
Working with Positive Integers in P Colony rw-Automata

Lucie Ciencialová1,*,†, Luděk Cienciala1,†

1Institute of Computer Science, Faculty of Philosophy and Science in Opava, Silesian Univerity in Opava, Opava, Czech Republic

Abstract
We introduce new variant of P colonies that we call P colony rw-automaton - a theoretical model from the membrane
computing model family. Its inspiration comes from nature and the structure and functioning of living organisms. The model
is formed from agents - a collection of objects embedded in a membrane, equipped with programs to manipulate objects. The
agents share objects placed on the tape and in the environment. In this paper, we focus on natural number encoding and
sorting of positive natural numbers by an algorithm similar to Bead sort executed by the P colony rw-automata.

Keywords
membrane computing, P Colony rw-automata, natural number representation, sorting, Bead sort

1. Introduction
P colony, introduced in [1], is a theoretical computing
model inspired by structure and behavior of simple one-
cell organisms living in a shared environment. The P
colony is formed from basic units agents equipped with
programs. The crucial role play the environment, it can
store products of agents functioning and through the
environment the agents can send "messages" to each
other. The functioning of agents is based on objects.

Within each agent, there exists a finite multiset of ob-
jects. These objects undergo processing by a finite set
of associated programs unique to each agent. The num-
ber of objects residing in each agent remains constant
throughout the operation of the agent community, and
this fixed quantity is referred to as the "capacity" of the
P colony.

The agents collectively share an environment, which
is represented by another multiset of objects. Among
these objects, one particular type is identified as the "en-
vironmental object." This type is assumed to exist in an
infinitely countable number of copies within the envi-
ronment. (It should be noted that in the literature, one
may also encounter instances where the environmental
symbol appears in an arbitrarily large number of copies
in the environment).

By utilizing their respective programs, the agents can
alter the objects available to them and exchange some of
their objects with those found in the environment. These
coordinated actions lead to a configuration change, or

ITAT 2023: Information Technologies – Applications and Theory,
September 22–26, 2023, Vysoké Tatry, Slovakia
*Corresponding author.
†

These authors contributed equally.
" lucie.ciencialova@fpf.slu.cz (L. Ciencialová);
ludek.cienciala@fpf.slu.cz (L. Cienciala)
� 0000-0002-0877-7063 (L. Ciencialová); 0000-0001-7116-9338
(L. Cienciala)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

transition, within the P colony. A finite sequence of con-
secutive configuration changes, initiated from the initial
configuration, constitutes a computation. The output of
this computation is determined by counting the num-
ber of copies of a specific distinguished object, known
as the "final object," present in the environment at the
conclusion of the process.

The environment serves a dual purpose: functioning as
a communication channel for the agents and also serving
as a storage medium for the objects. Its strategic role lies
in synchronizing the collaborative efforts of the agents
throughout the entire computation process.

The programs in the P colony comprise three distinct
types of rules. The first type, known as "evolution rules",
takes the form of 𝑎 → 𝑏, indicating that an object 𝑎
within the agent is rewritten or evolved into object 𝑏.

The second type, referred to as "communication rules",
follows the pattern 𝑐 ↔ 𝑑. Upon executing a commu-
nication rule, object 𝑐 inside the agent swaps positions
with object 𝑑 in the environment. As a result, object 𝑑 is
now located inside the agent, and object 𝑐 resides in the
environment.

The third type of rules, called "checking rules," are
derived from two rules of either evolution or communi-
cation types. When a checking rule 𝑟1/𝑟2 is executed,
rule 𝑟1 takes precedence over rule 𝑟2. This means that
the agent first checks if rule 𝑟1 is applicable; if so, it must
be used. In case rule 𝑟1 is not applicable, the agent uses
rule 𝑟2.

In P colony rw-automaton we distinguish between
communication rules that work with objects in a multiset
(called non-tape rules) and communication rules that
work with objects on tape (called tape rules).

We will present the possibilities of this new variant of
P colonies by examples of working with natural numbers
(conversions to different number systems) and sorting a
given number of natural numbers.

