
Behavioural classification of network devices using graph
structure of private networks
Vojtěch Outrata1,2, Jaroslav Hlaváč1,3 and Martin Kopp1

1TD&R Data Science, Cisco Systems, Karlovo nám. 10, 120 00 Praha 2, Czech Republic
2Czech Technical University, Faculty of Electrical Engineering, Karlovo nám. 13, 120 00 Praha 2, Czech Republic
3Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 121 16 Praha 2, Czech Republic

Abstract
Classifying computer network devices by their behaviour is crucial for keeping track of today’s dynamically changing network
environments. In the field, it is mainly done either manually or using heuristics. The commonly used solutions completely
overlook the computer network’s inherent graph structure. In this paper, we show that leveraging the graph structure using
graph convolutional neural networks is worth the added computational burden. Our evaluation on real-world networks
with user-defined classes includes three baseline models and a graph neural network. The experimental results highlight the
models’ proficiency in learning diverse device classes, with the graph-based models exhibiting superior performance. We also
show that the graph-based models struggle to adapt to the ever-changing structure of the network and measure the cost of
their retraining.

Keywords
behavioural classification, device classification, graph neural networks, positional features

1. Introduction
Properly managing and monitoring large private net-
works is necessary for companies to avoid network fail-
ures that could cause business disruptions. An essential
part of this process is knowing the role and importance of
each device in the network. Devices crucial for business
operations must be differentiated from the less important
ones. The impact of losing connection to a smart light
bulb differs vastly from losing a production server. Nowa-
days, manual device classification is still common. But
it is time consuming and requires extensive domain and
local network environment knowledge. This makes it
impractical for large-scale networks. Automated or semi-
automated heuristic solutions exist, but the dynamic na-
ture of networks, where devices are constantly added
and removed, further complicates the labelling process.
As a result, many devices in networks remain unlabelled
or mislabelled.

Our approach to the device identification problem is
as a semi-supervised classification. We assume that by
leveraging the graph structure of the computer network,
we can improve the classification efficacy. We test our
assumption by comparing methods that classify a device
using only information about the device itself with graph
neural networks leveraging the natural graph structure
of the computer networks.

ITAT 23: Information Technologies – Applications and Theory, Septem-
ber 22–26, 2023, Tatranské Matliare, Slovakia
$ voutrata@cisco.com (V. Outrata); jhlavac@cisco.com (J. Hlaváč);
markopp@cisco.com (M. Kopp)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

For this purpose, we designed features that capture
important device information without building a graph
and features computed from the graph structure. We
train and test various models on real-world, large-scale
networks spanning multiple industries and numerous
distinct device types. Consequently, the model evaluation
provides valid information on the usability of the models
in the real world.

2. Prior art
Behavioural device classification based on network traffic
can be based solely on static information about the device.
This group of methods is in this paper represented by
the three standard ML models: Support Vector Machine
(SVM) [1], Random Forest (RF) [2], and AdaBoost [3].

The other way is to leverage the graph structure of
computer networks. There are multiple approaches to
creating node embeddings for classification. The Matrix-
factorisation leverages the eigendecomposition of a prox-
imity matrix as the embedding for each node [4]. While
straightforward, this approach is not further used as fac-
torisation is computationally expensive.

The second approach, inspired by the word2vec al-
gorithm [5], obtains the proximity of nodes by random
walks over the graph. This approach is used by, e.g.,
DeepWalk [6], LINE [7], and node2vec [8]. The node2vec
is the most recent and most general out of the listed
ones, and it has been previously used to model computer
networks [9].

The most recent approaches are based on Graph Con-
volutional Networks (GCN) [10]. Localised convolution,

mailto:voutrata@cisco.com
mailto:jhlavac@cisco.com
mailto:markopp@cisco.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Id source destination proto hash ts
a ip:192.168.8.18 ip:192.168.0.19 TCP fff 16

port: 59496 port: 80
b ip:10.4.22.12 ip:1.2.91.29 TCP 123 18

port: 64270 port: 80

Table 1
Connection log examples showing when a device communi-
cated, where it communicated, using what protocol and the
sha256 hash of the binary that created the connection.

introduced in GraphSage [11], is an innovative way to
incorporate both node features and the graph structure.
The embedding of each node contains aggregated in-
formation from its 𝐾-hop neighbourhood, and due to
its locality, it scales much better than the previous ap-
proaches. The GraphSage has been surpassed on common
benchmarks by other architectures, such as GAT [12],
GATv2 [13], P-GNN [14], each defining their own aggre-
gating scheme. In this paper, we employ one of the most
recent architectures, the GATv2, further referred to as
the GNN.

