿 · {$} ∈
ℒ(𝐴)}.

Based on the closure properties of DCFL shown, e.g., in
[7], internal languages of LR( |c,$)-grammars can be used
to represent all deterministic context-free languages.

Proposition 1 ([3]). ℒin(LR( |c, $)) = DCFL.

Note. It is not hard to see that the languages from
ℒ(CF ( |c, $)) are prefix-free and suffix-free languages
at the same time.

The next theorem shows the importance of complete
grammar 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅).

Theorem 2 ([3]). For any LR( |c,$)-grammar 𝐺𝐴, there
exists a complete LR( |c,$)-grammar 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅).

Example 3. Consider the non-regular deterministic con-
text-free language 𝐿 = { |c𝑎𝑛𝑏𝑛$ | 𝑛 ≥ 1} with the in-
ternal language 𝐿in = {𝑎𝑛𝑏𝑛 | 𝑛 ≥ 1} that is gener-
ated by the reduced LR( |c,$)-grammar 𝐺 = ({𝑆, 𝑆1, 𝑎, 𝑏},
{𝑎, 𝑏} ∪ { |c, $}, 𝑅, 𝑆), with the set of rules 𝑅:

𝑆 → |c𝑆1$,
𝑆1 → 𝑎𝑆1𝑏 | 𝑎𝑏.

Consider the sentence 𝛾 = |c𝑎𝑎𝑎𝑏𝑏𝑏$. For example, the
pair (𝑆1 → 𝑎𝑏, 5) is a handle of 𝛾 (cf. Definition 5), as

𝑆 ⇒r* |c𝑎𝑎𝑆1𝑏𝑏$ ⇒r |c𝑎𝑎𝑎𝑏𝑏𝑏$

and the division of 𝛾 into 𝛼, 𝛽,𝑤 is unique:

𝛾 = |c𝑎𝑎⏟ ⏞ 
𝛼

𝑎𝑏⏟ ⏞ 
𝛽

𝑏𝑏$⏟ ⏞ 
𝑤

.

We can see that 𝐺 is a linear LR( |c, $)-grammar, as
(a) 𝑆 ⇒r* 𝛼𝐴𝑤 ⇒r 𝛼𝛽𝑤 = 𝜂𝑤, and
(b) 𝑆 ⇒r* 𝛼′𝐴′𝑥 ⇒r 𝛼′𝛽′𝑥 = 𝜂𝑤′

obviously implies (𝐴 → 𝛽, |𝛼𝛽|) = (𝐴′ → 𝛽′, |𝛼′𝛽′|),
because 𝐴 = 𝑆1, 𝛼 = 𝑎𝑛, 𝑤 = 𝑎𝑛, 𝛽 = 𝑎𝑆1𝑏, for some
𝑛 ≥ 0.

Fig. 1 illustrates the pumping infix (𝑥, 𝑎, 𝑆1, 𝑎𝑏, 𝑏, 𝑦)
in a derivation tree for 𝛾 = |c𝑥𝑎𝑎𝑏𝑏𝑦$ ∈ 𝐿(𝐺), where
𝑥 = 𝑎𝑖, 𝑦 = 𝑏𝑖, for any 𝑖 ≥ 0.

3. One-Side Pumping Reductions
This section will show that left-side and right-side pump-
ing CF( |c,$)-grammars generate only regular languages.
At first, we will study the rightmost derivations according
to right-side pumping CF( |c,$)-grammars.



𝑆

𝑆1

𝑆1

𝑎𝑎 𝑏 𝑏𝑥|c 𝑦 $

Figure 1: A derivation tree for 𝛾 = |c𝑥𝑎𝑎𝑏𝑏𝑦$ with pumping
infix (𝑥, 𝑎, 𝑆1, 𝑎𝑏, 𝑏, 𝑦).

Lemma 3. Let 𝐺 = (𝑁,Σ∪{ |c, $}, 𝑆,𝑅) be a right-side
pumping CF( |c,$)-grammar. Let Σ1 = Σ∪{ |c, $}, 𝑘 be the
maximal length of the right-hand side of the rules of 𝐺
and 𝑡 = |𝑁 |. Let, for some 𝑛 ≥ 1, 𝛼𝑖 ∈ (𝑁 ∪ Σ1)

* ·𝑁 ,
𝑤𝑖 ∈ Σ*

1 , for all 𝑖 = 1, . . . , 𝑛,

𝑆 ⇒r 𝛼1𝑤1 ⇒r · · · ⇒r 𝛼𝑛−1𝑤𝑛−1 ⇒r 𝑤𝑛 (6)

be a rightmost derivation of a terminal word 𝑤𝑛 ∈ Σ*
1

according to 𝐺. Then, each 𝛼𝑖 is of length at most 𝑘𝑡, for
all 𝑖 = 1, . . . , 𝑛− 1.

