
Notes on Relationship of P Colonies to Osmotic Computing
and Computer Viruses
Šárka Vavrečková1

1Silesian University in Opava, Bezručovo nám. 13, Opava, Czech Republic

Abstract
P colonies with transferable programs are one of the newer variants of P colonies, which allow the transfer of programs
between agents and the environment when certain conditions are met. Code transfer is also known from other concepts: in the
concept of Osmotic computing we encounter the transfer of MELs between IoT devices and the cloud, and the long-standing
concept of computer viruses uses infecting common applications with appended code. In this paper, the reader will find an
outline comparison of these three concepts concerning the possibilities of transferring code fragments or programs.

Keywords
P colony, transferable program, Osmotic computing, MEL, virus, shellcode

1. Introduction
P colonies are a simple computational model based on
membrane systems. P colonies were introduced in [1] in
2004 and since then many variations (types of programs,
form of environment, etc.) have been developed. Focus-
ing on the basic variant, the environment containing ob-
jects of a given type is shared by agents that also contain
objects in their internal environment and are equipped
with programs consisting of rules. The programs allow
the agents to influence not only themselves but also the
environment. In paper [2], the concept of P colonies with
transferable programs is introduced, where programs can
be transferred between an agent and the environment
and vice versa.

The principle of traveling programs, or code in general,
can be found elsewhere: e.g. in the concept of Osmotic
computing or (if we focus on the nowadays very frequent
topic of cybersecurity) also in the activity of viruses,
shellcode, etc.

Villari et al. in [3] introduce the concept of “Osmotic
computing” as a paradigm intended mainly for IoT (In-
ternet of Things) network, the main purpose of which is
to increase the accessibility of resources and services in
a computer network, including cloud services. MicroEle-
ments (MELs) are simple entities consisting of programs
(MicroServices) and data (MicroData). IoT applications
can be decomposited into MELs. The interface between
the IoT application and the edge environment (Edge Data-
Centers), and also between the edge environment and the
cloud (Cloud DataCenters), is called membrane: MELs can
migrate through membranes to where they are needed.

ITAT’23: Information technologies – Applications and Theory, Septem-
ber 22–26, 2023, Tatranské Matliare, Slovakia
$ sarka.vavreckova@fpf.slu.cz (̌. Vavrečková)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

The paradigm is motivated by procedures from biol-
ogy or chemistry, where solvent molecules pass through
a semi-permeable membrane into other regions in the
environment with higher solute concentration (osmosis).

The issue is further developed in [4] considering the
way in which MELs, in particular, can migrate between
the cloud and edge resources and focusing more on the
Internet of Things. Datta and Bonnet in [5] show the use
of MELs in securing connected “smart” cars and other
similar devices.

A virus is malicious program code that spreads by
infecting available programs with a copy of itself. There
is quite a lot of literature and websites about computer
viruses, e.g. [6].

According to [7], shellcode can be described as a code
injection attack. An attacker inserts a code into an exist-
ing chosen file to access the command interface (shell) of
the compromised system. Shellcode is one of the ways
a virus can work.

In Section 2 we define P colonies, and add a descrip-
tion of the possibility of using transferable programs in
P colonies. This concept is explained with examples. In
the same section, we follow the definition of the princi-
ple of Osmotic computing, where we mainly focus on
explaining the possibility of transferring MELs between
the involved devices. The last topic of Section 2 is the
issue of computer viruses and shellcode. Here we also
focus on the process of transmitting or adding new code
to infected programs.

In the next two sections, we will try to capture the cor-
relations between P colonies with transferable programs
and two other concepts in which computational elements
(e.g., program code) are being transmitted: the concept
of osmotic computing and the principle of operation of
computer viruses and shellcode.

mailto:sarka.vavreckova@fpf.slu.cz
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Preliminaries
We assume the reader to be familiar with the basics of
the formal language theory and membrane computing
[8, 9]. We denote the length of a word 𝑤 by |𝑤|. The
empty word is represented by the symbol 𝜀, so |𝜀| = 0.