The structure of the paper is as follows: after an intro-
ductory section, we introduce the basic concepts related

mailto:lucie.ciencialova@fpf.slu.cz
mailto:ludek.cienciala@fpf.slu.cz
https://orcid.org/0000-0002-0877-7063
https://orcid.org/0000-0001-7116-9338
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

to the original P colony model, which we then develop
into a new variant called P colony rw-automaton. In
the third section we give examples of the P colony rw-
automaton, which implements the conversion of a natu-
ral number given in the decimal system (on a tape) into
the unary system (the number of certain objects in the
environment). In the next example we will discuss the
opposite conversion, i.e. the conversion of a number
in the unary representation to a number in the decimal
system, which will be placed on the tape at the end of
the calculation. Last we will give how to construct a P
colony rw-automaton that is able to sort a given number
of natural numbers. These numbers are placed on the
tape in such a way that the beginning and end of their
enumeration is marked, and they are also separated from
each other by a special object. At the end of the calcula-
tion, the tape will list the same numbers ordered by size
from largest to smallest.

2. Preliminaries and Basic Notions
Throughout the paper we assume the reader to be famil-
iar with the basics of the formal language theory and
membrane computing [2, 3].

For an alphabet Σ, the set of all words over Σ (includ-
ing the empty word, 𝜀), is denoted by Σ*. We denote
the length of a word 𝑤 ∈ Σ* by |𝑤| and the number
of occurrences of the symbol 𝑎 ∈ Σ in 𝑤 by |𝑤|𝑎.

A multiset of objects 𝑀 is a pair 𝑀 = (𝑂, 𝑓), where
𝑂 is an arbitrary (not necessarily finite) set of objects and
𝑓 is a mapping 𝑓 : 𝑂 → 𝑁 ; 𝑓 assigns to each object in 𝑂
its multiplicity in 𝑀 . Any multiset of objects 𝑀 with the
set of objects 𝑂 = {𝑥1, . . . 𝑥𝑛} can be represented as
a string 𝑤 over alphabet 𝑂 with |𝑤|𝑥𝑖

= 𝑓(𝑥𝑖); 1 ≤ 𝑖 ≤
𝑛. Obviously, all words obtained from 𝑤 by permuting
the letters can also represent the same multiset 𝑀 , and
𝜀 represents the empty multiset.

2.1. P Colony
In the following we describe the concept of a P Colony.
Consider original definition of P colony introduced in
[1].

Definition 1. A P colony of capacity 𝑘, 𝑘 ≥ 1, is a con-
struct

Π = (𝐴, 𝑒, 𝑓, 𝑣𝐸 , 𝐵1, . . . , 𝐵𝑛), where

• 𝐴 is an alphabet, its elements are called objects;
• 𝑒 ∈ 𝐴 is the basic (or environmental) object of the

colony;
• 𝑓 ∈ 𝐴 is the final object of the colony;
• 𝑣𝐸 is a finite multiset over 𝐴 − {𝑒}, called the

initial state (or initial content) of the environment;

• 𝐵𝑖, 1 ≤ 𝑖 ≤ 𝑛, are agents, where each agent
𝐵𝑖 = (𝑜𝑖, 𝑃𝑖) is defined as follows:

– 𝑜𝑖 is a multiset over𝐴 consisting of 𝑘 objects,
the initial state (or the initial content) of the
agent;

– 𝑃𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑘𝑖} is a finite set of pro-
grams, where each program consists of 𝑘
rules, which are in one of the following forms
each: (1) 𝑎 → 𝑏, 𝑎, 𝑏 ∈ 𝐴, called an evo-
lution rule; (2) 𝑐 ↔ 𝑑, 𝑐, 𝑑 ∈ 𝐴, called
a communication rule; (3) 𝑟1/𝑟2, called a
checking rule; 𝑟1, 𝑟2 are evolution rules or
communication rules.

The agent’s activity is governed by its programs, en-
abling the agent to modify its state and/or the state of
the environment.

The environment consists of a finite number (includ-
ing zero) of copies of non-environmental objects and a
countably infinite number of copies of the environmental
object, denoted as 𝑒.

When an agent executes a program, each object within
the agent is affected. Depending on the rules within the
program, the execution may also impact the environment.
This interaction between agents and the environment is
pivotal to the operation of the P colony.

The functioning of the P colony begins from its initial
configuration or initial state. The initial configuration is
represented as an (𝑛 + 1)-tuple of multisets of objects
present in the P colony at the start of computation. These
multisets are denoted as 𝑜𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and 𝑣𝐸 for the
environment.

In each step of the computation, both the environ-
ment and agent’s states undergo changes. In the "maxi-
mally parallel" derivation mode, all agents that can em-
ploy any of their programs do so simultaneously (non-
deterministically chosen). Conversely, in the "sequential"
derivation mode, only one agent at a time is allowed
to use one of its programs (non-deterministically cho-
sen). If an agent has multiple applicable programs, it
non-deterministically selects one.