Proof: For a contradiction, assume |𝛼𝑖| > 𝑘𝑡, that is
𝛼𝑖 = 𝑋1 · · ·𝑋𝑚, where 𝑚 > 𝑘𝑡, 𝑋1, . . . , 𝑋𝑛−1 ∈
(𝑁 ∪ Σ1), and 𝑋𝑚 ∈ 𝑁 , for some 𝑖 between 1 and
𝑛−1. Consider the partial derivation tree 𝑇𝑖 correspond-
ing to the sentential form 𝑋1 · · ·𝑋𝑚𝑤𝑖. Let 𝑝(𝑋𝑗) de-
note the parent node of the node labeled with 𝑋𝑗 , for
𝑗 = 1, . . . ,𝑚. As (6) is a rightmost derivation, it is pos-
sible that several nodes labeled with 𝑋1, . . . , 𝑋𝑚 have
a common parent, but at most 𝑘 nodes have the same
parent, as 𝑘 is the maximal length of a rule in 𝑅.

We will show that 𝑝(𝑋𝑗) is on the path from the root
of 𝑇𝑖 to 𝑝(𝑋𝑚), for all 𝑗 = 1, . . . ,𝑚.

Let us suppose that 𝑝(𝑋𝑗) is not on the path 𝑃 from
the root of 𝑇𝑖 to 𝑝(𝑋𝑚). Then, let 𝑢, 𝑢 ̸= 𝑝(𝑋𝑗), denote
the closest ancestor of 𝑝(𝑋𝑗) and 𝑝(𝑋𝑚) in 𝑇𝑖. The
nodes labeled with 𝑋𝑗 and 𝑋𝑚 are descendants of two
different child nodes of 𝑢.

Obviously, the nodes 𝑝(𝑋𝑗) and 𝑝(𝑋𝑚) are labeled
by nonterminals. As (6) is a rightmost derivation, the
node 𝑝(𝑋𝑗) cannot be rewritten before rewriting the
nonterminal 𝑋𝑚 into a terminal string. Hence, 𝑝(𝑋𝑗) =
𝑢 and 𝑝(𝑋𝑗) is on the path 𝑃 .

Thus, the set 𝑄 = {𝑝(𝑋1), . . . , 𝑝(𝑋𝑚)} contains
more than 𝑚

𝑘
> 𝑘𝑡

𝑘
= 𝑡 nodes, and all of them are on the

path 𝑃 . There exist two nodes 𝑝(𝑋𝑗1) and 𝑝(𝑋𝑗2) in 𝑄,
𝑝(𝑋𝑗1) ̸= 𝑝(𝑋𝑗2), labeled with the same nonterminal 𝐴
such that between the nodes 𝑝(𝑋𝑗1) and 𝑝(𝑋𝑗2), there
is no other node labeled with 𝐴. Then, there is a core
pumping infix 𝜋 = (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) by 𝐺 such that
𝑢1 is nonempty, as 𝐺 is reduced, 𝐺 does not contain any

rule of the form 𝐵 → 𝜆, and 𝑢1 contains at least a termi-
nal string derived from 𝑋𝑗1 . Hence, 𝜋 is not right-side
pumping infix – a contradiction with the assumption that
𝐺 is right-side pumping CF( |c,$)-grammar. □

Lemma 4. Each language generated by a right-side pum-
ping CF( |c,$)-grammar is regular.

Proof: Let 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a right-side
pumping CF( |c,$)-grammar. Let Σ1 = Σ ∪ { |c, $}, 𝑘 be
the maximal length of the right-hand side of the rules of
𝐺 and 𝑡 = |𝑁 |.

We will construct a regular (left-linear) grammar 𝐺′ =
(𝑁 ′,Σ1, 𝑆

′, 𝑅′) generating the same language as 𝐺. The
set of nonterminals 𝑁 ′ will consist of sequences of non-
terminals and terminals of 𝐺 enclosed in square brackets.
We will construct 𝐺′ inductively.

