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Abstract
A Siamese color graph is an edge decomposition of a complete graph into strongly regular subgraphs sharing a spread. Using
a computer aided exhaustive search we completely classify so called geometric Siamese color graphs on 40 vertices. We also
independently confirm the classifications of Siamese color graphs on 15 vertices originally obtained by M. Klin, S. Reichard,
and A. Woldar.
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1. Introduction
Siamese color graphs were initially introduced by
Kharaghani and Torabi in [1] using algebraic meth-
ods and later studied by Klin, Reichard, and Woldar in
[2, 3] from the geometric point of view. Kharaghani
and Torabi provided an infinite class of Siamese color
graphs arising from an infinite class of balanced gen-
eralized weighing matrices supplied by Gibbons and
Mathon in [4]. Klin, Reichard, and Woldar presented
a complete list of Siamese color graphs on 15 vertices
and some geometric Siamese color graphs on 40 ver-
tices [2, 3]. Most results obtained so far concern Siamese
color graph with strongly regular graphs with parame-
ters (1 + 𝑞 + 𝑞2 + 𝑞3, 𝑞2 + 𝑞,−1 + 𝑞, 1 + 𝑞, 𝑞). Such
graphs are pseudo-geometric with respect to generalised
quadrangles of order 𝑞 and are known to exist for all
prime powers.

2. Preliminaries

2.1. Partial geometries and strongly
regular graphs

A partial geometry is an incidence structure with parame-
ters (𝐾,𝑅, 𝑇 ) such that each block (or line) contains 𝐾
points, each point lays on 𝑅 lines, each pair of distinct
points lay on at most one line, and for each line 𝑙 and
point 𝑝 not on 𝑙, there exist exactly 𝑇 lines through 𝑝
that intersect 𝑙.

By double-counting, it is easy to see that any such
structure has 𝐾((𝐾 − 1)(𝑅 − 1)/𝑇 + 1) points and
𝑅((𝐾 − 1)(𝑅− 1)/𝑇 + 1) lines.
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One of the objects related to an incidence structure is
its point graph (or collinearity graph). It is a graph whose
vertices are the points of the incidence structure and two
vertices are connected by an edge if and only if they lay
on the same line.

A strongly regular graph with parameters (𝑣, 𝑘, 𝜆, 𝜇)
is a regular graph with order 𝑣 and valency 0 < 𝑘 <
𝑣 − 1 such that every pair of adjacent vertices in Γ have
𝜆 common neighbours, and every pair of non-adjacent
vertices have 𝜇 common neighbours.

It is easy to show, that the point graph of any partial
geometry is strongly regular with parameters

𝑣 = 𝐾 ((𝐾−1)(𝑅−1)/𝑇 + 1) ,

𝑘 = (𝐾 − 1)𝑅,

𝜆 = (𝐾 − 2) + (𝑅− 1)(𝑇 − 1),

𝜇 = 𝑅𝑇.

On the other hand, if a strongly regular graph is the
point graph of a suitable partial geometry, it is said to be
geometric and if its parameter set coincides with that of
a geometric strongly regular graph, it is called pseudo-
geometric.

A spread of a partial geometry is a set of pairwise
disjoint lines that together contain all the points of the
geometry.
Since a spread divides 𝐾 ((𝐾−1)(𝑅−1)/𝑇 + 1) points of
the partial geometry into mutually disjoint sets of 𝐾
points, there are (𝐾−1)(𝑅−1)/𝑇 + 1 lines in one spread.

Any two points on the same line in the spread must be
adjacent in the point graph, therefore all points belonging
to the same line in the spread form a clique in the point
graph. If we have a spread of a partial geometry, it spans
the set of points by (𝐾−1)(𝑅−1)

𝑇
+ 1 lines, therefore, in

the point graph, there is a set of (𝐾−1)(𝑅−1)
𝑇

+ 1 = 𝑣
𝐾

cliques of size 𝐾 . In accordance, if we have any graph Γ
with disjoint set of same-size cliques that span the whole
Γ, we shall call it a spread in Γ.
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Let there be a spread 𝑆 in a partial geometry with
parameters (𝐾,𝑅, 𝑇 ), let 𝑙,𝑚 be distinct lines of 𝑆, for
any point 𝑝 on 𝑚, there are exactly 𝑇 lines through 𝑝
that intersect 𝑙 through 𝑇 different points. Similarly, for
any point 𝑞 on 𝑙, there are exactly 𝑇 lines through 𝑞 that
intersect 𝑚 through 𝑇 different points. Therefore there
are exactly 𝐾𝑇 different lines that intersect both 𝑙 and
𝑚, and they do so in pair-wise different pairs of points
on 𝑙 and 𝑚.