A sequence of transitions constitutes a "computation."
A computation becomes "halting" when it reaches a con-
figuration where no further programs can be applied. The
result of a halting computation is determined by the num-
ber of copies of a specific object, denoted as 𝑓 , present
in the environment during the halting configuration.

Due to the non-determinism in program selection, mul-
tiple computations can be derived from the initial con-
figuration. Thus, a P colony is associated with a set of
numbers, denoted as𝑁(Π),which are computed through
all possible halting computations of the given P colony.

2.2. P Colony rw-Automaton
In P colony([1]), the agents are placed in the environment
– multiset of objects. One special kind of objects is called
environmental and it is placed in the environment in
sufficient number of copies. In addition to the multiset
of objects, the P colony rw-automaton environment (like
in P colony automaton [4]) contains a tape on which the
objects are placed in sequence one by one. We refer to
them as a string on the tape, and we call a part of the
sequence of objects a substring.

As in the case of standard P colonies, agents of the
P colony rw-automaton contain objects, each being an
element of a finite alphabet. With every agent, a set
of programs is associated. To work with tape, agents
need to have rules in their programs that they can read
and write to tape. Similar rules have been introduced
for PCol Automaton in [5] and in generalized P colony
automata[4, 6]. However, the function of the tape rules
was different. The agents did not directly interfere with
the objects on the tape, but merely followed the objects
from the part of the tape they were currently reading.
The tape rules we use here for the P colony rw-automaton
directly modify objects on the tape, similar to the model
named APcol system([7]). In this model, programs are an
ordered pairs of rules. If these are communication rules,
then there is an exchange of objects between the tape and
the agent. When a program contains two communication
rules, it is the order of the rules that determines the order
of two consecutive objects on the tape on which the
agent will apply the program. For more details about
definitions, features and computational power of APCol
systems see [7, 8, 9] and details about PCol automata can
be found in [5, 10].

Definition 2. A P colony rw-automaton of capacity 2
and with 𝑛 agents, 𝑛 ≥ 1, is a construct
Π = (𝐴, 𝑒, 𝑣𝐸 , (𝑜1, 𝑃1), . . . , (𝑜𝑛, 𝑃𝑛)) where

• 𝐴 is an alphabet, the alphabet of the P colony
rw-automaton, its elements are called objects;

• 𝑒 ∈ 𝐴 is the environmental object of the P colony
automaton; 𝑣𝐸 ∈ (𝐴−{𝑒})* is a string represent-
ing the multiset of objects different from 𝑒, called
the initial state of the environment ;

• (𝑜𝑖, 𝑃𝑖), 1 ≤ 𝑖 ≤ 𝑛, is the 𝑖-th agent; where

– 𝑜𝑖 is a multiset over 𝑉 , |𝑜𝑖| = 2, the initial
state (contents) of the agent,

– 𝑃𝑖 is a set of programs, where every pro-
gram is a pair rules, each of them is one of
the following types:

∗ tape rules of the form 𝑎
𝑇↔ 𝑏, called

communication tape rules; or
∗ non-tape rules of the form 𝑎 → 𝑏, or
𝑐 ↔ 𝑑, called rewriting (non-tape)

rules and communication (non-tape)
rules, respectively.

The computation starts in the initial configuration
(𝑣𝐸 , 𝑜1, . . . , 𝑜𝑛, 𝑠0), i.e., when the environment and all
agents are in initial state and the input string 𝑠0 is on the
input tape.

Let us look at the tape in more detail. The tape is po-
tentially infinite on both sides. Since agents need another
object to insert objects onto the tape, they replace object
on the tape by the one inside the agent - they use the
tape communication rules - the tape cannot be empty.
We place environmental objects on it. If we place the
string 𝑠 on the tape, then the tape contains 𝑒*𝑠𝑒*. The
string 𝑠 itself can contain environmental objects. When
working with tape, writing configuration or giving out-
put we omit environment objects to the left of the first
object different from 𝑒 and environment objects to the
right of the last occurrence of a symbol different from 𝑒.