2.1. P Colonies
Membrane computing is a framework of parallel dis-
tributed processing introduced by Gheorghe Pǎun in
1998. Information about this paradigm is available in
[10], or the bibliography at http://ppage.psystems.eu/
[2023-07-02]. Membrane systems are based on the hier-
archical structure of membranes in cells and can be used
to model distributed computing. Mathematical models
of membrane systems have been called P Systems.

P colonies develop the concept of P systems by enrich-
ing the system with agents that evolve activities accord-
ing to specific programs.

Definition 1 ([2]). A P colony of capacity 𝑘, 𝑘 ≥ 1, is
a construct

Π = (𝐴, 𝑒, 𝑓, 𝑣𝐸 , 𝐵1, . . . , 𝐵𝑛) where

• 𝐴 is an alphabet, its elements are called objects,
• 𝑒 ∈ 𝐴 is the environmental object of the colony,
• 𝑓 ∈ 𝐴 is the final object of the colony,
• 𝑣𝐸 is a finite multiset over𝐴−{𝑒} called the initial

state of the environment,
• 𝐵𝑖, 1 ≤ 𝑖 ≤ 𝑛, are agents where each agent
𝐵𝑖 = (𝑜𝑖, 𝑃𝑖) is defined as follows:

– 𝑜𝑖 is the initial state of the agent, a multiset
over 𝐴 consisting of 𝑘 objects,

– 𝑃𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑘𝑖} is a finite set of pro-
grams where each program consists of 𝑘
rules, the rules can be in one of the following
forms:

∗ 𝑎 → 𝑏, 𝑎, 𝑏 ∈ 𝐴 called an evolution
rule,

∗ 𝑐 ↔ 𝑑, 𝑐, 𝑑 ∈ 𝐴 called a communi-
cation rule,

∗ 𝑟1/𝑟2 called a checking rule, 𝑟1, 𝑟2
are both evolution or communication
rules.

The evolution rules are of the form 𝑎 → 𝑏. This type
of rule allows the agent to influence itself, i.e. its internal
environment: an object 𝑎 inside the agent is rewritten to
the specified object 𝑏. The rule can only be applied if at
least one occurrence of the object 𝑎 exists in the internal
environment of the agent.

The communication rules (𝑐 ↔ 𝑑) are intended for
communication between the given agent and the envi-
ronment. An object 𝑐 inside the agent is swapped with

the given object 𝑑 in the environment. Also, this type of
rule can be applied only if the specified objects exist in
the given environments.

The checking rules (𝑟1/𝑟2) are composed of two rules
𝑟1 and 𝑟2 of any of the previous two types. Only one of
these rules will be applied, with the first listed having
a higher priority. Only if the first rule cannot be executed,
the second rule in order may be executed.

The initial configuration of a P Colony Π is an (𝑛+1)-
tuple of multisets 𝑜𝑖 for 1 ≤ 𝑖 ≤ 𝑛 for the agents 𝐵𝑖, and
𝑣𝐸 for the environment. Generally, the configuration of
a P Colony Π with capacity 𝑘 is

(𝑤1, . . . , 𝑤𝑛, 𝑤𝐸)

where 𝑤𝑖 ∈ 𝐴*, |𝑤𝑖| = 𝑘, 𝑤𝑖 ∈ 𝐴*, 𝑤𝐸 ∈ (𝐴−{𝑒})*.
Several derivation modes have been defined, differing

in the way the rules are selected at each derivation step.
In the maximally parallel derivation mode, all agents
can work parallely in each derivation step (each agent
non-deterministically chooses one of its programs with
applicable rules). In the sequential derivation mode, only
one (non-deterministically chosen) agent can work in
each derivation step. The calculation halts if no agent
finds an applicable program.

2.2. Transferable Programs in P Colonies
In [2], the concept of transferable programs for P colonies
has been introduced. A transferable program is an or-
dered pair (program, condition) located inside an agent
or the environment. The program can be transferred from
the agent to the environment or from the environment
to the agent (from the source to the destination), and the
stated condition determines under what circumstances
this transfer will occur.

The condition can be one of the following two types:

• Object condition: the destination must contain
certain objects for the program to be transfered
(or must not contain when there is the negation
symbol in the condition). This type of condition
is a set of multisets of objects, the size of the given
multisets is equal to capacity of the P Colony.