3. Data description and feature
engineering

In this paper, we work with the network communication
logs collected by a lightweight application (collector) in-
stalled on the endpoint device. The data format is similar
to the NetFlow [15] but enriched by additional informa-
tion about the device. In the field, several implementa-
tions of such collectors exist, each collecting different
features. To make our work generally applicable, we se-
lected the information present in endpoint connection
logs from any collector. Table 1 shows an example of the
communication logs with the selected features.

For feature selection and engineering, we used con-
nection logs from 8 real-world networks of various sizes
(from thousands to hundreds of thousands of devices),
different industries (logistics, healthcare, finance, . . . ) and
labelled by different logic (by location, function, or com-
bination).

3.1. Device features
Each device in the network can be described by a set
of features engineered from a device’s communication
logs without building the local network’s graph. In to-
tal, we use 122 features, each computed from the device
communication spanning a single day. The comprehen-
sive list of features can be found in Appendix A. We
divide these features into four categories - port, time, net-
working and hash. The port number can indicate what
services are running on the device and what services it

is accessing over the network. Time features describe
the activity of the device during the day. Networking
features focus on the ratios of inbound and outbound
connections over transport layer protocols and the ra-
tio of internal/external network communication. Hash
features are computed from the prevalence of the binary
that initiated the connection.

The baseline classification algorithms use only the
above described features. In GNN, they are used as part
of node description in a graph.

3.2. Graph-based features
To leverage the structure of the computer network, we
consider devices to be nodes, and communication be-
tween two devices indicates an edge. To prevent the
graph from expanding to unreasonable sizes by repre-
senting the public internet, the graphs are constructed
only from communications within the internal network.

Correctly classifying devices of the same function (e.g.,
domain controllers) in different locations to geographi-
cally defined classes is not possible using only features
described in 3.1. Therefore, we enrich the node features
with proposed features that reflect the global structure
of the graph.

The novel positional features are constructed as fol-
lows: We choose 𝑐 nodes with the highest PageRank
centrality [16] as central nodes for the network. These
central nodes then serve as anchors in the graph. Each
node’s global position in the graph is then encoded into
𝑐 distances to these central nodes. Knowing the global
position of the nodes greatly improves the classification
results for networks that are labelled by location. Figure 1
shows results on Company A, which has a geographically
segmented private network. To ensure statistical rele-
vance, ten runs were performed for each number of nodes,
and 95% confidence intervals based on the Student’s t-
distribution are displayed. The steep improvement in
the results occurs at 20 central nodes, corresponding to
the number of important nodes in the respective graph
with respect to the PageRank centrality (according to a
deeper graph analysis). Since other networks may have
a larger graph with more central nodes, e.g. Company
C has 30-40 central nodes, we have decided to set the
number of considered central nodes to 50 throughout
the experiments. Further increasing the number of cen-
tral nodes did not have any impact on the classification
accuracy.

3.3. Device labels
There is no universal template for categorising devices
within private networks. The type of devices in networks
varies greatly alongside the industry the company is op-
erating in. Consequently, the companies usually design



Figure 1: The effects of the number of central nodes on classifi-
cation accuracy for Company A. The 95% confidence intervals
are based on the Student’s t-distribution.

the device classes themselves, resulting in different types
of grouping. One company may want to group the de-
vices by their geographic location, while another one
by the function of the device in the network. From the
eight networks used for feature selection, we chose the
three most diverse to use in the final experiments. The la-
bels for our experiments were provided by the respective
companies themselves. Table 2 shows the device counts
and labels for three networks.

The ratios of labelled devices within the networks fur-
ther support the semi-supervised learning scenario. The
models can not only extrapolate learned knowledge to
unlabelled devices, but the GNN model leverages the
information from unlabelled devices in its aggregation
scheme while classifying the labelled devices. The num-
ber of devices within each class indicates severe class
imbalance for Company B and Company C. During the
evaluation, special countermeasures had to be taken for
both companies.