Let 𝑆′ = [𝑆], 𝑁 ′ =
⋃︀∞

𝑖=0 𝑁
′
𝑖 and 𝑅′ =

⋃︀∞
𝑖=0 𝑅

′
𝑖 (we

use infinite unions, but we will see below that both 𝑁 ′

and 𝑅′ will be finite)

𝑁 ′
0 = {[𝑆]} ∪ {[𝛼] | 𝑆 → 𝛼 ∈ 𝑅},

𝑅′
0 = {[𝑋] → [𝛼] | 𝑋 → 𝛼 ∈ 𝑅}.

For 𝑖 ≥ 0, let

𝑁 ′
𝑖+1 = 𝑁 ′

𝑖 ∪{[𝛼𝛽] | ∃𝑋 ∈ 𝑁,𝛼, 𝛽 ∈ (𝑁 ∪ Σ1)
* :

[𝛼𝑋] ∈ 𝑁 ′
𝑖 and 𝑋 → 𝛽 ∈ 𝑅}

∪{[𝛼] | ∃𝑤 ∈ Σ*
1 : [𝛼𝑤] ∈ 𝑁 ′

𝑖},

𝑅′
𝑖+1 = 𝑅′

𝑖 ∪{[𝛼𝑋] → [𝛼𝛽] | 𝑋 ∈ 𝑁, [𝛼𝑋] ∈ 𝑁 ′
𝑖 ,

𝛼, 𝛽 ∈ (𝑁 ∪ Σ1)
* :

𝑋 → 𝛽 ∈ 𝑅}
∪{[𝛼𝑤] → [𝛼]𝑤 | 𝛼 ∈ (𝑁 ∪ Σ1)

* ·𝑁,
𝑤 ∈ Σ+

1 : [𝛼𝑤] ∈ 𝑁 ′
𝑖}

∪{[𝑤] → 𝑤 | 𝑤 ∈ Σ*
1, [𝑤] ∈ 𝑁 ′

𝑖}.

If [𝛾] is a nonterminal from 𝑁 ′, then 𝛾 is a substring of
a sentential form obtained during a rightmost derivation
𝑆 ⇒r* 𝜂𝛾𝜉 according to 𝐺, for some 𝜂 ∈ (𝑁 ∪ Σ1)

*,
𝜉 ∈ Σ*

1 .
Either, [𝛾] = [𝛼𝛽] was obtained by rewriting [𝛼𝑋],

for some 𝑋 ∈ 𝑁 , [𝛼𝑋] ∈ 𝑁 ′, and 𝑋 → 𝛽 ∈ 𝑅. Then,
according to Lemma 3, 𝛼𝑋 cannot be longer than 𝑘𝑡.
Thus 𝛾 is of length at most 𝑘𝑡+ 𝑘 − 1.

Or, [𝛾] = [𝛼]was obtained by rewriting [𝛼𝑤], for some
𝛼 ∈ (𝑁 ∪Σ1)

* ·𝑁 , 𝑤 ∈ Σ+
1 . Then, according to Lemma

3, 𝛼 cannot be longer than 𝑘𝑡.
In both cases, if [𝛾] is a nonterminal from 𝑁 ′, for some

𝛾 ∈ (𝑁 ∪ Σ1)
*, then the length of 𝛾 is limited by a

constant. Hence, 𝑁 ′ and 𝑅′ are finite sets.
It is easy to show that, for all 𝛼 ∈ (𝑁 ∪Σ1)

*, 𝑋 ∈ 𝑁 ,
𝑦, 𝑤 ∈ Σ*

1 , it holds:

𝑆 ⇒r* 𝛼𝑋𝑦 ⇒r* 𝑤 iff [𝑆] ⇒* [𝛼𝑋]𝑦 ⇒* 𝑤.



Thus 𝐿(𝐺) = 𝐿(𝐺′), the grammar 𝐺′ is left linear and
generates a regular language, and 𝐿(𝐺) is a regular lan-
guage. □

Let us illustrate the construction from the above proof
by an example.

Example 4. The grammar 𝐺 = ({𝑆,𝐴,𝐵,𝐶}, {𝑎, 𝑏, 𝑐,
|c, $}, 𝑆,𝑅) with the set of rules 𝑅:

𝑆 → |c𝐴$, 𝐴 → 𝐶𝑎𝐵 | 𝑐,
𝐵 → 𝐵𝑏 | 𝑏, 𝐶 → 𝐴𝑐𝐵.

is a right-side pumping CF( |c,$)-grammar. We can construct
an equivalent left linear grammar 𝐺′ with the following
set of rules:

[𝑆] → [ |c𝐴$], [ |c𝐴$] → [ |c𝐴]$,
[ |c𝐴] → [ |c𝐶𝑎𝐵] | [ |c𝑐], [ |c𝑐] → |c𝑐,
[ |c𝐶𝑎𝐵] → [ |c𝐶𝑎𝐵𝑏] | [ |c𝐶𝑎𝑏], [ |c𝐶𝑎𝐵𝑏] → [ |c𝐶𝑎𝐵]𝑏,
[ |c𝐶𝑎𝑏] → [ |c𝐶]𝑎𝑏, [ |c𝐶] → [ |c𝐴𝑐𝐵],
[ |c𝐴𝑐𝐵] → [ |c𝐴𝑐𝐵𝑏] | [ |c𝐴𝑐𝑏], [ |c𝐴𝑐𝐵𝑏] → [ |c𝐴𝑐𝐵]𝑏,
[ |c𝐴𝑐𝑏] → [ |c𝐴]𝑐𝑏.

Corollary 2. Each language generated by a left-side
pumping CF( |c,$)-grammar is regular.

Proof: Let 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a left-side
pumping CF( |c,$)-grammar. Then the CF( |c,$)-grammar
𝐺(R) = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅(R)) obtained by reversing
the right-hand sides of all rules of 𝐺, except that the
sentinels |c and $ must not change their positions in the
rules, generates the language𝐿(𝐺(R)) = { |c}·[𝐿in(𝐺)]

R·
{$} and 𝐺(R) is a right-side pumping CF( |c,$)-grammar.
Lemma 4 says the language 𝐿(𝐺(R)) is regular. The
closure of the class of regular languages on quotients,
reversal, and concatenation implies that 𝐿(𝐺) is regular,
too. □

We get the following theorem as a simple consequence
of Lemma 4 and Corollary 2.

Theorem 3. Let 𝐺𝐶 = (𝐺𝐴, 𝐺𝑅) be a complete one-
side pumping CF( |c,$)-grammar. Then, both 𝐿(𝐺𝐴) and
𝐿in(𝐺𝐴) are regular languages.

4. Two-Side Pumping
Theorem 3 has a straightforward consequence: non-regu-
lar languages cannot be generated with one-side pumping
grammars.

Corollary 3. Let 𝐺 = (𝑉,Σ ∪ { |c, $}, 𝑅, 𝑆) be a
CF( |c,$)-grammar such that 𝐿in(𝐺) is a non-regular lan-
guage. Then 𝐺 is a two-side pumping grammar.

The opposite is not true – two-side pumping grammars
can generate regular languages.

Example 5. Consider the linear LR( |c,$)-grammar 𝐺1 gi-
ven by the following rules, where 𝑆 is the starting nonter-
minal:

𝑆 → |c𝑆1$ | |c𝑇1 | 𝑇2$,
𝑆1 → 𝑎𝑆1𝑏 | 𝑎𝑏,

𝑇1 → 𝑎𝑇1 | 𝑎𝑆1$,
𝑇2 → 𝑇2𝑏 | |c𝑆1𝑏.

It is easy to see that 𝐺1 enables two-side pumping reduc-
tions. 𝐿(𝐺1) = { |c𝑎𝑛𝑏𝑚$ | 𝑛 > 0,𝑚 > 0} and 𝐿(𝐺1)
obviously is a regular language.

The same language can, of course, be generated by the
following left-side pumping grammar 𝐺𝑟 with starting
nonterminal 𝑆 and the following set of rules:

𝑆 → |c𝑇1,
𝑇2 → 𝑏𝑇2 | 𝑏$.

𝑇1 → 𝑎𝑇1 | 𝑎𝑇2

Totally two-side pumping CF(¢,$)-grammars. A re-
duced CF( |c,$)-grammar 𝐺 is called totally two-side pump-
ing if there is at least one two-side core infix and no
one-side pumping infix by 𝐺.

Example 6. Let 𝐺𝑡 be the following CF( |c,$)-grammar
with starting nonterminal 𝑆, further nonterminals 𝐴,𝐵,
terminal alphabet Σ1 = Σ ∪ { |c, $}, for Σ = {𝑎, 𝑏}, and
rules:

𝑆 → |c𝐴$,
𝐴 → 𝑎𝐵 | 𝑏𝐵 | 𝑎 | 𝑏,
𝐵 → 𝐴𝑎 | 𝐴𝑏.

All core pumping infixes by 𝐺𝑡 are two-side and of the form
(𝑥, 𝑢1, 𝑋, 𝑣, 𝑢2, 𝑦), where 𝑢1, 𝑢2 ∈ Σ, 𝑥, 𝑣, 𝑦 ∈ Σ* such
that either 𝑋 = 𝐴, |𝑣| is odd and |𝑥| = |𝑦|, or 𝑋 = 𝐵,
|𝑣| is even and |𝑥| = |𝑦|+ 1.