• Program condition: the destination must contain
a specified program (or must not, if the negation
symbol is present).

Thus, the definition of P colony presented in the pre-
vious subsection changes in the part specifying the pro-
grams of agents, and it is also necessary to add programs
located in the environment to the definition, the rest
remains the same.

Example 1. Let Π be a P colony of capacity 2. Capacity
is reflected in both the number of objects in the agent

http://ppage.psystems.eu/

environment and the number of rules in each agent pro-
gram.

For the illustration, we present here an example pro-
gram of one of agents, using object condition:

(⟨𝑎 → 𝑏; 𝑐 ↔ 𝑑⟩ ; {𝑑𝑑,¬𝑏𝑔})

This means that if this program is in an agent it can
only be transferred to the environment when there are at
least two occurrences of the 𝑑 object in the environment
and there is no 𝑏𝑔 pair. If this program is in an environ-
ment, it can be transfered to an agent when the condition
holds for the internal environment of that agent.

What happens to the program at the original location
if the conditions for transfer are met? According to [2],
a program can be classified as permament, in this case
one copy of the program remains at the original location
and the other is transferred. The program remains at the
original location (including the “permanent” property),
but loses this property at the new location. If a program
is not permanent, it is removed at its original location.

In each computation step, an agent can either apply
one of its applicable programs or transfer one of programs
in or out.[2] This implies that the transfer of programs is
actually an analogy of programs (but the action would
not be transferable).

Example 2. LetΠ be a P colony of capacity 1 with trans-
ferable programs. There are two agents:

𝐵1 =
(︀
𝑒, {⟨𝑒 → 𝑎⟩ , ⟨𝑒 → 𝑏⟩ , ⟨𝑥 ↔ 𝑒⟩ , ⟨𝑦 → 𝑏⟩}

)︀
𝐵2 =

(︀
𝑒, {⟨𝑒 → 𝑎⟩ , ⟨𝑒 → 𝑐⟩ , ⟨𝑥 ↔ 𝑒⟩ , ⟨𝑦 → 𝑎⟩}

)︀
In their initial state, these agents do not contain any

transferable programs (although they could). We have
only the 𝑒 symbols in the environment at the beginning
of the computation. For the purpose of clarity, if we limit
reprezentation of the configuration of the system to just
the states of the agents and the environment (the config-
uration of the environment properly includes programs
not imported in any agent), the initial configuration is
very simple:

(𝑒, 𝑒, 𝑒)

There are the following transferable programs in the
environment at the beginning of computation:{︀
(⟨𝑎 → 𝑥 ; {𝑎}⟩)𝑝 ,
(⟨𝑏 ↔ 𝑒 ; {𝑏}⟩)𝑝 ,
(⟨𝑐 → 𝑦 ; 𝑒 → 𝑐⟩)

}︀
The first two programs contain object condition, and

the third program contains program condition. The 𝑝
symbol in the subscript indicates permanent transferable
programs.

During the first step of the computation, 𝐵1 uses one
of the programs that overwrite the 𝑒 symbol, for exam-
ple the first one: ⟨𝑒 → 𝑎⟩. 𝐵2 also has a choice of two

programs, for example ⟨𝑒 → 𝑐⟩. The configuration has
been modified to

(𝑎, 𝑐, 𝑒)

There are three transferable programs in the environ-
ment. The first one is suitable for 𝐵1, the third for 𝐵2.
So the agents are changed as follows:

𝐵1 =
(︀
𝑎, { ⟨𝑒 → 𝑎⟩ , ⟨𝑒 → 𝑏⟩ , ⟨𝑥 ↔ 𝑒⟩ , ⟨𝑦 → 𝑏⟩ ,

(⟨𝑎 → 𝑥 ; {𝑎}⟩)}
)︀

𝐵2 =
(︀
𝑐, { ⟨𝑒 → 𝑎⟩ , ⟨𝑒 → 𝑐⟩ , ⟨𝑥 ↔ 𝑒⟩ , ⟨𝑦 → 𝑎⟩ ,

(⟨𝑐 → 𝑦 ; 𝑒 → 𝑐⟩)}
)︀

The set of transferable programs in the environment
has changed. The third program was not classified as
permanent, so it is no longer part of the environment
after the transfer.{︀
(⟨𝑎 → 𝑥 ; {𝑎}⟩)𝑝 ,
(⟨𝑏 ↔ 𝑒 ; {𝑏}⟩)𝑝