For a configuration (𝑤𝐸 , 𝑤1, . . . , 𝑤𝑛, 𝑠), where 𝑠 is a
string placed on the tape, the sets of applicable programs,
𝒫 , can be constructed in such a way that: The agent must
use all the rules in the program. Tape rules are used to
an arbitrary object of the required type on the tape if one
rule is tape rule and the other one non tape. In the case

of program
⟨
𝑎

𝑇↔ 𝑏; 𝑐
𝑇↔ 𝑑

⟩
, a two consequent objects 𝑏

and 𝑑 in this order must be on the tape. They are replaced
by objects 𝑎 and 𝑐, respectively. If the program is of the

form
⟨
𝑐

𝑇↔ 𝑑; 𝑎
𝑇↔ 𝑏

⟩
, then a substring 𝑑𝑏 of the tape is

find and it is replaced by string 𝑐𝑎.
From the set of applicable programs 𝒫 the programs

to be executed are selected. These programs form a set
𝑃 for which the following conditions must be satisfied:
(1) Each agent has at most one program in 𝑃 . (2) One
object in the environment or on the tape is affected by at
most one agent, with at most one rule. (3) If we add any
program from 𝒫 to 𝑃 , the previous conditions cannot be
satisfied.

The automaton passes from one configuration to an-
other by using all programs from the set of selected appli-
cable programs. Such transitions between configurations
form a computation. Since the set 𝑃 can be selected from
the set of all applicable programs in multiple ways, the P
colony rw-automaton can pass from one configuration
to multiple different configurations, resulting in multiple
computations starting from the initial configuration.

The computation by a P colony rw-automaton may
end by halting, when there is no applicable program in
the last configuration.

P colony rw-automaton can work in the accepting,
generating or computing mode. In accepting mode, the P
colony rw-automaton starts computation with the input
on the tape, and if it stops, the input is accepted. When
the P colony rw-automaton is working in generating

mode, it starts with only objects 𝑒 on the tape and the
result of the computation can be found on the tape after
the computation has halted. In computing mode, the
input is transformed to an output, and the output is valid
only when the computation stops.

3. Natural number representation
To express the number of things, animals, etc. we use
usually decimal representation of numbers. In Computer
Science also binary and hexadecimal representations are
used. What about number representation in area of mem-
brane systems? Mostly the unary representation is used.
It means that the number is determined by the number of
some kind of objects. This is used in proofs of computa-
tional power of such systems when simulation of register
machine takes part. In this section we focus on transfor-
mation between decimal (and possibly any reasonable)
representation of number to unary and vice versa.

Consider a number in decimal representation that is
written on the tape of P colony rw-automaton in a form
#𝑛𝑢𝑚𝑏𝑒𝑟$ (# is specific symbol that indicates the be-
ginning of the given number and $ indicates its end). The
agents in P colony rw-automaton initially containing two
objects 𝑒 are grouped into modules having some func-
tion. There are four modules in P colony rw-automaton
to translate decimal number to its unary representation –
Controller, Module 1 (translate digit onto the correspond-
ing number of object 𝑎), Module 2 (multiply the number
of objects 𝑎 in the environment by 10).

The first module is Controller. It is formed from one
agent and it performs reading from a tape and calling
other modules to work. It is done by passing object "mes-
sage" to the environment. The functioning of the agent
controller can be described as:

1. read symbol from the tape (the one next to mark
of currently read symbol)

2. if the symbol is a digit continue 3. else stop (empty
input)

3. call Module 1 - translate digit into the number of
objects 𝑎

4. read symbol from the tape (the one next to mark
of currently read symbol)

5. if the symbol is a digit then
a) call Module 2 - multiplier of 𝑎 present in

the environment
b) call Module 1 - translate digit into the num-

ber of objects 𝑎
c) continue with 4.

6. else (if the symbol is $) stop the translation.

Programs for reading from the tape:

1. < 𝑒 → 𝐻; 𝑒 → 𝑘 >

2. < 𝐻
𝑇↔ #; 𝑘

𝑇↔ 𝑖 > 0 ≤ 𝑖 ≤ 9

3. < 𝐻
𝑇↔ #; 𝑘

𝑇↔ $ >
4. < # → 𝑒; $ → 𝐹 >

Program 4. is processed only if there is no number in
the input (there is no digit between symbols # and $)

5. < # → 𝑐1; 𝑖 ↔ 𝑒 > 0 ≤ 𝑖 ≤ 9
6. < 𝑐1 → 𝑐1; 𝑒 → 𝑚1 >
7. < 𝑐1 → 𝑤1; 𝑚1 ↔ 𝑒 >
8. < 𝑤1 → 𝑘; 𝑒 ↔ 𝑓1 >

Symbol 𝑓1 placed in the environment means that Mod-
ule 1 finished its work.