4. Experimental evaluation
We designed two experiments to evaluate the usability of
proposed solutions in the real world. The first experiment
confirms whether models can learn the diverse behaviour
of network devices when training on each day separately.
The second experiment tries to find out how long models
maintain good classification results before they need to
be retrained.

4.1. Experimental setup
In the experiments, we worked with a dataset collected
over 14 days on three private networks of various sizes
and structures, see Table 2. Both device and graph fea-
tures were calculated for each day.

One of the substantial challenges in the training pro-
cess was the class imbalance. In Company B, class

label device
count

labelled
devices

C
om

pa
ny

A

City1 57

0.27

City2 136
City3 136
City4 102
City5 246
City6 60
City7 51
City8 36

C
om

pa
ny

B Domain Controller 11

0.52
Protect 298
Protect - IT 20
Server 69

C
om

pa
ny

C

Loc. A - servers 514

0.67

Loc. A - workers 1 022
Loc. A Building Services 10
Loc. A IS 24
Loc. A Lab 34
Loc. B - servers 26
Loc. B - workers 22 236
Loc. B App Packaging 15
Loc. B Cardiology EEG 20
Loc. B Cardiology PACS 176
Loc. B Medical Device 27
Loc. B Philips Software 49
Loc. B Radiology 84
Loc. C General 92
Loc. C General Srvs 27

Table 2
Device labels for the three selected companies used in the
final experiments. Company A is grouped by geographic loca-
tion, Company B by device function, and Company C has a
combination of both.

weights [17] were applied for training SVM, Random
Forest, and GNN. AdaBoost performed well without class
weighting. For Company C, the majority class covers
∼ 90% devices. Therefore, it was subsampled before the
class weighting.

The models were set up by hyperparameter grid search
with 4-fold cross-validation, based on the study [18]. Re-
garding GNN architecture, initial experiments revealed
that one hidden layer aggregating a 1-hop neighbour-
hood is sufficient. Deeper architectures resulted in worse
performance. Additional GNNs parameters, such as the
number of heads in the attention mechanism or dimen-
sion of the final embedding, were optimised using the
Tune framework [19], utilising the Adam [20] optimiser.

4.2. Training stability
The first experiment was designed to evaluate models’
performance over a working week of telemetry from two
perspectives. Firstly, how well can the models learn the
diverse classes. Secondly, to assess whether the mod-



Figure 2: Setup of the first experiment. Models are trained
on five working days, taking data from 20% of devices each day
for testing purposes to evaluate the stability of the training
process throughout the week.

els’ training is stable throughout the week. Stability is
an essential metric for potential real-world use. To vali-
date training stability, models were trained and evaluated
on ten train/test splits each day, as shown in Figure 2.
Specifically, for each train/test split and day, each model
was trained and evaluated on data from that particular
day. We provide experimental analysis for each company
separately to discuss the caveats of different networks.

4.2.1. Company A

Figure 3 contains classification accuracy of each method
with the 95% confidence intervals inferred based on the
Student’s t-distribution. The graph-based approach con-
sistently achieves better classification results than the
baseline models, which indicates that utilising graph
structure is beneficial for classifying the location-based
device classes.

Figure 3: Classification accuracy for each model with the 95%
confidence interval for Company A.

4.2.2. Company B

Due to severe class imbalance in Company B, we present
the macro average recall and precision, rather than accu-
racy in Figure 4.

Figure 4: Classification precision and recall with 95% confi-
dence intervals for Company B. The wide confidence intervals
are caused by low prevalence classes.

The class imbalance, specifically the low number of
devices in certain classes of the testing dataset, causes
substantial fluctuations in macro-averaged metrics, re-
sulting in unstable reported scores and wide confidence
intervals. To illustrate the problem, an example of clas-
sification results of the GNN model is shown in Table 3.
In this example, the misclassification of one domain con-
troller and one device from Protect-IT class would cause
the reported macro average for recall to fall by more than
10%.



precision recall support
Domain Controller 0.83 1.00 5

Protect 1.00 0.90 69
Protect-IT 0.50 1.00 5

Server 0.86 0.92 13
macro avg 0.80 0.96
accuracy 0.91

Table 3
Example of classification results of one run of the GNN model
on Company B.