}︀
In the next step of the calculation, the agents can use

the newly obtained programs, i.e. the state of the agents
and the environment has been changed as follows:

(𝑥, 𝑦, 𝑒)

𝐵1 can use its third program, 𝐵2 can use its fourth
program, the new state of the agents and the environment
is

(𝑒, 𝑎, 𝑥)

In the next steps, the agents will use their own pro-
grams, import other programs from the environment, or
export a transferable program to the environment for use
by another agent.

The above example shows how transferable programs
behave. Programs can also be transferred in the other
direction, i.e. from agents into the environment. This
allows an agent to drop a program it does not need.

Another example of using P colonies with transferable
programs, which would be more complex to describe, is
as follows: Agents are gardeners. Each of them grows
a specific plant whose progressive development (growth
phase) and condition (healthy, dry, insect infested, etc.) is
captured in their status objects. Agents pick up tools (i.e.,
programs) from the environment as needed (according
to these objects), and return unneeded tools.

2.3. Osmotic Computing
In biology and chemistry, osmosis is the process of trans-
ferring molecules between two media of different den-
sities across a semipermeable membrane. Osmotic com-
puting carries this principle into the field of technology:
here it is about the dynamic migration of microservices
between different parts of a computer network.

According to Osmotic computing[4], an application
(very often running on an IoT device) can be decomposed
into parts called MicroElements (MELs) consisting of
MicroServices (code) and MicroData (data). Since IoT
devices usually don’t have much computing power, it
makes sense to move some of the computation (i.e., some
of the MELs) elsewhere, such as to another device on
the same network or to the cloud. To do this, we need
the MEL to be relatively self-contained, independent of
other parts of the application, and also to have an inter-
face to enable these transfers and provide the necessary
communication.

Definition 2 (according to [11]). The infrastructure
topology in Osmotic computing can be represented by di-
rected graph 𝑇 = (𝑉𝑇 , 𝐸𝑇) where 𝑉𝑇 is the set of nodes
(vertices) and 𝐸𝑇 is the set of pars of vertices called links.
Each element in 𝑉𝑇 is characterized by various comput-
ing parameters (CPU, memory etc.), each element of 𝐸𝑇

is characterized by various network parameters (latency,
bandwidth, etc.).

Osmotic toolkit consists of pre-configured container
images intended for various elements in 𝑉𝑇 .

Applications in the Osmotic ecosystem can be repre-
sented by graph 𝑃 = (𝑉𝑃 , 𝐸𝑃) where 𝑉𝑃 is the set of
MELs and 𝐸𝑃 is the set of their interconnections. Each
MEL in 𝑉𝑃 is characterized by the specific resource re-
quirements, constraints and scheduling policies. The
edges in the set 𝐸𝑃 determine between which elements
of 𝑉𝑃 MELs can be transferred.

The implementation is based on the principle of SDN
(Software Defined Network), i.e. computer network vir-
tualization. Software representation of 𝑉𝑃 nodes (MELs)
is possible using containers ([11] used the container sys-
tem Docker for this purpose). Each device (node 𝑉𝑇) can
run various number of containers with MELs (nodes 𝑉𝑃)
according to its capabilities and MELs requirements.

Containers are actually pre-built images of systems
(operating systems running on computers, IoT devices,
network devices, etc.) so not just the application itself,
but everything in software it needs. The purpose is to
simplify the application deployment as much as possible,
including configuration. In the case of Osmotic comput-
ing, there is also an ecosystem for migration and com-
munication of MELs. A MEL can be moved to a different
node 𝑉𝑇 (respectively to a different container 𝑉𝑃) if the
conditions for it to run, such as memory capacity or CPU
performance, are not met in the original location. An-
other reasons for moving may be to optimize network
communication, or to ensure cybersecurity, where we
pull MELs from cloud to our own network.