Thus, grammar𝐺𝑡 is a totally two-side pumping CF( |c,$)-
grammar that generates the regular language 𝐿(𝐺𝑡) =
{ |c𝑤$ | 𝑤 ∈ {𝑎, 𝑏}2𝑖+1 for some 𝑖 ≥ 0}. But 𝐺𝑡 is not
an LR( |c,$)-grammar.

For a pumping infix (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦), we say that
𝑢1𝑣𝑢2 is its middle part. Realize that although the length
of core pumping infix is potentially unbounded, it is
possible to identify core infixes with the length of their
middle part limited by a constant. Such pumping infixes
will be called bottom pumping infixes.

Definition 8. Let 𝐺 be a CF( |c,$)-grammar and 𝜋 =
(𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) be a pumping infix by 𝐺. We say that
𝜋 is a bottom pumping infix if there is no other pumping
infix reducing inside its middle part 𝑢1𝑣𝑢2. That is, if there
are terminal words 𝑥1, 𝑢

′
1, 𝑣

′, 𝑢′
2, 𝑦1 and a pumping infix

𝜋′ = (𝑥𝑥1, 𝑢
′
1, 𝐵, 𝑣′, 𝑢′

2, 𝑦1𝑦) by 𝐺 such that

𝑥𝑢1𝑣𝑢2𝑦 = 𝑥𝑥1𝑢
′
1𝑣

′𝑢′
2𝑦1𝑦

then 𝜋′ = 𝜋.
Correspondingly, we say that a pumping reduction is a

bottom pumping reduction if the corresponding pumping
infix is a bottom pumping infix. We write

𝑥1𝑢1𝑣𝑢2𝑦1 ⇝𝑃 (𝐺𝐴,bottom) 𝑥1𝑣𝑦1.



Let 𝜋 = (𝑥, 𝑢1, 𝐴, 𝑣, 𝑢2, 𝑦) be a pumping infix, and
𝑇 be a derivation tree by the grammar 𝐺 correspond-
ing to 𝜋. The tree 𝑇 has a subtree 𝑇𝑢1𝑣𝑢2 that derives
the middle part 𝑢1𝑣𝑢2. The pumping infix 𝜋 is a bot-
tom pumping infix if and only if the subtree 𝑇𝑢1𝑣𝑢2 has
exactly one path from its root to its leaf on which two
different nodes are labeled with the same nonterminal.
Hence, the height of 𝑇𝑢1𝑣𝑢2 is at most 𝑡+ 1, where 𝑡 is
the number of nonterminals of 𝐺. Therefore, the length
of the middle part 𝑢1𝑣𝑢2 is at most 𝑘𝑡+1 = 𝑡 ·𝐾𝐺, where
𝑘 is the maximal length of the right-hand side of the rules
of 𝐺 and 𝐾𝐺 is the grammar number of 𝐺.

Evidently, each bottom pumping infix by 𝐺 is a core
pumping infix by 𝐺, and we could prove a stronger ver-
sion of Corollary 1.

Corollary 4. Let 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑆,𝑅) be a
CF( |c,$)-grammar. If 𝐺 generates 𝑤, then there exists a se-
quence of words 𝑤1, . . . , 𝑤𝑛 from 𝐿(𝐺), for some integer
𝑛 ≥ 1, such that 𝑤 = 𝑤1, there are bottom pumping re-
ductions 𝑤𝑖 ⇝𝑃 (𝐺,bottom) 𝑤𝑖+1, for all 𝑖 = 1, . . . , 𝑛−1,
and there is no 𝑤𝑛+1 ∈ Σ* such that 𝑤𝑛 ⇝𝑃 (𝐺) 𝑤𝑛+1.

Now we can show that in contrast to general two-side
pumping CF( |c,$)-grammars, totally two-side pumping
LR( |c,$)-grammars cannot generate regular languages.

Theorem 4. Let 𝐺 be a reduced totally two-side pumping
LR( |c,$)-grammar. Then 𝐿(𝐺) is not a regular language.

Proof: Let 𝐺 = (𝑁,Σ ∪ { |c, $}, 𝑅, 𝑆) be a reduced to-
tally two-side pumping LR( |c,$)-grammar. There is at
least one two-side core pumping infix by 𝐺. For a con-
tradiction, suppose that 𝐿(𝐺) is a regular language. We
will show that there exists at least one one-side pumping
infix by 𝐺, which contradicts the assumption that 𝐺 is
totally two-side pumping.