4.2.3. Company C

The classification results for Company C are also affected
by class imbalance. The classification performance de-
picted in Figure 5 shows that the GNN model with Ada-
Boost is consistently more precise than other baseline
models.

Further study of the confusion matrix of the GNN
model, in Figure 6, shows two extremes, either the model
can distinguish the class well or almost not at all. The
model usually classified all devices from classes Loc. A
Lab, Loc. A IS, and Loc. A Building Services entirely into
the Loc. A−workers class. This is not surprising as all
three classes fall within the Loc. A−workers definition
(workstations, not servers, in the same location). Similar
results from other models indicate that these three classes
cannot be easily separated by our features, so the models
assign them to the most general class.

A similar explanation also applies to other low preva-
lence classes that fall into the broader category of Loc.
B−workers. On the other hand, classes representing
servers were well classified.

4.2.4. Summary

The presented experimental analysis confirms that di-
verse device types can be classified using the represen-
tation introduced in Section 3. Furthermore, the results
demonstrated that all models’ training procedures were
stable throughout the week. The results also indicate that
by leveraging the positional features, the GNN was able
to learn higher prevalence classes and makes reasonable
predictions for the classes with only a few devices.

4.3. Prediction stability
The second experiment tests how long the models can
maintain their predictive performance. All models are
trained on a single day (Wednesday) and evaluated on
the next six days (Thursday - Tuesday), as illustrated
in Figure 7. Ten-fold cross-validation was used on the
Wednesday data for training the models. Then they were
evaluated on the test data from Wednesday and the whole
dataset from each of the following six days.

Figure 5: Classification precision and recall with 95% con-
fidence intervals for Company C. GNN and AdaBoost has
consistently higher precision with recall similar to other mod-
els.

4.3.1. Class distribution

First, we examine the occurrences of devices from each
class over the week. Figure 8 represents Company B
and exhibits an expected pattern; the general class Pro-
tect shrinks the most during the weekend as it contains
workstations of regular employees. The other classes,
representing servers and IT workstations, remain stable
even throughout the weekend. This pattern holds for the
other two companies as well.

While expected, this observation still complicates the
selection of central nodes for features representing the
global structure of the graph. As explained in Section 3.2,
the positional features represent the distance to a set of
50 central nodes present in the graph. The central nodes
set from the Wednesday data are used as anchor nodes



Figure 6: Confusion matrix of the test dataset for Company
C. Most of the misclassified devices were assigned to logically
similar but more prevalent classes.

Figure 7: For the prediction stability experiment models were
trained on data from 80% of devices from Wednesday and
evaluated on the following 6 days to see how long the model
can hold the prediction performance.

Figure 8: Ratio of active devices throughout the week for
Company B.

for evaluation on the remaining six days even though the
network graph structure changes.

Figure 9: The number of active central nodes in data during
the week.

Figure 9 shows that for each company, the number
of active central nodes substantially drops during the
weekend. Since they are not present in the data, the
distance to them cannot be computed and is set to −1
(unreachable). We assume that it is one of the reasons
for the poor performance of the graph-based models on
weekend data.

4.3.2. Company A

Figure 10 shows the accuracies for all models in Company
A. The performance of the GNN model, which was by a
large margin best-performing model for this company in
the previous experiment, deteriorates rapidly and over
the weekend falls below the performance of the baseline
models. The network graph structure changes partic-
ularly during the weekend as many devices (including
central nodes are inactive). Therefore, the GNN model’s
performance falls very fast and only surpasses the other
models on Tuesday, when most devices are active again.
The fact that all timestamps of communication logs are
stored in UTC, and the private network of Company A
lies in multiple different timezones explains why Monday
still partially exhibits weekend behaviour.

4.3.3. Company B and Company C

Again, due to the severe class imbalance, we report the
macro averages of precision and recall, rather than accu-
racy, for Companies B and C in Figure 11 and Figure 12,
respectively.

Since there is no train/test split for datasets from Thurs-
day to Tuesday and the whole day’s worth of data from
all active devices used instead, the low prevalence classes
have more devices, and the issue with unstable confi-
dence intervals from the previous experiment does not
occur. For Company B, the models generally have a sim-



Figure 10: Models’ accuracy with 95% confidence intervals for
Company A. GNN model’s performance deteriorates during
the weekend as the network structure changes and several
central nodes are inactive.

ilar drop in performance over the weekend but retain
their performance on other days.