Each element of the set 𝑉𝑇 is managed by the Node
Manager component, the whole system is managed by
a special element of 𝑉𝑇 called Osmotic Resource Man-

ager. The Node Manager continuously analyzes the de-
vice properties and checks whether the MELs in the
corresponding set 𝑉𝐸 are satisfied. The Osmotic Re-
source Manager then balances the workload across the
network in cooperation with the Node Managers from
each device.[12]

2.4. Virus and Shellcode
The term computer virus is known, at least in a hint,
to the general public. It is computer code embedded
in a host program that usually performs operations not
intended by the author of the program. In addition to
these operations, the virus also infects other files, i.e. it
inserts its own code (or its functional equivalent) into
other reachable files. The malicious code executed by the
virus is called payload. The payload is usually encrypted
or otherwise encoded to make it more difficult to detect.
In addition to the payload, another code is embedded in
the infected file to guide the computation to the payload
and, of course, to decrypt or decode it.[6, 13] Shellcode
can be one of the ways a virus can work, i.e. its payload.

Shellcode is, according to [14], the code that allows
a hacker to perform his intent (get access to a file, get
access to certain data, escalate access privileges, start en-
cryption, etc.). Originally, this code has been used to run
a shell (a command environment through which a hacker
could e.g. remotely control the system), hence the name,
but nowadays the term is more generally understood
(shellcodes are also able to run other types of commands
or gain higher access privileges).

Definition 3 (according to[7]). Shellcode can be
thought of as a sequence of additional commands added
to a program, which is executed immediately after the
program itself starts and usually lead to the exploitation
of some vulnerability in the system or application.
A special type of shellcode, called a bind shell, connects
to a network port (HTTP or FTP ports are often used)
when executed and allows an attacker to establish
a remote connection to the device on which it is running.

Infecting a program is usually done by inserting a spe-
cial sequence of Bytes into the target program and modi-
fying the rest of the code to force the processor to execute
the added code at the correct time. And, of course, the
purpose is to hide these changes from antivirus programs
as much as possible.

If an antivirus finds an infected program, it either
moves it to quarantine (it defacto makes the malicious
code inaccessible) or it can try to repair the infection,
which means the reverse procedure to the one described
above.

As mentioned above, the payload of a virus is usually
encrypted and there is also a decryption sequence in

the code. While the payload can be very heterogeneous
and therefore harder to detect (and it is encrypted), the
decryption instructions are easier to detect. Polymorphic
viruses[13] can modify their decryption sequence as they
spread, making detection more difficult. The modification
is based on a simple principle: the same computational
operation can be performed in many different ways. For
example, the result 25 can be reached by 5 * 5, 20 + 5,
3 * 6 + 7, 100/4, 9 * 7− 38. Code instructions can also
be put together in various ways: we can add instructions
without directly affecting the result, etc.

Antivirus programs use an emulator to detect poly-
morphic viruses, in which they emulate the process of
decrypting a potential locations in a program with an
encrypted payload. Attackers have developed a new gen-
eration of viruses: metamorphic viruses. Metamorphic
code[13] does not rely on making copies of the payload,
but what was to apply to the polymorphic code for the
decryption sequence applies to the payload in the meta-
morphic code: when spread, a functionally equivalent
different code is produced instead of a copy of the pay-
load. The problem of detecting metamorphic viruses is
NP-complete[13]. However, not only attackers but also
defenders can use metamorphic code. It can be very ef-
fective in defending against certain types of attacks, as
even defensive tools find it useful to be hidden.

3. P Colonies with Transferable
Programs vs. Osmotic
Computing Concept

In this section, we focus on the correlations between
P colonies with transferable programs and the concept
of Osmotic computing.

1) The concept of Osmotic computing can be described
using graphs – Definition 2 uses graph 𝑇 for the infras-
tructure and graph 𝑃 for the communication structure
of applications. Since not all nodes of the graph 𝑇 can
host MELs and there can be multiple MELs (from 𝑉𝑃) in
a single node in 𝑉𝑇 , the graphs do not overlap in their
nodes.