Lemma 1. Let (𝐾,𝑅, 𝑇 ) be a partial geometry with a
spread, then for any two lines 𝑙,𝑚 in the spread there are
exactly 𝐾𝑇 other lines that intersect both of them. Each
point on 𝑙 is contained in exactly 𝑇 of these lines.

A (finite) generalized quadrangle with parameters (𝑠, 𝑡)
is an incidence structure 𝑊 satisfying the following ax-
ioms:

1. Each point is incident with 𝑡+1 lines (𝑡 ≥ 1) and
two distinct points are incident with at most one
line.

2. Each line is incident with 𝑠 + 1 points (𝑠 ≥ 1)
and two distinct lines are incident with at most
one point.

3. If 𝑥 is a point and 𝑙 is a line not incident with 𝑥,
then there exists exactly one line through 𝑥 that
intersects 𝑙.

The pair (𝑠, 𝑡) is called the order of 𝑊 . Hereinafter, we
will refer to a generalized quadrangle of order (𝑠, 𝑡) as
𝐺𝑄(𝑠, 𝑡).

It is straightforward to show that generalised quad-
rangles are a particular case of partial geometries. In
particular, the generalised quadrangles of orders (𝑠, 𝑡)
are exactly the partial geometries with parameters (𝑠+
1, 𝑡+ 1, 1).

Hence, the point graph of a generalised quadrangle of
order (𝑠, 𝑡) is a strongly regular graph with parameters
(𝑣, 𝑘, 𝜆, 𝜇), where

𝑣 = (𝑠+ 1)(𝑠𝑡+ 1),

𝑘 = 𝑠(𝑡+ 1),

𝜆 = 𝑠− 1,

𝜇 = 𝑡+ 1.

Every line in 𝐺𝑄(𝑠, 𝑡) gives rise to a clique of size
1+ 𝑠 in the point graph. On the other hand, there are no
other cliques as the third condition in the definition of
generalized quadrangles tells us that every three points
that induce a 𝐾3 in the point graph must belong to the
same line.

Incidentally, there is a one-to-one correspondence be-
tween spreads in 𝐺𝑄(𝑠, 𝑡) and those spreads in its point
graph which consist of (1 + 𝑠𝑡) cliques of size 1 + 𝑠.

Based on Lemma 1, we can observe that any two
cliques in the spread are connected by exactly 1 + 𝑠
edges, that is, a perfect matching. This can be expressed
as follows.

Lemma 2. If we arrange the vertices of the point graph of
𝐺𝑄(𝑠, 𝑡) with a spread 𝑆 according to their corresponding
cliques, the resulting adjacency matrix can be represented
by (1+𝑠𝑡)×(1+𝑠𝑡) blocks with each block of size of (1+
𝑠)× (1+ 𝑠). The diagonal blocks of the matrix correspond
to the adjacency matrices of the cliques, i.e. 𝐽 − 𝐼 , while
the off-diagonal blocks correspond to permutation matrices,
that is, the incidence matrices of 1-factors.

Given a Γ with diameter 𝑑, Γ is a distance-regular
graph if and only if there is an array of integers
{𝑏0, 𝑏1, . . . , 𝑏𝑑−1; 𝑐1, 𝑐2, . . . , 𝑐𝑑} such that for all 1 ≤
𝑗 ≤ 𝑑, and any pair of vertices 𝑢 and 𝑣 at a distance 𝑗
in Γ, 𝑏𝑗 gives the number of neighbours of 𝑢 at distance
𝑗 + 1 from 𝑣 and 𝑐𝑗 gives the number of neighbours
of 𝑢 at a distance 𝑗 − 1 from 𝑣. The array of integers
characterising a distance-regular graph is known as its
intersection array.

It was shown by Brouwer in [5] that the removal of a
spread 𝑆 from a pseudo-geometric or geometric strongly
regular graph Γ with a spread and parameters coinciding
to parameters of the point graph of 𝐺𝑄(𝑠, 𝑡) gives us
a distance-regular graph of diameter 3 with antipodal
system 𝑆, that is, the relation of being at distance 3 in
distance-regular graph Γ− 𝑆 is an equivalence relation
and its blocks are exactly the cliques of 𝑆.