For Company C, the performance of the GNN degrades
notably faster than for the baseline models that do not
utilise the graph structure because Company C has de-
vices grouped partially by location, similar to Company
A. This claim is further supported by the graph-based
models not having this issue for Company B, with devices
grouped by function and not location.

4.3.4. Summary

The results indicate that the period for which the models
retain their performance depends on a particular network,
the nature of labels, and the model itself. For Company
A, the by-far best GNN model leverages the graph struc-
ture for predictions, but it can’t handle the change of
the graph structure during the weekend. For Company
B, the models’ performance drops during the weekend,
but the models retain their performance the rest of the
days. For Company C, the GNN model degrades, while
the other models retain their performance for a longer pe-
riod. From the previous experiment’s perspective, daily
retraining of the graph models would prevent perfor-
mance loss. Appendix B provides a study of the training
times of each method to support the viability of daily
retaining. Improving graph-based models’ time stability
will be part of our following research.

5. Conclusion
We have presented a semi-supervised approach to classi-
fying network devices using the inherent graph structure

Figure 11: Classification precision and recall with 95% confi-
dence intervals over the week for Company B.

of computer networks. We encoded the global position of
the devices in the network by calculating distances to a
set of central nodes selected by their PageRank centrality
and used graph convolutional neural networks, specifi-
cally GATv2 architecture. Compared with the three base-
line models, the GNN performed better on geographically
structured private networks but struggled with maintain-
ing its performance over the weekend. To overcome this
problem, we plan to experiment with methods for classi-
fication on dynamic graphs in the future.

References
[1] C.-C. Chang, C.-J. Lin, Libsvm: a library for support

vector machines, ACM transactions on intelligent
systems and technology (TIST) 2 (2011) 1–27.

[2] A. Criminisi, J. Shotton, E. Konukoglu, et al., Deci-



Figure 12: Classification precision and recall with 95% confi-
dence intervals over the week for Company C.

sion forests: A unified framework for classification,
regression, density estimation, manifold learning
and semi-supervised learning, Foundations and
Trends® in Computer Graphics and Vision 7 (2012)
81–227.

[3] Y. Freund, R. E. Schapire, A desicion-theoretic
generalization of on-line learning and an applica-
tion to boosting, in: Computational Learning The-
ory: Second European Conference, EuroCOLT’95
Barcelona, Spain, March 13–15, 1995 Proceedings
2, Springer, 1995, pp. 23–37.

[4] L. Tang, H. Liu, Leveraging social media networks
for classification, Data Mining and Knowledge Dis-
covery 23 (2011) 447–478.

[5] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient
estimation of word representations in vector space,
arXiv preprint arXiv:1301.3781 (2013).

[6] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online

learning of social representations, in: Proceedings
of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, 2014, pp.
701–710.

[7] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei,
Line: Large-scale information network embedding,
in: Proceedings of the 24th international conference
on world wide web, 2015, pp. 1067–1077.

[8] A. Grover, J. Leskovec, node2vec: Scalable feature
learning for networks, in: Proceedings of the 22nd
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, 2016, pp. 855–864.

[9] T. Anglade, C. Denis, T. Berthier, A novel
embedding-based framework improving the User
and Entity Behav- ior Analysis, 2019. URL: https:
//hal.sorbonne-universite.fr/hal-02316303, working
paper or preprint.

[10] T. N. Kipf, M. Welling, Semi-supervised classifi-
cation with graph convolutional networks, arXiv
preprint arXiv:1609.02907 (2016).

[11] W. Hamilton, Z. Ying, J. Leskovec, Inductive rep-
resentation learning on large graphs, Advances in
neural information processing systems 30 (2017).

[12] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Lio, Y. Bengio, Graph attention networks, arXiv
preprint arXiv:1710.10903 (2017).

[13] S. Brody, U. Alon, E. Yahav, How attentive
are graph attention networks?, arXiv preprint
arXiv:2105.14491 (2021).

[14] H. Cui, Z. Lu, P. Li, C. Yang, On positional and
structural node features for graph neural networks
on non-attributed graphs, in: Proceedings of the
31st ACM International Conference on Information
& Knowledge Management, 2022, pp. 3898–3902.