We can also represent the structure of a P colony with
transferable programs using graphs. The graph 𝑇 for
the infrastructure is very simple, the agents are not con-
nected to each other but only to the environment. With
the next graph 𝑃 we can describe the nodes and paths
for transferring programs. Since programs can be both
at the agents and in the environment, the two graphs
practically overlap.

2) In both systems there is some transfer conditionality
(programs in the case of P colonies and MELs in the
case of Osmotic computing). A P colony program is

directly equipped with a transfer condition, this condition
concerns either the (non) presence of certain objects or
programs in the target. MELs in the Osmotic computing
concept have a condition built into the properties of the
elements of the set 𝑉𝑃 , the transport of a given MEL is
possible if these conditions match the equipment of the
target node in the set 𝑉𝑇 .

3) P colonies are a mathematical model and have been
designed to be easy to analyze their computation. Capac-
ity of P colony is determined, which is reflected in the
number of objects in each agent’s internal environment,
and also in the number of rules in the agents’ programs.
As for transferable programs, the number of rules in
such a program must also be equal to the capacity of the
P colony.

The concept of Osmotic computing is more free in this
respect, it is heterogeneous in principle. The analogue
of the agents from P colonies are the devices in the net-
work hosting MELs, which can be very different from
each other in their parameters, and the analogue of the
transmitted programs are just the MELs. MELs can be
of varying complexity (longer or shorter programs). On
the other hand, there is also a similarity: an agent of
a P colony may contain different amounts of programs,
a device in the Osmotic computing concept may contain
various amounts of MELs. In both cases, the number of
MELs can be changed dynamically.

4) Programs in P colonies use three types of rules, as
follows from Definition 1. Their task is to work with
objects (transformation or transfer). MELs, on the other
hand, are composed of instructions prescribed by im-
plementations for a given host type (operating system
and processor on a given device). Thus, the set of us-
able instructions varies but is certainly very large (tens,
hundreds). These instructions may also work with data
(analogous to objects), but they may also be other types
of tasks.

5) Although the rules in the P colony do not directly cre-
ate new symbols, the 𝑒 object is available in any quantity.
Therefore, the quantity of other objects within the envi-
ronment can be freely increased simply by transforming
the environment object into some other object. MELs typ-
ically run in an IoT device (or, for example, in cloud). IoT
devices are very often composed of sensors, and sensors
are typically the source of data. Thus, MELs can generate
data without the need for any auxiliary object. However,
the impacts are similar. The reverse operation (removal
or consumption of objects or data) is also implemented
in P colony by transforming an object into an 𝑒 object;
for MELs, this procedure is straightforward.

6) The concept of Osmotic computing is rather intended
to be centralized: each node in 𝑉𝐸 has its own Node
Manager, and there is an Osmotic Resource Manager in

the network managing the whole system. In contrast,
P colonies are decentralized in principle.

4. P Colonies with Transferable
Programs vs. Computer Viruses

Next, we focus on the similarities between P colonies
with transferable programs and the operation of viruses
and shellcode.

1) In the case of P Colony, the transfer of programs can be
considered as an alternative activity. An agent can either
execute one of its programs, or receive a new program
from the environment, or divest itself of one of its pro-
grams. In the Osmotic computing concept, the migration
of MELs can also occur repeatedly and can be seen as an
alternative activity on the devices involved.

In the case of a virus, the program is infected once
(unless it is a massive infection with a wide range of
different viruses), and the opposite operation (removal
of malicious code by the antivirus) is not expected to be
repeated often. These operations are not considered an
alternative to other activities.

2) Another significant difference is the contextuality of
operation. P colonies with transferable programs have
a certain type of context built into the program transfer
conditions, consisting of the presence or absence of ob-
jects or programs in the target. The context for viruses
and the shellcode embedding mechanism is much more
strict: each shellcode must be customized for the target
system (it must be made up of instructions that the target
system understands), and in addition, the application that
is to host the added code must be modified in multiple
places (it is not enough just to add a new section of code
e.g. to the end of the given file). There is no space for
details in this paper (see [13], e.g. hackers use the buffer
overflow mechanism, which requires modifications at
several places in addition to inserting new code).