If the strongly regular graph Γ is geometric, we shall
call the distance-regular graph Γ− 𝑆 geometric as well.

2.2. Siamese color graphs
A color graph Γ is a pair (𝑉,ℛ) where 𝑉 is a set of ver-
tices and ℛ is a partition of 𝑉 2, i.e., elements of ℛ are
pairwise disjoint and

⋃︀
𝑅∈ℛ𝑅 = 𝑉 2. We refer to the

relations in ℛ as the colors of Γ and to the number |ℛ|
of its colors as the rank of Γ.

In other words, a color graph is any edge-coloring
of a complete digraph with a loop at each vertex. We
define an adjacency matrix of a color graph to be a 𝑣× 𝑣
matrix 𝐴 = (𝑎𝑖,𝑗) such that 𝑎𝑖,𝑗 = 𝑡 if (𝑥𝑖, 𝑥𝑗) ∈ 𝑅𝑡

for 𝑅𝑡 ∈ ℛ.
Throughout this paper we will only consider color

graphs such that all their colors are symmetric relations
and one of them is an identity relation, i.e., ones that can
be restricted to a simple graph, not a digraph.

Let Γ and Γ′ be color graphs. An isomorphism 𝜑 :
Γ → Γ′ is a bijection of 𝑉 onto 𝑉 ′ which induces a
bijection 𝜓 : ℛ → ℛ′ of colors. A weak (or color)
automorphism of Γ is an isomorphism 𝜑 : Γ → Γ. If, in
addition, the induced map 𝜓 is the identity on ℛ, we call
𝜑 a (strong) automorphism of Γ.



In 2003 in [1] Kharaghani and Torabi introduced the
concept of a Siamese color graph, i.e., the decomposition
of a complete graph into strongly regular graphs shar-
ing a spread. This notion is formalised in the following
definition.

Definition 1. Let𝑊 = (𝑉, {𝐼𝑑𝑉 , 𝑆,𝑅1, 𝑅2, . . . , 𝑅𝑛})
be a color graph for which

1. (𝑉, 𝑆) is a partition of 𝑉 into cliques of equal
size.

2. For all 𝑖, graph (𝑉,𝑅𝑖) is an imprimitive distance-
regular graph of diameter 3with antipodal system
𝑆.

3. For all 𝑖, graph (𝑉,𝑅𝑖 ∪ 𝑆) is a strongly regular
graph with the same parameters.

Then 𝑊 is a Siamese color graph. We call 𝑆 the spread of
Γ and 𝑛 – the number of distance-regular graphs – the
Siamese rank of 𝑊 .

We shall denote 𝑊 by 𝑆𝐶𝐺(𝑣, 𝑘, 𝜆, 𝜇, 𝜎) where
(𝑣, 𝑘, 𝜆, 𝜇) are common parameters of all 𝑠𝑟𝑔(𝑉,𝑅𝑖∪𝑆)
and 𝜎 is the valency of the spread 𝑆. Kharaghani and
Torabi used the term Siamese here to indicate that all
these strongly regular graphs share a common spread.

Kharaghani and Torabi [1] further proved the existence
of an infinite family of Siamese color graphs with special
parameters.

Theorem 1. For any prime power 𝑞, there exists a
𝑆𝐶𝐺(1 + 𝑞 + 𝑞2 + 𝑞3, 𝑞 + 𝑞2,−1 + 𝑞, 1 + 𝑞, 𝑞), that
is a SCG on 1 + 𝑞 + 𝑞2 + 𝑞3 vertices consisting of 1 + 𝑞
strongly regular graphs sharing 1 + 𝑞2 disjoint cliques of
size 1 + 𝑞.

Parameters of strongly regular graphs mentioned
above are interesting because these are the parameters
of a point graph of generalised quadrangle 𝐺𝑄(𝑞, 𝑞). In
the following we will refer to Siamese color graphs with
these parameters as Siamese color graphs of order 𝑞 and
denote them 𝑆𝐶𝐺(𝑞). By the Theorem of Brouwer [5]
mentioned after the definition of distance-regular graphs,
for this class of Siamese color graphs, we do not have to
check the second condition in Definition 1 if the remain-
ing two are fulfilled.

We shall call a Siamese color graph 𝑆𝐶𝐺(𝑞) geometric
if all its strongly regular graphs (𝑉,𝑅𝑖∪𝑆) are geometric.