9. < 𝑘 → 𝑘; 𝑓1 → 𝑒 >

10. < 𝑒
𝑇↔ 𝑘; 𝑘

𝑇↔ 𝑖 > 0 ≤ 𝑖 ≤ 9
11. < 𝑘 → 𝐶2; 𝑖 ↔ 𝑒 > 0 ≤ 𝑖 ≤ 9
12. < 𝐶2 → 𝐶2; 𝑒 → 𝑚2 >
13. < 𝐶2 → 𝑤2; 𝑚2 ↔ 𝑒 >
14. < 𝑤2 → 𝐶1; 𝑒 ↔ 𝑓2 >
15. < 𝐶1 → 𝐶1; 𝑓2 → 𝑚1 >
16. < 𝐶1 → 𝑤1; 𝑚1 ↔ 𝑒 >

17. < 𝑒
𝑇↔ 𝑘; 𝑘

𝑇↔ $ >
18. < 𝑘 → 𝑒; $ → 𝐹 >

Module 1 is formed from one agent. When the module
is called (object𝑚1 appears in the environment) the agent
can consume it together with object corresponding to
digit read from the tape.

𝐴1. < 𝑒 ↔ 𝑚1; 𝑒 ↔ 𝑖 > 0 ≤ 𝑖 ≤ 9
𝐴2. < 𝑚1 → 𝑓1; 0 → 𝑒 >
𝐴3. < 𝑓1 ↔ 𝑒; 𝑒 → 𝑒 >
𝐴4. < 𝑚1 → 𝑎; 𝑖 → (𝑖− 1)′ > 1 ≤ 𝑖 ≤ 9
𝐴5. < 𝑎 ↔ 𝑒; 𝑖′ → 𝑖 > 0 ≤ 𝑖 ≤ 8
𝐴6. < 𝑒 → 𝑎; 𝑖 → 𝑖′ > 1 ≤ 𝑖 ≤ 8
𝐴7. < 𝑒 → 𝑓1; 0 → 𝑒 >

Module 2 is formed from two agents. When Module 2
is called, the first agent must multiply each occurrence
of object 𝑎 by ten. It means that it consume one object 𝑎
and immediately generates ten objects 𝑎 . When there is
no object 𝑎 in the environment agent generates object 𝑔
and this is message for the second agent to exchange all
𝑎 by 𝑎 and generate object 𝑓2 - message for Controller

that multiplication is over.
The first agent’s programs are:

𝐵1. < 𝑒 ↔ 𝑚2; 𝑒 ↔ 𝑎/𝑒 ↔ 𝑒 >
𝐵2. < 𝑚2 → 𝑓2; 𝑒 → 𝑒 >
𝐵3. < 𝑓2 ↔ 𝑒; 𝑒 → 𝑒 >
𝐵4. < 𝑚2 → 𝑝′0; 𝑎 → 𝑎 >
𝐵5. < 𝑝′𝑗 → 𝑝𝑗+1; 𝑎 ↔ 𝑒 > 0 ≤ 𝑗 ≤ 9
𝐵6. < 𝑝𝑗 → 𝑝′𝑗 ; 𝑒 → 𝑎 > 1 ≤ 𝑗 ≤ 9
𝐵7. < 𝑝10 → 𝑚′

2; 𝑒 ↔ 𝑎/𝑒 ↔ 𝑒 >
𝐵8. < 𝑚′

2 → 𝑥; 𝑒 → 𝑒 >
𝐵9. < 𝑥 ↔ 𝑒; 𝑒 → 𝑒 >

𝐵10. < 𝑚′
2 → 𝑝′0; 𝑎 → 𝑎 >

When object 𝑥 appears in the environment the second
agent consumes it and starts to exchange all 𝑎 by 𝑎.

𝐶1. < 𝑒 ↔ 𝑥; 𝑒 ↔ 𝑎 /𝑒 ↔ 𝑒 >
𝐶2. < 𝑥 → 𝑓2; 𝑒 → 𝑒 >
𝐶3. < 𝑓2 ↔ 𝑒; 𝑒 → 𝑒 >
𝐶4. < 𝑥 → 𝑦; 𝑎 → 𝑎 >
𝐶5. < 𝑦 → 𝑦; 𝑎 ↔ 𝑒 >
𝐶6. < 𝑦 → 𝑥; 𝑒 ↔ 𝑎 /𝑒 ↔ 𝑒 >

After all objects 𝑎 are replaced by 𝑎 the second agent
sends object 𝑓2 to the environment and this is message
for the Controller to start pass object 𝑚1 to Module 1.