3) The next criterion being compared is similar to cri-
terion #3 and #4 from the previous section. Also, the
structure of virus code is much less strict than the struc-
ture of agents in the P colony. It depends on what exactly
the shellcode (or other type of virus payload) is supposed
to do, and its length and complexity depends on that.
There are also different approaches to writing shellcode.
The best known type probably is Aleph1[14], but there
are many others. The situation is further complicated by
polymorphic and metamorphic viruses, where there is
a large variability even within the same virus family.

If we wanted to simulate infecting agents with ma-
licious code in a P colony with transferable programs,
it would not be so complicated. It would be enough to
insert one or more programs containing, for example,

rules of type 𝑎 → 𝑒 for various symbols 𝑎 ∈ 𝐴 with
a suitable condition (here the condition would prescribe
the existence of the symbol 𝑎 in the agent’s internal en-
vironment). If an agent were infected by such a rule, it
would lose its internal state.

4) Similar to the concept of Osmotic computing, for
viruses, it is not so important what (numerical) result
is reached at the end of the computation, but the process
itself is significant, unlike P colonies.

5) Infecting an application with malicious code does not
usually mean that part of the original application code
is lost (although this is not impossible) but rather that
something new is added. Overwriting occurs elsewhere
rather than inside the application itself, for example, data
on disk is encrypted or deleted. If we are looking for an
equivalent in the transferable programs in P colonies, it
would be a transferable program containing rules that
affect the environment (in P colony, an agent cannot af-
fect another agent directly, except by planting a program
through the environment).

6) If we focus on the activity of antivirus, simulating
its operations in a P colony with transferable programs
would consist in enriching the environment with “disin-
fecting” programs. If an agent is disabled by a malicious
program (e.g. such that its environment consists only of
objects for which it has no programs), then in the next
derivation step it imports a suitable disinfecting program
whose purpose is to repair its internal environment.

7) P colonies are decentralized in principle. The system
of computer viruses is decentralized too. But, on the
other hand, the operation of antivirus, which is based on
a similar principle (finding a target and working with its
code), is centralized.

5. Conclusions
P colonies are motivated by biological processes (simple
cell, passing of nutrients across membranes, etc.) but are
intended from the beginning as a mathematical model.
The concept of Osmotic computing is motivated by pro-
cesses in biology and chemistry (membrane as a com-
munication interface) but from the beginning they are
intended to be used in practice, in technology. While in
the computational model of P colonies, 𝑓 is defined as the
final object and the end of the computation is assumed
(the number of objects 𝑓 is considered as the result of the
computation), the concept of Osmotic computing does
not assume any end of the activity, the important thing
is the process itself. This is not only a significant differ-
ence between the two systems, but it also complicates
somewhat the comparison of other parameters of these
systems.

The design of a virus and shellcode in general is also
motivated by an ending (infecting other programs and
selected malicious actions in the form of encrypting con-
tent, taking control, stealing data, etc.), but this ending
cannot be simply represented by numbers.

In conclusion, some similarities can be found between
the three systems (the possibility of code transfer), other
similarities always exist in the particular pair being com-
pared. Therefore, to a limited extent, there are possi-
bilities to simulate certain operations of one system in
another, as we showed in the previous section on the
comparison of P colonies with transferable programs and
viruses.

Colonies with transferable programs have not yet been
studied in detail; in fact, there is no precise definition.
For example, it is not clear from [2] whether the action
of importing/exporting a program is an alternative for
agents to using some other program, or whether this
import/export can be performed in the single step at the
same time as the use of another program. In this paper,
we assume the first option.

Therefore, future research can be targeted in the fol-
lowing direction: to establish a precise and detailed defi-
nition of P colonies with transferable programs, to inves-
tigate the behavior of the system in specific situations
and with specific parameters, taking into account the
impact of the use of transferable programs, the impact of
marking programs as permanent, etc.

Another interesting direction of research is the pos-
sibility of using P colonies with transferable programs
to simulate various systems and processes, e.g. in the
area of security (distributing program updates, managing
encryption algorithms,. . .).