3. Some known results on
geometric Siamese color graphs

Geometric Siamese color graphs were studied by Re-
ichard in his thesis [6] and further by Klin, Reichard,
and Woldar in a series of articles [2, 3]. In these papers,

the authors constructed an infinite family of geometric
Siamese color graphs which is conjectured to be isomor-
phic to the family of Kharabhani and Torabi and proved
the following result.

Theorem 2. Let 𝑊 be a geometric Siamese color graph
of order 𝑞. For each point graph (𝑉,𝑅𝑖 ∪ 𝑆), construct the
corresponding generalised quadrangle. Let 𝐵 denote the
union of all lines in all resulting generalized quadrangles.
Then the incidence structure

𝒮 = (𝑉,𝐵)

is a Steiner design

𝒮 = 𝑆

(︂
2, 𝑞 + 1,

𝑞4 − 1

𝑞 − 1

)︂
.

Using Theorem 2, Klin, Reichard, and Woldar com-
pletely classified Siamese color graphs of order 2 and
found hundreds of geometric Siamese color graphs of
order 3. The classification of Siamese color graphs of
order 2 was expressed in the following theorem.

Theorem 3. Every Siamese color graph on 15 vertices
is necessarily geometric. There are exactly two non-
isomorphic Siamese color graphs on 15 vertices. Their
corresponding Steiner triple systems are 𝑆𝑇𝑆(15)#1 and
𝑆𝑇𝑆(15)#7 in the notation of [7].

4. Computer-aided search
Our primary emphasis in the search was on Siamese color
graphs of order 3, although we also examined the case
for order 2, which represents the smallest non-trivial sce-
nario. To begin with, we shall summarize the established
information regarding the Siamese color graphs of order
2 and 3. Corresponding strongly- and distance-regular
graphs possess the following properties.

Siamese color graphs or order 2

• The spread consists of five 𝐾3

• The strongly regulars graphs have parameters
(15, 6, 1, 3) – there is only one such strongly reg-
ular graph, it is a point graph of 𝐺𝑄(2, 2) and it
has only one spread up to isomorphism

• The distance-regular graphs have intersection
arrays {4, 2, 1; 1; 1; 4} – there is only one such
distance-regular graph and it is the line graph of
the Petersen graph

Siamese color graphs of order 3

• The spread consists of ten 𝐾4



• The strongly regular graphs have parameters
(40, 12, 2, 4) – there are 29 such strongly regular
graphs [8], but only two of them have a spread

– one is geometric and it has only one spread
up to isomorphism

– one is not geometric and it has two non-
isomorphic spreads

• The distance-regular graphs have intersection ar-
rays {9, 6, 1; 1; 2; 9}. There are three of them and
only one is geometric

4.1. Computer-aided search for geometric
Siamese color graphs of orders 2 and
3

Our goal is to obtain the set 𝒞(𝑞) of all mutually non-
isomorphic geometric Siamese color graphs of order 𝑞 for
𝑞 ∈ {2, 3}. It follows that for 𝑞 ≤ 3 and for a fixed spread
𝑆 all geometric distance regular graphs with antipodal
system 𝑆 form a single orbit of 𝐴𝑢𝑡(𝑆). Therefore, the
following four-step strategy is sufficient to obtain 𝒞(𝑞).

1. For a fixed spread 𝑆, choose a geometric distance
regular graph Γ1 with the antipodal system 𝑆
(i.e., Γ1+𝑆 is the point graph of𝐺𝑄(3) with the
spread 𝑆).

2. Apply all automorphisms of 𝑆 to obtain all geo-
metric distance-regular graphs which have 𝑆 as
the antipodal system and find the set𝐴 of all such
distance-regular graphs which have no common
edges with Γ1.

3. In 𝐴, find all triples Γ2, Γ3, Γ4 of mutually edge
disjoint distance-regular graphs.

4. Check the resulting system of Siamese color
graphs for isomorphism.

We implemented our strategy using Python [9], GAP
[10], and GAP packages GRAPE and DESIGN [11, 12].
For 𝑞 = 2 the literal implementations of the strategy was
sufficient to obtain the set 𝒞(2). For 𝑞 = 3 we imple-
mented various improvements to speed up the computi-
ations. In what follows, we present the most important
modifications in each step.