If 𝐿(𝐺) is a regular language, there is a deterministic
finite automaton 𝑀 such that 𝐿(𝑀) = 𝐿(𝐺). Let 𝑞
denote the number of states of 𝑀 .

Let 𝜋 = (𝑥, 𝑎𝑢1, 𝐴, 𝑣, 𝑏𝑢2, 𝑦), where 𝑎, 𝑏 ∈ Σ, 𝑥, 𝑢1,
𝑣, 𝑢2, 𝑦 ∈ Σ*, be a two-side bottom core pumping infix
by 𝐺 such that |𝑥|, |𝑦| ≤ 𝐾3

𝐺. Such bottom pumping
infix exists as 𝐺 is reduced, 𝐺 has at least one two-side
pumping infix 𝜋′, and, according to Lemma 2, there exists
a two-side pumping infix 𝜋′′ by 𝐺 for a word of length at
most 𝐾3

𝐺. We can suppose that 𝜋′′ is a bottom pumping
infix. If not, we can perform a finite sequence of pumping
reductions that shorten all paths with repeated nontermi-
nal except the one corresponding to a two-side pumping
infix until we get a bottom core pumping infix 𝜋.

As 𝜋 is a pumping infix by 𝐺, all words

𝑤𝑖 = |c𝑥(𝑎𝑢1)
𝑖𝑣(𝑏𝑢2)

𝑖𝑦$, for 𝑖 ≥ 0,

are in 𝐿(𝐺). Since 𝐺 is an LR(0) grammar, exactly one
derivation tree exists for each word from 𝐿(𝐺).

Since 𝑀 has 𝑞 states, within its accepting computation
on 𝑤𝑖, where 𝑖 > 𝑞, automaton 𝑀 visits at least two
occurrences of 𝑎 (in front of 𝑢1) in the same state. Thus,
there is a positive integer 𝑠 such that 0 < 𝑠 < 𝑞 +
1, and for each non-negative integer 𝑖, the word 𝑤′

𝑖 =
|c𝑥(𝑎𝑢1)

𝑠·𝑖(𝑎𝑢1)
𝑞+1𝑣(𝑏𝑢2)

𝑞+1𝑦$ is in 𝐿(𝐺).
Let 𝑖0 be an integer greater than 𝑡𝐾𝐺(𝐾

3
𝐺 + 2). Let

us consider the derivation tree 𝑇𝛼 by 𝐺 for the word
𝛼 = 𝑤𝑠𝑖0+𝑞+1 and the derivation tree 𝑇𝛽 by 𝐺 for the
word 𝛽 = 𝑤′

𝑖0 . The words 𝛼 and 𝛽 have the common
prefix 𝛾 = |c𝑥(𝑎𝑢1)

𝑠𝑖0+𝑞+1𝑣(𝑏𝑢2)
𝑞+1.

According to Corollary 4, there is a sequence of the
bottom core pumping reductions𝛼𝑖 ⇝𝑃 (𝐺,bottom) 𝛼𝑖+1,
for 𝑖 = 1, . . . , 𝑛−1 and 𝛼1 = 𝛼, and there is no 𝛼𝑛+1 ∈
Σ* such that 𝛼𝑛 ⇝𝑃 (𝐺) 𝛼𝑛+1. Suppose it is the leftmost
sequence of core bottom pumping reductions.

Similarly, for the word 𝛽, there is a sequence of the left-
most bottom core pumping reductions 𝛽𝑗 ⇝𝑃 (𝐺,bottom)

𝛽𝑗+1, for 𝑗 = 1, . . . ,𝑚− 1 and 𝛽1 = 𝛽, and there is no
𝛽𝑚+1 ∈ Σ* such that 𝛽𝑚 ⇝𝑃 (𝐺) 𝛽𝑚+1.

The initial part of the sequence of the leftmost core bot-
tom pumping reductions starting from 𝛼1 until the first
pumping reduction that uses a middle part that contains
a symbol outside the prefix 𝛾 makes the same changes
as the initial part of the sequence of the leftmost core
bottom pumping reductions starting from 𝛽1 until the
first pumping reduction uses a middle part that contains
a symbol outside the prefix 𝛾.