After Controller reads object $ from the tape it stops
working without passing any object to the environment
so all the agents have no applicable program. P colony rw-
automaton with four agents divided into three modules
reads decimal number from the tape and after compu-
tation halts there are the corresponding number of 𝑎 is
placed in the environment.

Now we focus on the reverse transformation - from
unary representation of number to decimal number. The
unary representation of the number is stored in the envi-
ronment as the number of copies of object 𝑎. The result
is decimal number stored on the tape at the end of com-
putation.

The idea is to use one agent consuming objects 𝑎. The
agent in initial state 𝑓2𝑒 uses the second object inside it
as counter. If there is no 𝑎 it generate object as message
for the second agent to write corresponding digit onto
tape and the object message for the third agent that can
exchange all 𝑎 by 𝑎. The third agent generate object
to start work of the first agent again. If the first agent
consumes ten 𝑎s it generates one object 𝑎 and continue
consuming 𝑎.

The programs of the first agent are as follows:
𝐷1. < 𝑓2 → 0; 𝑒 ↔ 𝑎/𝑒 ↔ 𝑒 >
𝐷2. < 𝑖 → 𝑖𝑇 ; 𝑒 → 𝑥′ > 0 ≤ 𝑖 ≤ 9
𝐷3. < 𝑖𝑇 ↔ 𝑒; 𝑥′ → 𝑥 > 0 ≤ 𝑖 ≤ 9
𝐷4. < 𝑥 ↔ 𝑒; 𝑒 → 𝑒 >
𝐷5. < 𝑖 → (𝑖+ 1)′; 𝑎 → 𝑒 >
𝐷6. < 𝑖′ → 𝑖; 𝑒 ↔ 𝑎/𝑒 ↔ 𝑒 >
𝐷7. < 10 → 10′′; 𝑎 → 𝑎 >
𝐷8. < 10′′ → 0′; 𝑎 ↔ 𝑒 >
𝐷9. < 𝑒 ↔ 𝑓2; 𝑒 → 𝑒 >

The second agent started when some 𝑖𝑇 , 0 ≤ 𝑖 ≤ 9,
appears in the environment. The agent consumes it and
exchange 𝑒# by #𝑖. The decimal number is written from
the right to the left.

𝐸1. < 𝑒 ↔ 𝑖𝑇 ; 𝑒 → 𝑖′ > 0 ≤ 𝑖 ≤ 9
𝐸2. < 𝑖𝑇 → #; 𝑖′ → 𝑖 > 0 ≤ 𝑖 ≤ 9

𝐸3. < #
𝑇↔ 𝑒; 𝑖

𝑇↔ # >
𝐸4. < # → 𝑒; 𝑒 → 𝑒 >

The third agent has the same programs as the agent
from Module 2 (programs C1.– C6.).

The P colony rw-automaton with three agents starts
the computation in initial configuration with # on the
tape and 𝑛 copies of 𝑎 in the environment. The first
agent contain 𝑓2𝑒, the second and third agents contains

𝑒𝑒 each. When computation halts the resulting string can
be found on the tape in the form #𝑛 where 𝑛 is decimal
representation of the number of 𝑎s in the environment
at the beginning of computation. If the input is given on
the tape we need one more agent to "copy" objects from
the tape and after reaching the end of the string it can
generate object 𝑓2. In this case the first agent initial state
is 𝑒𝑒.

Both P colony rw-automata can easily be adjusted to
perform transformation to any number system using
another limits instead of 8, 9 and 10. For example for
hexadecimal system 14, 15 and 16 are used in programs
with 𝑖 instead of upper limit.

4. Sorting natural numbers
In this section, we focus on construction of such P colony
rw-automaton that finds 𝑘 unsorted positive integers
(in decimal number system) on the tape in the form
#𝑛1 𝑚 𝑛2 𝑚. . .𝑚 𝑛𝑘$. The input variable for con-
struction of P colony rw-automaton is 𝑘.

The idea is to transform given decimal numbers to
unary representation (we need 𝑘 different 𝑎-objects, we
can use indices 1 to 𝑘), sort them and write sorted num-
bers onto tape in a form similar to input string.

We can use Controller, Module 1 and Module 2 from
previous section to read the tape and place copies 𝑎𝑖 into
the environment. Controller has to call Modules with
proper index (corresponding to the order of the number
stored on the tape). The Modules generate 𝑎s with the
same index or we can use 𝑘 pairs Modules each pair
activated by another index.