[15] B. Claise, Cisco Systems NetFlow Services Ex-
port Version 9, RFC 3954, 2004. URL: https://
www.rfc-editor.org/info/rfc3954. doi:10.17487/
RFC3954.

[16] L. Page, S. Brin, R. Motwani, T. Winograd, The
PageRank citation ranking: Bringing order to the
web., Technical Report, Stanford InfoLab, 1999.

[17] G. King, L. Zeng, Logistic regression in rare events
data, Political analysis 9 (2001) 137–163.

[18] J. N. Van Rijn, F. Hutter, Hyperparameter impor-
tance across datasets, in: Proceedings of the 24th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 2018, pp. 2367–
2376.

[19] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gon-
zalez, I. Stoica, Tune: A research platform for
distributed model selection and training, arXiv
preprint arXiv:1807.05118 (2018).

[20] D. P. Kingma, J. Ba, Adam: A method for stochas-
tic optimization, arXiv preprint arXiv:1412.6980
(2014).

https://hal.sorbonne-universite.fr/hal-02316303
https://hal.sorbonne-universite.fr/hal-02316303
https://www.rfc-editor.org/info/rfc3954
https://www.rfc-editor.org/info/rfc3954
http://dx.doi.org/10.17487/RFC3954
http://dx.doi.org/10.17487/RFC3954


[21] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Rad-
ford, C. Wijenayake, A. Vishwanath, V. Sivaraman,
Classifying iot devices in smart environments us-
ing network traffic characteristics, IEEE Transac-
tions on Mobile Computing 18 (2019) 1745–1759.
doi:10.1109/TMC.2018.2866249.

[22] E. F. de S. Soares, C. A. V. Campos, S. C. de Lucena,
Online travel mode detection method using
automated machine learning and feature engineer-
ing, Future Generation Computer Systems 101
(2019) 1201–1212. URL: https://www.sciencedirect.
com/science/article/pii/S0167739X19305874.
doi:https://doi.org/10.1016/j.future.
2019.07.056.

[23] H. Zhang, Z. Yu, G. Dai, G. Huang, Y. Ding, Y. Xie,
Y. Wang, Understanding gnn computational graph:
A coordinated computation, io, and memory per-
spective, Proceedings of Machine Learning and
Systems 4 (2022) 467–484.

A. Comprehensive list of features
This appendix covers all the device features used in our
research. We inspected the traffic on 14 days of 8 private
networks of various sizes to design the following features
that can be divided into four categories:

1. Port features
2. Time features
3. Networking features
4. Hash features

The utilized device features (except the graph positional
features) are standard features for capturing information
in similarly structured data. Before training and evalu-
ating the models, min-max scaling was applied to the
described features.

A.1. Port features
Source and destination ports of network communication
are well-known sources of behavioural information about
the device [21]. They contain information about what
services are most likely running on the device and what
services it is communicating to.

Therefore, the incoming versus outgoing telemetry
ratio to each service listed in Table 4 is calculated and
used as features, together with the total number of unique
source and destination ports observed.

A.2. Time features
The device’s activity is described by the times it com-
municated or was silent. Firstly, we added 24 features,
representing 24 hours, and calculated percentages of the

service ports
FTP 20,21
SSH 22

Telnet 23, 992
SMTP 25
DNS 53

DHCP 67,68
HTTP 80, 8080, 8008, 8081

NetBios 135-140
BGP 179
LDAP 389

HTTPS 443
LDAP secure 636
FTP secure 989,990

SMB 445
Kerberos 88
SNMP 161
NTP 123
IPP 631

Certificate Management Protocol 829
ISAKMP 500
Sun RPC 111

RLZ DBase 635
webservice unassigned 81

SNPP 444
Multicast DNS 5353

SSDP 1900
Remaining well-known 0-1023
Remaining registered 1024-10 000

Remaining private/ephemeral >10 000

Table 4
Prevalent services observed in the communication logs with
their port numbers.

total communication for each respective hour. Then, the
amount of daily active hours to see how much it commu-
nicates daily. Lastly, we compute skewness and kurtosis
of time differences between each communication to repre-
sent whether the device is active periodically or in bursts.
We chose skewness and kurtosis based on their success
on the time series presented in [22].

