
Covering complete graphs using the dancing links
algorithm⋆

Petr Kovář1,*,S, Yifan Zhang1,S

1VŠB - Technical University of Ostrava, Department of Applied Mathematics, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic

Abstract
The dancing links algorithm by Knuth can be used to find decompositions of a complete graph efficiently. In this paper, we
generalize it to find covers of a complete graph by cliques as well. This problem arose as one step of a parallel implementation
of the bounded element method when solving partial differential equations. The modification brought up an issue of counting
certain covers of multiple edges multiple times. Having solved the problem by imposing a natural order, we show the
computational results achieved by the modified algorithm.

Keywords
graph covering, combinatorial design, dancing links, complete graph

1. Motivation
Boundary element methods (BEM) have become a useful
tool for solving partial differential equations. In compari-
son to widely used discretization techniques, as smaller
systems with fewer degrees of freedom they offer certain
advantages. However, when implementing BEM, one of
the major difficulties lies in dense matrices. To parallelize
the computation, a method of decomposing a dense ma-
trix into (dense) submatrices using cyclic decomposition
of complete graphs 𝐾𝑛 into 𝑛 complete subgraphs 𝐾𝑘

was introduced in [1]. This translates to a decomposi-
tion of an 𝑛 by 𝑛 block matrix to 𝑛 submatrices with
𝑘 by 𝑘 blocks each, in which only one diagonal block
is occupied. The additional requirement for the decom-
position to be cyclic simplified the implementation, but
introduced certain restrictions. The parameters 𝑛 and 𝑘
are not independent: a necessary condition for a cyclic
decomposition to exist is 𝑛 = 𝑘2 − 𝑘 + 1. Moreover,
the existence of a cyclic decomposition follows from the
existence of the so called 𝜌-labeling, for which existence
is guaranteed only if 𝑘 − 1 is a prime power.

When 𝑛 becomes large, the cyclic decomposition is
suitable only for parallel systems with shared memory.
At the same time, parameter 𝑘 is preferably small. The ar-
chitecture of contemporary supercomputers relies rather
on fast local memory for each processor or each core,

23rd Conference ITAT: Workshop on the Computational Aspects of
Large-Scale Problems in Discrete Mathematics, September 22–26, 2023,
Vysoké Tatry, Slovakia
⋆

2000 MSC: 05C70, 05C78
*Corresponding author.
S

These authors contributed equally.
$ petr.kovar@vsb.cz (P. Kovář)
� http://homel.vsb.cz/~kov16 (P. Kovář)
� 0000-0002-7847-5060 (P. Kovář)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

however the core memory is rather limited. While com-
putation is cheap, memory and data transfer are expen-
sive, therefore it is favorable to keep 𝑘 small.

1.1. Covering of complete graphs
In this paper, we address the hardest part of the BEM
implementation - the problem of decomposing 𝐾𝑛 into
𝐾𝑘’s where 𝑘 is a small integer while 𝑛 grows along with
the number of available cores. In general, such decom-
position cannot be cyclic. For fixed 𝑘 = 3 and 𝑘 = 4
constructions based on Steiner triple or quadruple sys-
tems can be used for certain limited values of 𝑛. For
remaining values of 𝑛 we use covers in addition to de-
composition. We want to guarantee that only a small
percentage of computation will be doubled. This can be
modeled by graph coverings with a small number of dou-
bly or triply covered edges called excess. Constructions
of covers are known for fixed values 𝑘 = 3, 𝑘 = 4 as
well as for most values 𝑘 = 5 and 𝑘 = 6.

Covering of 𝐾𝑛 by 𝐾𝑘 for a single fixed 𝑘, 𝑘 = 3, 4
with a given excess is based on results by Hanani [2]
and Mills [3], [4] and other authors and can be found in
[5]. Covers using simultaneously 𝐾3 and 𝐾4 allow an
even smaller excess. In Section 4 we provide solutions for
small 𝑛 found by brute force and compare the running
times.