The idea of sorting is a little bit similar to Bead sort.
We run 𝑘 + 1 agents in parallel - 𝑘 agents consuming
𝑎𝑖s and the last one is generating results. When there
is 𝑎𝑖 to be consumed by agent 𝑖, no object is placed to
the environment by agent 𝑖. When there is no 𝑎𝑖 in the
environment agent 𝑖 place object 𝑞 to the environment.
this object is consumed by agent 𝑘 + 1. This phase can
be called consuming.

Until now, the agent 𝑘+1 generated object 𝑅𝑗 at each
step when 𝑘 agents consumed their objects. The moment
𝑞 appears in the environment the agent increments the
index of the generated object (𝑅(𝑗+1)). In the case of
multiple objects 𝑞 (identical numbers in a sequence of
numbers) the agent 𝑘+ 1 increases the index until it has
consumed all the objects of 𝑞. Only then can the other
agents continue their work. We can implement this part
in this way that after agent 𝑖 has consumed object 𝑎𝑖 it
applies programs with rewriting rules in the next steps,
and thus wait 𝑘− 1 steps to allow agent 𝑘+1 to process
all possible objects 𝑞 from the environment.

After this phase there is no object 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑘,
in the environment. There are some object 𝑅𝑗 in the

environment where 𝑗 ∈ 1, . . . 𝑘. For example if the input
sequence of numbers is 3, 5, 4, 3, 5, then after consuming
phase the environment contains objects 𝑅1𝑅1𝑅1𝑅3𝑅4.

In the next phase, the 𝑅𝑗 objects are processed, copied
and transformed into the decimal system with writing
to tape. It means that every object 𝑅1 is replaces by
pair 𝑃1𝑅2, then all object 𝑃1 are transformed to decimal
number and this number is written to the tape. Note
that the output is written from right to left and that the
number of objects 𝑃1 corresponds to the smallest number
in the input sequence. The same transformation is done
by all 𝑘 type of 𝑅𝑗 objects.

We list here some programs that belong to the agents
consuming 𝑎𝑖, and the agent 𝑘 + 1.

The set of programs of agent 𝑖, 1 ≤ 𝑖 ≤ 𝑘 contains
programs:
𝐹1. < 𝐵 → 𝑞; 𝑒 ↔ 𝑎𝑖/𝑒 ↔ 𝑒 >
𝐹2. < 𝑞 → 𝐵0; 𝑎𝑖 → 𝑒 >
𝐹3. < 𝐵𝑙 → 𝐵(𝑙+1); 𝑒 → 𝑒 > 0 ≤ 𝑙 ≤ 2𝑘 − 2
𝐹4. < 𝐵(2𝑘−1) → 𝐵; 𝑒 → 𝑒 >
𝐹5. < 𝑞 ↔ 𝑒; 𝑒 → 𝑠 >
The agent 𝑘+1 has following programs in its programs

set (1 ≤ 𝑝 ≤ 𝑘 − 1; 2 ≤ 𝑟 ≤ 2𝑘 − 2; 0 ≤ 𝑡 ≤ 2𝑘 − 2):
𝐺1. < 𝐵𝑝 → 𝐵′

𝑝; 𝑒 → 𝑒 >
𝐺2. < 𝐵′

𝑝 → 𝐵′′
𝑝 ; 𝑒 → 𝑒 >

𝐺3. < 𝐵′′
𝑝 → 𝑝0; 𝑒 ↔ 𝑞/𝑒 ↔ 𝑒 >

𝐺4. < 𝑝0 → 𝑝1; 𝑒 → 1 >
𝐺4. < 𝑝1 → 𝑝2; 1 ↔ 𝑒 >
𝐺4. < 𝑝(𝑟) → 𝑝(𝑟+1); 𝑒 → 𝑒 >
𝐺5. < 𝑝(2𝑘−2) → 𝐵𝑝; 𝑒 → 𝑒 >
𝐺6. < 𝑝0 → (𝑝+ 1)′1; 𝑞 → 𝑒 >
𝐺7. < 𝑝′𝑡 → (𝑝+ 1)′𝑡+1; 𝑞 → 𝑒 >
𝐺8. < 𝑝′𝑡 → (𝑝)′𝑡+1; 𝑒 ↔ 𝑞/𝑒 ↔ 𝑒 >
𝐺9. < 𝑘′

(2𝑘−2) → 𝑠; 𝑞 → 𝑒 >

𝐺10. < 𝑘′
(2𝑘−2) → 𝑠; 𝑒 → 𝑒 >

𝐺10. < 𝑘(2𝑘−2) → 𝑠; 𝑒 → 𝑒 >
The number of steps that P colony rw-automaton exe-

cutes during the consuming phase depends on the num-
ber of given numbers (𝑘) and the maximum of these
numbers (𝑛) and equals to (2𝑘 + 2) · 𝑛.