Step 1:
We fixed the spread 𝑆 with cliques {1, . . . , 4},
{5, . . . , 8}, . . . , {37, . . . , 40}. This choice of 𝑆 enabled
us to represent our graphs during the computation by
any of the following

• their adjacency matrices in the block form, where
every permutation matrix is represented by num-
ber in {1, 2, . . . , 24} and 𝐽 − 𝐼 by 0 – Steps 1, 2
and 4

• binary numbers generated by concatenation of
parts of rows of the full adjacency matrix that
belong to the blocks above the diagonal blocks –
Steps 2 and 3

Furthermore, we have chosen the graph Γ1 with lexi-
cographically maximal adjacency matrix 𝑀1. As a con-
sequence, all blocks in the first row of the block form of
𝑀1 are equal to the identity matrix.

Step 2:
As 𝑆 is the antipodal system of Γ1 we have 𝐻 =
𝐴𝑢𝑡(Γ1) ≤ 𝐴𝑢𝑡(𝑆) and it suffices to apply represen-
tatives of the cosets of𝐻 in𝐴𝑢𝑡(𝑆) to Γ1. Moreover, we
used the action of 𝐴𝑢𝑡(𝑆) = 𝑆4 ≀ 𝑆10 = (𝑆10

4 ⋊ 𝑆10)
on cliques of 𝑆 to implement an intelligent backtrack on
each coset of 𝑆10

4 .
Step 3:

As blocks in the first row of Γ1 are all identity matrices,
there are only nine permutation matrices disjoint with
any of them and there are only four combinations of
any three of these matrices and identity matrix such that
they are disjoint and their sum is an all-ones matrix. We
distributed the computations in such a way that in each
instance we restricted the candidates for Γ2, Γ3, and Γ4

to graphs with prescribed first three blocks of the first
row of the block form of the adjacency matrix.

Clearly, in each Siamese color graph of order 3, Γ4 is
uniquely determined by 𝑆, Γ1, Γ2 and Γ3. It turns out
that for given edge-disjoint Γ2 and Γ3 it is faster to first
check whether𝐾40−(Γ1∪Γ2∪Γ3) is a 𝑠𝑟𝑔(40, 12, 2, 4)
and only then to verify whether it belongs to the set 𝐴.

Step 4:
Instead of testing all obtained Siamese color graphs for
isomorphisms, it suffices to check whether for given Γ1,
Γ2, Γ3, and Γ4 the quadruple of their adjacency matrices
is maximal in the action of 𝐴𝑢𝑡(𝑆). In fact we imple-
mented this modification already in Step 3, e.g., we con-
sidered only Γ2 whose adjacency matrices were maximal
in the action of 𝐻 = 𝐴𝑢𝑡(Γ1).

5. Results
For 𝑞 = 2 we confirmed the results of Klin, Reichard, and
Woldar that there are only two Siamese color graphs of
order 2.

For 𝑞 = 3 we obtained the following result.

Theorem 4. There are exactly 399 non-isomorphic geo-
metric Siamese color graphs of order 3.

We also found that in 357 of the geometric Siamese
color graphs of order 3 the graph Γ2 is the element with
the largest adjacency matrix in the set 𝐴 above. We will
further refer to this subset as 𝒞′.

For each of the 399 geometric Siamese color graphs
of order 3, we computed its automorphism group and its



orbit on vertices. Further, in accordance with Theorem 2,
we computed the corresponding Steiner system, its auto-
morphism group as well as its orbits on the points and
the blocks. The results are compiled in the table below.
The last column tells us, how many out of all of these
non-isomorphic Siamese color graphs come from 𝒞′.
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Table 1: Geometric Siamese structures for 𝑞 = 3.
|A(SCG)| V/A(SCG) |A(SS)| V/A(SS) B/A(SS) # in 𝒞′ / #