In the case of 𝛼, after the common prefix of the se-
quence of bottom core pumping reductions, the subse-
quent reductions will continue deleting pairs of subwords
𝑎𝑢1 and 𝑏𝑢2. In the case of 𝛽, the following pumping
reductions must delete most of |c𝑥(𝑎𝑢1)

𝑠𝑖0 and 𝑦$.
Let us inspect the derivation tree 𝑇𝛼. Let 𝒯𝛼 = {𝑇𝛼,1,

. . . , 𝑇𝛼,𝑛𝛼} be the set of all maximal subtrees of 𝑇𝛼 such
that all their leaves are in |c(𝑎𝑢1)

𝑠𝑖0 . The set of subtrees
𝒯𝛼 is nonempty, and one of the trees in 𝒯𝛼 contains |c.

Let 𝒯𝛽 = {𝑇𝛽,1, . . . , 𝑇𝛽,𝑛𝛽} be the set of all maximal
subtrees of 𝑇𝛽 such that all their leaves are in |c(𝑎𝑢1)

𝑠𝑖0 .
The set of subtrees 𝒯𝛽 is nonempty, and one of the trees
in 𝒯𝛽 contains |c.

Additionally, the sets 𝒯𝛼 and 𝒯𝛽 are equal. Why? Be-
cause they are built during LR(0) analysis of the prefix 𝛾,
all reductions are made by the corresponding determin-
istic LR(0) analyzer when it scans the prefix 𝛾.

For 𝑇𝛼, the series of core bottom pumping reductions
can continue with pumping reductions corresponding
to pumping infixes of the form 𝜋. In 𝑇𝛽 , we can find
a series of bottom core reductions that delete (most of)
(𝑎𝑢1)

𝑠𝑖0 . However, all these reductions in 𝑇𝛽 must have
the middle part that includes at least one symbol from
the suffix 𝜔 = 𝑦$. If any of these reductions do not
include any symbol from 𝜔 in its middle part, they must
have already been done in the sequence of reductions
performed inside the prefix 𝛾.



Each bottom pumping reduction can shorten the cur-
rent word by at most 𝑡 ·𝐾𝐺 symbols (the upper limit of
the length of the middle part of a bottom pumping infix).
Hence, the sequence of reduction is of length at least

𝑠𝑖0 · |𝑎𝑢1|+ |𝑦|
𝑡 ·𝐾𝐺

>
𝑡𝐾𝐺(𝐾

3
𝐺 + 2)

𝑡𝐾𝐺
= 𝐾3

𝐺 + 2.

As the suffix 𝜔 of 𝛽 is of length at most 𝐾3
𝐺 + 1, at

least one of these bottom reductions does not delete any
symbol from 𝜔, while its middle part must include at least
one symbol from 𝜔. Such bottom reduction is a left-side
pumping reduction.

We have proved that if a two-side LR( |c,$)-grammar
accepts a regular language, then it has at least one core
left-side pumping reduction. □

A CF( |c,$)-grammar 𝐺 is totally two-side pumping if
it only has two-side pumping infixes. A slight modifica-
tion of the procedure from the proof of Theorem 1 gives
an algorithm that decides whether 𝐺 is totally two-side
pumping grammar in 𝑂(|𝐺|) time.

5. Refinement Results
We use the following notations for our types of context-
free grammars. Prefix lin- denotes the linear CF-gram-
mars, similarly 1s- the one-side pumping CF-grammars,
lfs- the left-side pumping CF-grammars, rs- the right-side
pumping CF-grammars, and ttsp- the totally two-side
pumping CF( |c, $)-grammars.

Moreover, we denote the set of accepting grammars of
complete CF( |c,$)-grammars as CCFA.

Corollary 5. It holds the following:

ℒin(1s-LR( |c, $)) = ℒin(lfs-LR( |c, $)) =
ℒin(rs-LR( |c, $)) = REG.

ℒin(1s-CCFA) = ℒin(lfs-CCFA) =
ℒin(rs-CCFA) = REG.

Proof: The corollary is a consequence of Theorem 3 and
of the fact that for each regular language 𝐿, there exists a
left-linear LR(0) grammar and a right-linear LR(0) gram-
mar that both generate 𝐿. Recall that regular languages
are closed on both left and right quotients. □

The next result follows from the previous proof.

Corollary 6. It holds the following:

ℒin(lin-1s-LR( |c, $)) = ℒin(lin-lfs-LR( |c, $)) =
ℒin(lin-rs-LR( |c, $)) = REG.

ℒin(lin-1s-CCFA) = ℒin(lin-lfs-CCFA) =
ℒin(lin-rs-CCFA) = REG.

Corollary 7. ℒin(lin-ttsp-LR( |c, $)) ⊂
ℒin(lin-LR( |c, $)) ⊂ ℒin(LR( |c, $)) = DCFL.