5. Conclusion
In this research paper we introduce a new variant of
P colony – P colony rw-automaton that combines fea-
tures of APcol system, generalized P colony automaton
and PCol automaton. It uses tape and non-tape rules to
work with objects on the tape and in the environment.
The functioning of P colony rw-automaton is shown on
work with natural numbers – transformation between
representation of the number in unary and decimal num-
ber systems and sorting natural numbers. Within these
examples of use P colony rw-automaton we show how
to multiply and divide unary representation of natural

number by given number (in our case 10).

6. Acknowledgments
This work is supported by the Silesian University
in Opava under the Student Funding Plan,project
SGS/11/2023.

References
[1] J. Kelemen, A. Kelemenová, Gh. Păun, Preview of

P colonies: A biochemically inspired computing
model, in: Workshop and Tutorial Proceedings.
Ninth International Conference on the Simulation
and Synthesis of Living Systems (Alife IX), Boston,
Massachusetts, USA, 2004, pp. 82–86.

[2] J. E. Hopcroft, J. D. Ullman, Introduction to
Automata Theory, Languages and Computation,
Addison-Wesley, 1979.

[3] Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford
Handbook of Membrane Computing, Oxford Uni-
versity Press, Inc., New York, NY, USA, 2010.

[4] K. Kántor, G. Vaszil, Generalized P Colony Au-
tomata 19 (2014) 145–156.

[5] L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú,
Gy. Vaszil, PCol automata: recognizing strings
with P colonies, in: M. Ángel del Amor, Gh. Păun,
I. Pérez Hurtado de Mendoza, A. Riscos Núnez
(Eds.), Eighth brainstorming week on membrane
computing. Sevilla, 2010. (RGNC Report 01/2010.),
Fénix Editora, Sevilla, 2010, pp. 65–76.

[6] K. Kántor, G. Vaszil, On the classes of lan-
guages characterized by generalized P colony
automata, Theoretical Computer Science 724
(2018) 35–44. URL: https://www.sciencedirect.com/
science/article/pii/S0304397517309027. doi:https:
//doi.org/10.1016/j.tcs.2017.12.011.

[7] L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú,
P colonies processing strings, Fundamenta
Informaticae 134 (2014) 51–65. doi:10.3233/
FI-2014-1090.

[8] L. Ciencialová, E. Csuhaj-Varjú, G. Vaszil, L. Cien-
ciala, APCol systems with verifier agents, in:
T. Hinze, G. Rozenberg, A. Salomaa, C. Zan-
dron (Eds.), Membrane Computing - 19th Inter-
national Conference, CMC 2018, Dresden, Ger-
many, September 4-7, 2018, Revised Selected Pa-
pers, volume 11399 of Lecture Notes in Computer
Science, Springer, 2018, pp. 95–107. URL: https://doi.
org/10.1007/978-3-030-12797-8_8. doi:10.1007/
978-3-030-12797-8_8.

[9] L. Ciencialová, L. Cienciala, Two notes on AP-
Col systems, Theor. Comput. Sci. 805 (2020) 161–

https://www.sciencedirect.com/science/article/pii/S0304397517309027
https://www.sciencedirect.com/science/article/pii/S0304397517309027
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2017.12.011
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2017.12.011
http://dx.doi.org/10.3233/FI-2014-1090
http://dx.doi.org/10.3233/FI-2014-1090
https://doi.org/10.1007/978-3-030-12797-8_8
https://doi.org/10.1007/978-3-030-12797-8_8
http://dx.doi.org/10.1007/978-3-030-12797-8_8
http://dx.doi.org/10.1007/978-3-030-12797-8_8

174. URL: https://doi.org/10.1016/j.tcs.2018.07.006.
doi:10.1016/j.tcs.2018.07.006.

[10] L. Cienciala, L. Ciencialová, Computation, coopera-
tion, and life, Springer-Verlag, Berlin, Heidelberg,
2011, pp. 158–169.

https://doi.org/10.1016/j.tcs.2018.07.006
http://dx.doi.org/10.1016/j.tcs.2018.07.006

	1 Introduction
	2 Preliminaries and Basic Notions
	2.1 P Colony
	2.2 P Colony rw-Automaton

	3 Natural number representation
	4 Sorting natural numbers
	5 Conclusion
	6 Acknowledgments