To find such covers for small 𝑛 by brute force, we suc-
cessfully use a modification of the dancing link algorithm
(DLX) by Donald Knuth [6]. Even though the solution
of the decomposition problem (exact cover problem in
Knuth’s terminology) is NP hard in general, the efficient
implementation of the DLX algorithm allows to find solu-
tions for not very large 𝑛 or in some cases even disprove
the existence for certain small values of 𝑛. In this pa-
per we present two ways of modifying the algorithm for
solving a covering problem instead of a decomposition

mailto:petr.kovar@vsb.cz
http://homel.vsb.cz/~kov16
https://orcid.org/0000-0002-7847-5060
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


problem. One modification is based on extending the
data structure, while the other is a modification of the
algorithm itself. In the forthcoming sections, we describe
the two approaches.

1.2. Decomposition of complete graphs
using the dancing links algorithm

The dancing links algorithm, proposed by Donald
E. Knuth in [6], has been an efficient1 approach to solving
the exact cover problem, in which a matrix of 0s and 1s is
given and we would like to determine whether it admits
a set of rows containing exactly one 1 in each column.
For example, the following matrix has such a set formed
by the rows 2 and 3.⎛⎜⎜⎜⎜⎜⎜⎝

1 1 0 1 0 0 1
0 1 1 0 1 1 0
1 0 0 1 0 0 1
0 1 1 0 1 1 1
1 0 1 1 1 1 0
1 1 1 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
A special data structure is suggested by Knuth to im-

plement the algorithm, that each 1 in the matrix be repre-
sented by a data object 𝑥 with five fields including 𝐿[𝑥],
𝑅[𝑥], 𝑈 [𝑥], 𝐷[𝑥], pointing circularly left, right, up, down
to the neighbour of 𝑥, as well as 𝐶[𝑥] that links 𝑥 to the
column object it belongs to. Situated in the list header,
each column object 𝑦 has two additional fields besides
those attributed to a normal data object, its size 𝑆[𝑦]
which counts the number of 1s in the column as well as
its name 𝑁 [𝑦] that serves as an identifier for printing.
An additional root object ℎ is added linking all column
objects circularly, i.e. 𝑅[ℎ] points to the leftmost column,
while 𝐿[ℎ] to the rightmost one. The object ℎ does not
admit the other fields, i.e. 𝑈 [ℎ], 𝐷[ℎ], 𝐶[ℎ], 𝑆[ℎ] and
𝑁 [ℎ] are not used.

The algorithm works as follows. A depth-first search
tree is set up by invoking search(0). As long as there is
at least one column in the list headers, the algorithm
chooses the leftmost column, and tries to form a solu-
tion by the first row that is able to cover this column.
The choice of column we made here left the field 𝑆 un-
used throughout the algorithm. Before continuing, the
algorithm requires the chosen column to be “removed”
by modifying the links of its neighbours in the func-
tion cover_column. Other columns covered by the same
row need to be “removed” in the same way, so that the
size of the data matrix will decrease. Then search(1) is
invoked recursively on the shrunk matrix to include an-
other row in the partial solution. If this partial solu-
tion turns out to be a valid solution, it is printed by the
function print_solution when the corresponding search

1It is a frugal approach to the problem, albeit not polynomial.

reaches a point where all columns have been “removed”,
i.e. 𝑅[ℎ] = ℎ. Then the algorithm goes back to the
last level of depth and attempts to include the next row
that covers the same column, as soon as the “removed”
columns are “restored” in the matrix by the correspond-
ing modifications of links in the function uncover_column.
The output of the algorithm would contain all feasible
solutions to the exact cover problem, while it also makes
sense to stop after finding the first solution when we are
only interested in the existence of a solution.

def choose_column():
return R[h]

def cover_column(c):
L[R[c]] = L[c]
R[L[c]] = R[c]
i = D[c]
while i != c:

j = R[i]
while j != i:

U[D[j]] = U[j]
D[U[j]] = D[j]
j = R[j]

i = D[i]
return

def uncover_column(c):
i = U[c]
while i != c:

j = L[i]
while j != i:

U[D[j]] = j
D[U[j]] = j
j = L[j]

i = U[i]
L[R[c]] = c
R[L[c]] = c
return

def print_solution():
s = []
for o in partial_solution:

row = [N[C[o]]]
p = R[o]
while p != o:

row.append(N[C[p]])
p = R[p]

s.append[row]
print(s)
return

def search(depth):
if R[h] == h:

print_solution()



return
else:

c = choose_column()
cover_column(c)
r = D[c]
while r != c:

partial_solution.append(r)
j = R[r]
while j != r:

cover_column(C[j])
j = R[j]

search(depth + 1)
r = partial_solution.pop()
c = C[r]
j = L[r]
while j != r:

uncover_column(C[j])
j = L[j]

r = D[r]
uncover_column(c)
return

The decomposition of a complete graph 𝐾𝑛 by copies
of a smaller complete graph 𝐾𝑘 (𝑘 ≤ 𝑛) can be naturally
modelled as an exact cover problem, in which the edges
of 𝐾𝑛 are treated as columns and the subgraphs of 𝐾𝑛

isomorphic to 𝐾𝑘 serve as the rows: one row for every
choice of 𝑘 vertices from the 𝑛 with ones denoting the
edges contained in the particular choice.

For example, consider the decomposition of 𝐾7 into
𝐾3, where 21 columns are given, each correspond-
ing to an edge of 𝐾7, and there are

(︀
7
3

)︀
= 35 rows

that represent the 35 𝐾3-subgraphs of 𝐾7. Denote
the vertices of 𝐾7 by 1, 2, · · · , 7, and let 𝑒𝑖,𝑗 :=

(0, · · · , 0,
edge 𝑖-𝑗
1 , 0, · · · , 0), then, for instance, the row

corresponding to the triangle ∆123 has the form 𝑒1,2 +
𝑒1,3 + 𝑒2,3. Apparently, the rows 𝑒1,2 + 𝑒1,4 + 𝑒2,4,
𝑒2,3 + 𝑒2,5 + 𝑒3,5, 𝑒3,4 + 𝑒3,6 + 𝑒4,6, 𝑒4,5 + 𝑒4,7 + 𝑒5,7,
𝑒1,5+𝑒1,6+𝑒5,6, 𝑒2,6+𝑒2,7+𝑒6,7 and 𝑒1,7+𝑒1,3+𝑒3,7
constitute a solution to the exact cover problem, which
corresponds to the decomposition of the 𝐾7 into the
following 7 copies of 𝐾3:

{∆124,∆235,∆346,∆457,∆156,∆267,∆137}.

To count the number of feasible coverings from a the-
oretical perspective, notice that fixing the triangle ∆123
in the solution is equivalent to choosing 3 as the last
element in the triangle covering the edge 1-2 among 5
options: 3, 4, 5, 6, 7; fixing also ∆145 is equivalent to
choosing 5 as the last element in the triangle covering 1-
4 among 3 options: 5, 6, 7; then fixing∆246 is equivalent
to choosing 6 as the last element in the triangle covering
2-4 among 2 options: 6, 7; and it is now apparent that the
remaining part of the solution is unique: ∆167, ∆356,
∆257 and ∆347.

When the structure of 21 columns and 35 rows are
inputted, the dancing links algorithm finds 30 solutions
for the decomposition of 𝐾7 into 𝐾3, as expected.

2. Covering complete graphs using
the dancing links algorithm

The major challenge posed to the original dancing links
algorithm when considering the covering rather than
the decomposition of a complete graph is that a solution
may contain more than one row covering the same col-
umn. This section suggests possible modifications to the
original algorithm in order to overcome this issue.

2.1. Extra columns
In graph coverings, the excess multigraph is often not
determined uniquely. When the excess is fully known,
it seems natural to add the edges in the excess as extra
columns, so that the covering problem is transformed to
a decomposition one.