Proof: We can see that each language from ℒin(lin-
𝐿𝑅( |c, $)) is a linear context-free language. On the other
hand, the Dyck language is from DCFL, and it is not a
linear context-free language [7]. The class ℒin(lin-ttsp-
𝐿𝑅( |c, $)) does not contain any regular language. On
the other hand, the class ℒin(lin-LR( |c, $)) contains all
regular languages. □

Corollary 8.

ℒin(ttsp-LR( |c, $)) ⊂ ℒin(LR( |c, $)) = DCFL.

Proof: Strictness of the inclusion follows from the fact
that the class ℒin(ttsp-LR( |c, $)) does not contain any
regular language, and the class ℒin(LR( |c, $)) contains
all regular languages. □

The class of context-free languages is not closed on
complement. Hence, complete CF( |c,$)-grammars gener-
ate only a subset of the class of context-free languages
as their inner languages. Nevertheless, they can also
generate languages that are not deterministic context-
free languages. We give an example of complete CF( |c,$)-
grammar 𝐺𝑎𝑏𝐶 = (𝐺𝑎𝑏𝐴, 𝐺𝑎𝑏𝑅) such that 𝐿in(𝐺𝑎𝑏𝐴)
and its complement are non-regular (nondeterministic)
context-free languages.

Example 7. We start with the grammar 𝐺𝑎𝑏𝐴 generat-
ing the language { |c𝑎𝑛𝑏𝑚$ | 0 < 𝑛 ≤ 𝑚 ≤ 2𝑛}. It is well
known that this language is not a deterministic context-free
language.

𝑆𝐴 → |c𝑆1$,
𝑆1 → 𝑎𝑆1𝑏 | 𝑎𝑆1𝑏𝑏 | 𝑎𝑏 | 𝑎𝑏𝑏.

The complement of 𝐿𝑖𝑛(𝐺𝑎𝑏𝐴) is the inner language of a
grammar 𝐺𝑎𝑏𝑅 that generates the language

{ |c𝑎𝑛𝑏𝑚$ | 0 ≤ 𝑚 < 𝑛} ∪
{ |c𝑎𝑛𝑏𝑚$ | 𝑚 > 2𝑛 ≥ 0} ∪
( |c{𝑎, 𝑏}*𝑏𝑎{𝑎, 𝑏}*$) ∪ |c$.

The grammar 𝐺𝑎𝑏𝑅 with the starting symbol 𝑆𝑅 has the
following rules:
𝑆𝑅 → |c𝑆2$, 𝑆𝑅 → |c𝑆4$,
𝑆2 → 𝑎𝑆2 | 𝑆3, 𝑆4 → 𝑎𝑆4𝑏𝑏 | 𝑆4𝑏 | 𝑏,
𝑆3 → 𝑎𝑆3𝑏 | 𝑎,

𝑆𝑅 → |c𝑆5$ | |c$,
𝑆5 → 𝑏𝑎,
𝑆5 → 𝑎𝑆5 | 𝑏𝑆5 | 𝑆5𝑎 | 𝑆5𝑏.

Corollary 9.

𝐷𝐶𝐹𝐿 ⊂ ℒ𝑖𝑛(CCFA) ⊂ 𝐶𝐹𝐿.



Proof: The first proper inclusion follows from the previ-
ous example, and the second one follows from the fact
that the class of context-free languages is not closed un-
der complement. □

6. Conclusion and Future Work
In this paper, we introduced and studied complete CF( |c,$)-
grammars. We have shown that left-side pumping com-
plete CF( |c,$)-grammars and right-side pumping complete
CF( |c,$)-grammars characterize regular languages. On
the other hand, general pumping LR( |c,$)-grammars char-
acterize DCFL, and totally two-side pumping LR( |c,$)-
grammars generate non-regular deterministic context-
free languages only. These results imply similar results
for one-side pumping and two-side pumping RP(LR( |c,$))-
automata from [3].

Next, we will focus on studying the regular and non-
regular characteristics of two-side core pumping patterns
in RP(LR( |c,$))-automata and CF( |c,$)-grammars. We aim
to utilize these characteristics to develop tools for ef-
fective localization of syntactic errors in deterministic
context-free languages (DCFL). We will demonstrate that
restarting automata can serve as error-sensible analyzers
for complete CF( |c,$)-grammars.

Finally, we aim to present a construction that trans-
forms a monotone restarting automaton with pumping
properties into a complete LR( |c,$)-grammar, while main-
taining the same analysis by reduction and recognizing
the same languages. A preliminary step towards this goal
was already taken in [11].
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