720 401 12130560 401 1301 1/1
120 202 480 401 101, 201, 401, 601 1/1
72 41, 361 10368 41, 361 11, 481, 811 1/1
72 41, 361 1296 41, 361 11, 242, 811 0/1
72 41, 361 288 41, 361 11, 91, 242, 362 1/1
72 41, 361 144 41, 361 11, 91, 242, 362 0/1
48 82, 241 192 161, 241 42, 61, 121, 241, 321, 481 1/1
48 82, 241 96 82, 241 22, 41, 61, 123, 162, 481 1/1
36 22, 182 5184 22, 361 11, 242, 811 1/1
36 22, 182 1296 41, 361 11, 242, 811 0/1
36 22, 182 1296 41, 361 11, 242, 811 0/1
36 22, 182 1296 41, 182 11, 242, 811 0/1
36 22, 182 648 41, 361 11, 124, 811 0/1
36 22, 182 648 41, 182 11, 124, 811 0/1
36 22, 182 288 41, 182 11, 91, 242, 721 1/1
36 22, 182 144 41, 182 11, 91, 242, 721 0/1
24 82, 122 96 122, 161 42, 61, 121, 162, 241, 481 1/1
20 104 160 401 101, 401, 801 1/1
20 104 40 102, 201 52, 206 1/1
18 14, 94 2592 41, 182 11, 242, 811 0/1
18 14, 94 648 41, 94 11, 124, 811 0/1
18 14, 94 648 12, 21, 361 11, 124, 811 0/1
18 14, 94 324 12, 21, 182 11, 68, 811 0/1
18 14, 94 144 41, 361 11, 91, 242, 721 0/1
18 14, 94 72 22, 182 11, 91, 124, 721 0/1
16 85 256 81, 321 21, 162, 321, 641 1/1
16 85 32 83, 161 23, 45, 83, 163, 321 1/1
16 85 32 81, 162 21, 42, 83, 162, 322 1/2
12 22, 62, 122 48 41, 121, 241 11, 31, 41, 61, 81, 123, 243 2/2
12 22, 62, 122 24 22, 62, 122 11, 22, 31, 42, 65, 125, 241 9/9
8 46, 82 64 42, 82, 161 21, 42, 83, 164, 321 1/1
8 46, 82 32 81, 162 21, 44, 82, 164, 321 1/3
8 46, 82 32 42, 82, 161 21, 46, 81, 166 4/4
8 46, 82 16 83, 161 23, 45, 85, 164 1/1
8 46, 82 16 83, 161 23, 45, 83, 165 0/1
8 46, 82 16 46, 161 29, 42, 89, 162 1/1
8 46, 82 16 42, 84 23, 47, 86, 163 2/3
8 42, 84 64 81, 321 21, 82, 161, 323 1/1
8 42, 84 32 81, 321 21, 82, 161, 323 1/3
8 42, 84 32 81, 162 21, 44, 82, 164, 321 2/2
8 42, 84 32 42, 162 12, 44, 82, 166 1/3
8 42, 84 16 83, 161 23, 45, 83, 165 1/1
8 42, 84 16 81, 162 21, 44, 82, 166 0/2
8 42, 84 16 81, 162 21, 42, 83, 166 0/1
8 42, 84 16 81, 162 21, 42, 83, 166 0/1
8 42, 84 16 42, 162 12, 42, 83, 166 0/1
8 42, 84 16 42, 82, 161 12, 22, 45, 87, 163 2/2
6 22, 66 24 41, 123 11, 31, 43, 61, 125, 242 3/3
6 22, 66 12 22, 66 11, 26, 33, 68, 125 2/2
4 24, 48 64 22, 41, 162 12, 82, 165, 321 1/1

The table continues on the next page.



Table 1 – continuing from the previous page.
|A(SCG)| V/A(SCG) |A(SS)| V/A(SS) B/A(SS) # in 𝒞′ / #

4 24, 48 32 81, 162 21, 42, 83, 162, 322 1/1
4 24, 48 32 22, 41, 162 12, 84, 164, 321 3/7
4 24, 48 16 83, 161 23, 45, 85, 164 1/1
4 24, 48 16 81, 162 21, 44, 84, 165 1/1
4 24, 48 16 42, 84 23, 47, 86, 163 2/2
4 24, 48 16 42, 82, 161 21, 46, 85, 164 2/3
4 24, 48 16 42, 82, 161 12, 22, 45, 87, 163 0/1
4 24, 48 16 24, 84 12, 48, 88, 162 8/9
4 24, 48 16 22, 41, 162 12, 84, 166 0/1
4 24, 48 8 46, 82 211, 47, 810 4/4
4 24, 48 8 42, 84 23, 47, 812 0/1
4 24, 48 8 24, 44, 82 12, 28, 412, 88 27/29
4 24, 48 8 22, 41, 84 12, 48, 812 9/10
4 24, 48 4 24, 48 12, 216, 424 25/25
2 220 8 85 25, 46, 812 1/1
2 220 8 48, 81 25, 414, 88 9/9
2 220 8 44, 83 12, 22, 411, 810 13/13
2 220 4 410 14, 29, 427 3/3
2 220 4 410 12, 24, 430 11/11
2 220 4 28, 46 14, 217, 423 93/93
2 220 2 220 110, 260 95/95
2 18, 216 16 42, 162 12, 86, 165 0/1
2 18, 216 8 24, 84 12, 44, 814 0/1
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