For example, consider the covering of 𝐾6 by 6 copies
of 𝐾3, of which the excess is known ([5], p. 371, Table
VI.11.41) to be a perfect matching of 𝐾6. Without loss of
generality, assume the doubled edges are 1-2, 3-4 and 5-6,
then the dancing links structure would contain 15+3 =
18 columns corresponding to the edges. However, notice
that the rows containing one of the three extra edges,
such as 𝑒1,2 + 𝑒1,3 + 𝑒2,3 and 𝑒4,5 + 𝑒5,6 + 𝑒4,6, must
be doubled in the data structure, resulting in 32 rows
instead of 20.

Introducing extra columns does not only bring about
bloated data structure, but also redundant solutions. If
some solution contains a row that has been doubled when
building the data structure, it would appear again as
another solution including the clone of the same row.
For instance, solving the covering problem of 𝐾6 by 𝐾3

with 3 extra columns as mentioned above using dancing
links yields 16 solutions, of which only 2 are genuinely
different from each other.

2.2. Revisiting columns
Besides introducing extra columns, the algorithm can be
steered to revisit a column as long as it is not “removed"
from the structure during the last visit, which motivates
us to assign a multiplicity 𝑀 [𝑥] to each column 𝑥 in the
original data structure that equals 1 by default. When
an edge is in the excess of a covering problem, we raise
the multiplicity of the corresponding column to match
the amount it needs to be covered. The 𝑀 vector can be
implemented as an additional field of the header elements.
For example, when covered by triangles, if we order the



edges of 𝐾6 lexicographically, then the 𝑀 vector would
be

edge 1-2
2 , 1, 1, 1, 1, 1, 1, 1, 1,

edge 3-4
2 , 1, 1, 1, 1,

edge 5-6
2 .

We modify the functions cover_column and un-
cover_column accordingly so that the multiplicity is al-
ways increased or decreased by 1 while the “removal"
or “restoration" of the column only happens when its
multiplicity is 1 or 0, respectively.

def cover_column(c):
if M[c] == 1:

L[R[c]] = L[c]
R[L[c]] = R[c]
i = D[c]
while i != c:

j = R[i]
while j != i:

U[D[j]] = U[j]
D[U[j]] = D[j]
j = R[j]

i = D[i]
M[c] -= 1
return

def uncover_column(c):
if M[c] == 0:

i = U[c]
while i != c:

j = L[i]
while j != i:

U[D[j]] = j
D[U[j]] = j
j = L[j]

i = U[i]
L[R[c]] = c
R[L[c]] = c

M[c] += 1
return

This approach avoids the unnecessary expansion of
data structure, while continues to generate duplicate so-
lutions. Suppose two rows cover the same column and
sit in a feasible solution to a covering problem, the same
solution may reappear with the two rows included in the
reverse order. If the leftmost column has a high multiplic-
ity, the algorithm yields numerous duplicate solutions;
in comparison, if the column with higher multiplicity is
placed further to the right in the structure, as the data
matrix shrinks during the search, the algorithm tends to
generate fewer duplicate solutions.

For example, consider the covering of 𝐾5 by 4 copies
of 𝐾3, of which the excess is known ([5], p. 371, Table
VI.11.41) to be a double edge. With the edges of 𝐾5 or-
dered lexicographically, assigning multiplicity 3 to the

leftmost column corresponding to the edge 1-2 yields
6 solutions of which all are essentially the same: a per-
mutation of ∆123, ∆124, ∆125 together with ∆345,
while assigning multiplicity 3 to the rightmost column
4-5 yields a unique solution: ∆123, ∆145, ∆245, ∆345.

3. Efficiency considerations
This section evaluates the dancing links algorithm
adapted to the covering problem in Section 2.2. Some im-
provements to eliminate multiple counts are suggested.

3.1. Ordered search of rows
An apparent shortcoming of our algorithm is the redun-
dant search of rows covering the same column with non-
trivial multiplicity, which not only produces an inaccu-
rate number of solutions, if any exist, but also harms the
efficiency of the algorithm. To address the issue, when
covering such a column, the rows containing it should
be processed only in a certain order.