References
[1] J. Kelemen, A. Kelemenová, G. Păun, P colonies:

A biochemically inspired computing model, in:
Workshop and Tutorial Proceedings. Ninth Interna-
tional Conference on the Simulation and Synthesis
of Living Systems (Alife IX), Boston, Massachusetts,
2004, pp. 82–86.

[2] L. Ciencialová, L. Cienciala, Transferable knowl-
edge in p colonies, in: Information Technologies –
Applications and Theory 2022 (ITAT 2022), volume
3226, Zuberec, Slovakia, 2022, pp. 167–174.

[3] M. Villari, M. Fazio, S. Dustdar, O. Rana, R. Ranjan,
Osmotic computing: A new paradigm for edge/-
cloud integration, IEEE Cloud Computing 3 (2016)
76–83.

[4] V. Sharma, K. Srinivasan, D. N. K. Jayakody, O. Rana,
R. Kumar, Managing service-heterogeneity using
osmotic computing, in: International Conference

on Communication, Management and Information
Technology (ICCMIT 2017), Warsaw, Poland, 2017.

[5] S. K. Datta, C. Bonnet, Next-generation, data centric
and end-to-end iot architecture based on microser-
vices, in: IEEE International Conference on Con-
sumer Electronics – Asia (ICCE-Asia), 2018, pp. 206–
212. doi:10.1109/ICCE-ASIA.2018.8552135.

[6] D. Ferbrache, A Pathology of Computer Viruses,
Springer Science & Business Media, 2012.

[7] P. Liguori, E. Al-Hossami, D. Controneo, R. Natella,
B. Cukic, S. Shaikh, Can we generate shellcodes via
natural language? an empirical study, Automated
Software Engineering 29 (2022). doi:https://doi.
org/10.1007/s10515-022-00331-3.

[8] J. E. Hopcroft, J. D. Ullman, Introduction to
Automata Theory, Languages and Computation,
Addison-Wesley, 1979.

[9] G. Păun, G. Rozenberg, A. Salomaa, The Oxford
Handbook of Membrane Computing, Oxford Uni-
versity Press, New York, 2010.

[10] G. Păun, Membrane Computing: An Introduction,
Springer, Heidelberg, 2002.

[11] A. Buzachis, D. Boruta, M. Villari, J. Spillner, Mod-
eling and emulation of an osmotic computing
ecosystem using osmotictoolkit, in: 2021 Aus-
tralasian Computer Science Week Multiconference,
ACSW ’21, Association for Computing Machinery,
New York, NY, USA, 2021. URL: https://doi.org/
10.1145/3437378.3444366. doi:10.1145/3437378.
3444366.

[12] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, R. Ran-
jan, Osmotic flow: Osmotic computing + iot
workflow, IEEE Cloud Computing 4 (2017) 68–75.
doi:10.1109/MCC.2017.22.

[13] W. Wong, M. Stamp, Hunting for metamorphic
engines, Journal in Computer Virology 2 (2006)
211–229. doi:10.1007/s11416-006-0028-7.

[14] S. Harris, A. Harper, C. Eagle, J. Ness, Gray Hat
Hacking, Second Edition, McGraw-Hill Profes-
sional, 2008.

http://dx.doi.org/10.1109/ICCE-ASIA.2018.8552135
http://dx.doi.org/https://doi.org/10.1007/s10515-022-00331-3
http://dx.doi.org/https://doi.org/10.1007/s10515-022-00331-3
https://doi.org/10.1145/3437378.3444366
https://doi.org/10.1145/3437378.3444366
http://dx.doi.org/10.1145/3437378.3444366
http://dx.doi.org/10.1145/3437378.3444366
http://dx.doi.org/10.1109/MCC.2017.22
http://dx.doi.org/10.1007/s11416-006-0028-7

	1 Introduction
	2 Preliminaries
	2.1 P Colonies
	2.2 Transferable Programs in P Colonies
	2.3 Osmotic Computing
	2.4 Virus and Shellcode

	3 P Colonies with Transferable Programs vs. Osmotic Computing Concept
	4 P Colonies with Transferable Programs vs. Computer Viruses
	5 Conclusions