A.3. Networking features
The networking features cover communication statistics
in different directions and over different transport proto-
cols. The following list shows the features we use:

• number of all logs
• number of inbound logs
• number of outbound logs
• percentage of outbound logs
• percentage of TCP logs
• percentage of UDP logs
• percentage of private logs

http://dx.doi.org/10.1109/TMC.2018.2866249
https://www.sciencedirect.com/science/article/pii/S0167739X19305874
https://www.sciencedirect.com/science/article/pii/S0167739X19305874
http://dx.doi.org/https://doi.org/10.1016/j.future.2019.07.056
http://dx.doi.org/https://doi.org/10.1016/j.future.2019.07.056


• number of IP addresses in all logs
• number of IP addresses in incoming logs
• number of IP addresses in outgoing logs

A.4. Hash features
The hash features are only available by collecting con-
nection logs directly on the endpoint. The binaries that
initiated the connections are grouped according to their
prevalence to three intervals: the top 10%, in the range
10% - 50%, and the rest. Then, the ratios of binaries
the device uses over the sum of all logs in a given day
are calculated. This help to identify device specific vs
company-specific applications.

B. Training time comparison
This section analyses the time needed for training each
model. Because GNN requires additional graph-based
features, we included preprocessing times in the evalua-
tion.

Figure 13, and Figure 14 display the standalone training
times for all models on Company A and C. The measured
times for Company B are almost identical to Company
A. The times for GNN are reported for training on the
CPU and GPU for AI inference, the NVIDIA T4 Tensor
Core GPU. The GPU training is around five times faster
compared to the training on a CPU.

Figure 13: Training times of each model for Company A. The
training times were averaged over ten runs.

There is a considerable difference in resource consump-
tion among the models, especially on the largest network
of Company C. For better overall assessment, all data pro-
cessing must be considered. Therefore, Figures 15, and
Figure 16, respectively, show the time taken to process
raw logs, create the respective dataset, and train each

Figure 14: Training times of each model for Company C. The
training times were averaged over ten runs.

model. The device-matching algorithm is a constant spe-
cific to the endpoint data. Overall, device matching and
computation of device features consume the majority of
the time.

Figure 15: End-to-end processing times for each of the models
on Company A.

For the largest network, Company C, the GNN takes
longer due to issues discussed, for example, in [23]. The
training times could be reduced by, e.g., a neighbourhood
sampling mechanism or a simpler neighbourhood aggre-
gating scheme, resulting in smaller computational graphs
and faster forward and backward passes during training.

One of the key takeaways from the presented compar-
isons is that most of the time is consumed by preprocess-
ing raw logs rather than by model training. Furthermore,
the models do not have to be retrained from scratch but
only fine-tuned for the current data, further reducing the
required training time.



Figure 16: End-to-end processing times for each of the models
on Company C.

C. GNN hyperparameters
Table 5 presents the resulting optimal hyperparameters
of the model and training procedure for each company
found through a hyperparameter grid search.

parameter Cust. A Cust. B Cust. C
learning rate 0.003 0.01 0.004
num_heads 8 4 10

embedding_dim 4 4 40
l2_reg 0.004 0.04 0.001

dropout 0.4 0.2 0.1
n_epochs 400 200 250

Table 5
The obtained set o optimal hyperparameters for the GNN
model for each company. These hyperparameters were then
used for each model training in the described experiments.

Adam optimizer was used for training the neural net-
works with the respective learning rate and hyperparam-
eters.


	1 Introduction
	2 Prior art
	3 Data description and feature engineering
	3.1 Device features
	3.2 Graph-based features
	3.3 Device labels

	4 Experimental evaluation
	4.1 Experimental setup
	4.2 Training stability
	4.2.1 Company A
	4.2.2 Company B
	4.2.3 Company C
	4.2.4 Summary

	4.3 Prediction stability
	4.3.1 Class distribution
	4.3.2 Company A
	4.3.3 Company B and Company C
	4.3.4 Summary


	5 Conclusion
	A Comprehensive list of features
	A.1 Port features
	A.2 Time features
	A.3 Networking features
	A.4 Hash features

	B Training time comparison
	C GNN hyperparameters