One approach is to introduce an order on the elements
in each column. More specifically, we return the cur-
rently processed row 𝑟 in the search function, and start
the next search from the next valid row once the columns
concerned are properly “removed" by the cover_column
function. This idea is realised by introducing the previ-
ously unused field 𝑆[𝑥] to each data object 𝑥: the objects
in a column 𝑐 are assigned values 1, 2, · · · , 𝑆[𝑐] from the
top row to the bottom. The modified search function (see
the lines 8–13 below) follows.

def search(depth, prev):
if R[h] == h:

print_solution()
return prev

else:
c = choose_column()
cover_column(c)
r = D[c]
if c == C[prev]:

while S[r] < S[prev]:
if r == c:

break
r = D[r]

while r != c:
partial_solution.append(r)
j = R[r]
while j != r:

cover_column(C[j])
j = R[j]

search(depth + 1, r)
r = partial_solution.pop()
c = C[r]
j = L[r]



while j != r:
uncover_column(C[j])
j = L[j]

r = D[r]
uncover_column(c)
return r

3.2. Exploiting the symmetry
In addition to the redundant solutions addressed in Sec-
tion 3.1, another factor that increases the size of output
is that some solutions are simply a permutation of ver-
tices applied to one another, such as the following two
decompositions of 𝐾7 into 𝐾3:

{∆124,∆235,∆346,∆457,∆156,∆267,∆137},
{∆123,∆245,∆346,∆357,∆156,∆267,∆147}.

If we draw the vertices 1, 2, · · · , 7 of 𝐾7 cyclically, the
first solution above is a cyclic decomposition into 𝐾3

while the second seems not to be cyclic. However, if we
swap the vertices 3 and 4, the second solution becomes
cyclic as well, which implies that the two solutions are
equivalent.

Multiple counts of equivalent solutions appeared al-
ready in graph decompositions. Motivated by such con-
siderations, we can fix certain row(s) when searching
solutions using the dancing links algorithm to omit equiv-
alent solutions, provided that merely the existence of any
solution interests us. The implementation follows.

def utilise_row(r):
partial_solution.append(r)
obj = r
while True:

cover_column(C[obj])
obj = R[obj]
if obj == r:

break
return

After the data setup, we may execute several lines
of utilise_row to restrict our attention to the solutions
containing certain rows, before invoking search(0). For
the sake of conservation of the structure, it is advisable to
call the following neutralise_row function in the opposite
order after the search of solutions, when the original data
structure is properly restored.

def neutralise_row(r):
if partial_solution.pop() != r:

return -1
else:

obj = L[r]
while True:

uncover_column(C[obj])

obj = L[obj]
if obj == L[r]:

break
return

For instance, with the following lines executed, the
algorithm finds only 2 decompositions of 𝐾7 into 𝐾3

containing the triangles ∆123 and ∆145, as expected.

utilise_row('1, 2, 3')
utilise_row('1, 4, 5')
search(0)
neutralise_row('1, 4, 5')
neutralise_row('1, 2, 3')

It is worth mentioning that some solutions, even some-
times all, may be omitted when a search bears too many
fixed rows. Further research can be carried out on the
maximal amount of (independent) rows one is able to fix
while preventing the algorithm from missing a solution.

4. Computations
To demonstrate the efficiency of the DLX algorithm for
the cover problem, we summarize computation times
for finding all solutions when covering 𝐾𝑛 by 𝐾𝑘 for
𝑘 = 3, 4 along with the count of all possible covers.
Confirming the existence by finding the first solution,
provided it exists, for 𝑛 in Tables 2 through 4 took less
than 1 second in each of the cases. Table 1 compares run-
ning times of the original dancing link algorithm with
the modified algorithm where decomposition (not cover)
is possible, since the DLX algorithm does not support
covers. The times are essentially identical, since the modi-
fication did not have much influence on the performance.

Tables 2 through 4 then compare running times of the
cover problem for different sizes of the covered graph.
Columns 3 and 4 give the counts and times when finding
all possible covers using the modification of the DLX al-
gorithm described in Section 2.2, where some equivalent
solutions are counted multiple times. Columns 5 and
6 give the counts and times when finding all possible
covers eliminating multiple counts (and thus reducing
the number of cases to traverse) using the modification
described in Section 3.1.

Other approaches have been used to find complete
graph decompositions using a brute force search. In [7]
were graph decompositions found via a SAT solver. The
authors say that to produce a 𝐾6 decomposition of 𝐾31

took about 100 seconds. Using our implementation of
the DLX algorithm it took about 25 seconds to set up the
data structure described in Section 1.2 for the 𝐾6 decom-
position of 𝐾31 (465 columns and 736 281 rows). Then
however a decomposition was found in less than 1 second.



n k count all time [s] count unique time [s]
7 3 30 0 30 0
9 3 840 0 840 0
13 3 1 197 504 000 9141 1 197 504 000 9120
13 4 1 108 800 14 1 108 800 14
16 6 0 72 0 70

Table 1
Comparing original DLX and modified DLX algorithm for
decompositions of 𝐾𝑛 into 𝐾𝑘 .

n excess count all time [s] count unique time [s]
5 (𝐾2)2 6 0 1 0
6 𝑀 2 0 2 0
7 ∅ 30 0 30 0
8 𝐾1,3 ∪𝑀 276 0 96 0
9 ∅ 840 0 840 0
10 𝑀 36 952 0 12 384 0
11 (𝐾2)2 1 088 640 11 181 440 1
12 𝑀 25 952 624 486 17 291 520 231
13 ∅ 1 197 504 000 8854 1 197 504 000 9089

Table 2
Single CPU times for computing all coverings of 𝐾𝑛 with
given excess by 𝐾3.

n excess count all time [s] count unique time [s]
6 𝑀 1 0 1 0
7 2𝐶3 ∪ (𝐾2)2 6 0 0 0
8 2(𝐾2)2 ∪ 𝐶4 24 0 2 0
9 𝐾1,4 ∪𝑀 0 0 0 0
10 (𝐾2)3 0 0 0 0
11 𝐶11 4 0 2 0
12 𝑀 240 0 240 0
13 ∅ 1 108 800 14 1 108 800 13
14 3𝐾3 ∪𝑋 22 565 808 1821 4 969 400 554

Table 3
Single CPU times for computing all coverings of 𝐾𝑛 with
given excess by 𝐾4.

On the other hand, the nonexistence of a 𝐾6 decomposi-
tion of 𝐾16 was shown in less than a second by UNSAT
in [7], while our algorithm gave the negative answer only
after traversing the whole search tree in 70 seconds. All
computations were performed on a notebook with an i5
core at 2.5 GHz.

When running the DLX algorithm for 𝑘 = 3 and 𝑘 = 4
we include the positive answers only (Tables 2 and 3),
since the existence is known. When covering 𝐾𝑛 simul-
tanously by 𝐾3 and 𝐾4 we provide running times of
the DLX algorithm even in some cases when no solution
exists (e.g. with excess 𝐾2), which was demonstrated by
a brute force search with negative outcome (Table 4).

n excess count all time [s] count unique time [s]
6 ∅ 0 0 0 0
6 𝑀 3 0 3 0
7 ∅ 30 0 30 0
8 ∅ 0 0 0 0
8 (𝐾2)2 180 1 30 0
9 ∅ 840 0 840 0
10 ∅ 33 600 0 33 600 1
11 ∅ 0 9 0 8
11 (𝐾2)2 1 088 640 41 181 440 8
12 ∅ 4 435 200 807 4 435 200 756
12 𝑀 26 948 244 4337 18 152 400 3852
12 𝐾2 1 672 0 0 730

Table 4
Single CPU times for computing all coverings of 𝐾𝑛 with
given excess simultanously by 𝐾3 and 𝐾4.

5. Conclusion
Dancing link algorithm was introduced as an efficient
implementation for a set decomposition problem. An
easy modification of the data structure used by the algo-
rithm is suitable for certain packing problems of 𝐾𝑘 into
a supergraph 𝐾𝑛 (some edges are not included in the
subgraphs and form the padding) was already provided
by Knuth in the paper [6]. The advantage of the approach
is that the padding needs not to be specified ahead.

In this paper we discuss the modification of the original
algorithm suitable for covering problems with specified
excess. A simple modification of the structure with addi-
tional columns is mentioned briefly (Section 2.1). A sec-
ond approach that modifies the algorithm rather than the
structure is described in more detail (Section 2.2). The
modification implements a required cover count for every
element and covering a column decreases this column
count until it can be covered when the count reaches
zero.

The efficiency is briefly demonstrated in Section 4.
The row 𝑛 = 12 of Table 2 shows the algorithms did
find more than 17 million different covers in 231 seconds
when distinguishing vertex labels. The solutions were
just counted, not stored. Would we store a simple text
description of each solution, the output takes 12 GB (!)
and the running time would be nearly doubled (additional
220 s when writing on an SSD disk). This suggests a
rough estimate for 𝑛 = 12 and 𝑘 = 3: finding a single
solution using DLX algorithm is comparable to storing
the solution on a media. For 𝑛 = 13 we did find the
count of more than a billion solutions in 2.5 hours, but
we did not attempt to store the covers.

Acknowledgments
This work is partially supported by Grant of SGS



No. SP2023/011, VŠB–Technical University of Ostrava,
Czech Republic.

References
[1] D. Lukáš, P. Kovář, T. Kovářová, M. Merta, A parallel

fast boundary element method using cyclic graph
decompositions, Numerical Algorithms 70 (2015)
807–824. doi:10.1007/s11075-015-9974-9.

[2] H. Hanani, Balanced incomplete block designs and
related designs, Discrete Mathematics 11 (1975) 255–
369. doi:10.1016/0012-365X(75)90040-0.

[3] W. Mills, On the covering of pairs by quadruples i,
Journal of Combinatorial Theory, Series A 13 (1972)
55–78. doi:10.1016/0097-3165(72)90008-8.

[4] W. Mills, On the covering of pairs by quadru-
ples. ii, Journal of Combinatorial Theory, Series A
15 (1973) 138–166. doi:10.1016/S0097-3165(73)
80003-2.

[5] C. J. Colbourn, J. H. Dinitz (Eds.), Handbook of com-
binatorial designs, 2nd. ed., CRC Press, 2007.

[6] D. E. Knuth, Dancing links, 2000.
arXiv:cs/0011047.

[7] W. Zhao, M. Liffiton, P. Jeavons, D. Roberts, Find-
ing graph decompositions via sat, 2017 IEEE 29th
International Conference on Tools with Artificial
Intelligence (ICTAI) (2017) 131–138. doi:10.1109/
ICTAI.2017.00031.

http://dx.doi.org/10.1007/s11075-015-9974-9
http://dx.doi.org/10.1016/0012-365X(75)90040-0
http://dx.doi.org/10.1016/0097-3165(72)90008-8
http://dx.doi.org/10.1016/S0097-3165(73)80003-2
http://dx.doi.org/10.1016/S0097-3165(73)80003-2
http://arxiv.org/abs/cs/0011047
http://dx.doi.org/10.1109/ICTAI.2017.00031
http://dx.doi.org/10.1109/ICTAI.2017.00031

	1 Motivation
	1.1 Covering of complete graphs
	1.2 Decomposition of complete graphs using the dancing links algorithm

	2 Covering complete graphs using the dancing links algorithm
	2.1 Extra columns
	2.2 Revisiting columns

	3 Efficiency considerations
	3.1 Ordered search of rows
	3.2 Exploiting the symmetry

	4 Computations
	5 Conclusion

