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Abstract
The article explores the problem of hypergraphical regular representation of finite group 𝐺 via 𝑘-uniform hypergraph.

A hypergraphical regular representation preserves the group’s structure within the hypergraph. The paper builds upon

previous research and investigates hypergraphical regular representations of certain groups of orders greater than 32. The

paper presents an algorithm based on methods by Mihálová and Erskine and Tuite. The algorithm is implemented in the

computational system GAP to find hypergraphical regular representations for certain groups. The results include a table with

groups for which hypergraphical regular representations via 𝑘-uniform hypergraphs were obtained.
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1. Introduction
A hypergraph is a generalisation of a graph where a hy-

peredge can connect more than two vertices. We are

focusing on the problem of hypergraphical regular rep-

resentation of groups. We seek to find hypergraphs that

faithfully represent the structure of a group by preserving

its symmetries.

The problem of hypergraphical regular representation

was formulated as an extension of the graphical regular

representation problem. Given a graph Γ, an automor-

phism of Γ is a permutation 𝜑 of the vertex set, such that

the vertices 𝑢 and 𝑣 form an edge if and only if the ver-

tices 𝜑(𝑢) and 𝜑(𝑣) also form an edge. The set of all auto-

morphisms of Γ together with the operation of composi-

tion forms the automorphism group 𝐴𝑢𝑡(Γ). The graphi-
cal regular representation (GRR) of a group 𝐺 is a graph Γ
whose automorphism group is the group 𝐺 in its regular

action. The search for representations of groups started

with Kőnig in 1936 [1]. He posed a question: Does there ex-
ist a graph Γ for a given group 𝐺 such that 𝐴𝑢𝑡(Γ) ∼= 𝐺?
Two years later, Frucht showed that for every finite group

𝐺, there exist infinitely many non-isomorphic connected

graphs Γ such that 𝐴𝑢𝑡(Γ) is isomorphic to 𝐺. How-

ever, the automorphism groups of these graphs are not

necessarily regular. Multiple researchers worked on the

problem of graphical regular representation over the

years. Godsil [2] summed up the previous findings and

published the complete list of groups not admitting a

graphical regular representation: abelian groups with
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an exponent greater than 2, generalised dicyclic groups,

a group isomorphic to one of 13 groups whose order is

not greater than 32 (Z2
2, Z3

2, Z4
2, D3, D4, D5, A4, Q×Z3,

Q× Z4, ⟨𝑎, 𝑏, 𝑐 | 𝑎2 = 𝑏2 = 𝑐2 = 1, 𝑎𝑏𝑐 = 𝑏𝑐𝑎 = 𝑐𝑎𝑏⟩,
⟨𝑎, 𝑏 | 𝑎8 = 𝑏2 = 1, 𝑏−1𝑎𝑏 = 𝑎5⟩, ⟨𝑎, 𝑏, 𝑐 | 𝑎3 = 𝑏3 =
𝑐2 = 1, 𝑎𝑏 = 𝑏𝑎, (𝑎𝑐)2 = (𝑏𝑐)2 = 1⟩, ⟨𝑎, 𝑏, 𝑐 | 𝑎3 =
𝑏3 = 𝑐3 = 1, 𝑎𝑐 = 𝑐𝑎, 𝑏𝑐 = 𝑐𝑏, 𝑏−1𝑎𝑏 = 𝑎𝑐⟩). Later,

Babai[3] raised and solved the question concerning the

regular representation of a group via directed graphs. He

published a complete list of groups not admitting the di-

graphical regular representation: Z2
2,Z3

2,Z4
2,Z2

3 and Q8.

An overview of different types of regular representations

was presented by Spiga [4].

We build upon the previous research and investigate

the problem of hypergraphical regular representation for

certain groups of orders greater than 32. Section 2 covers

the necessary concepts, including definitions of hyper-

graphs, hypergraphical regular representation and dual

structures. In Section 3, we present an overview of the

previous research and results in hypergraphical regular

representation. In Section 4, we describe the methods by

Mihálová [5] and Erskine and Tuite [6] that we used to

obtain the hypergraphical regular representation of cer-

tain groups of order greater than 32. Section 5 contains

our algorithm, which was implemented in computational

system GAP. We describe particular commands in more

detail. In Section 6, we present our results with a table

containing groups for which we found a hypergraphical

regular representation via 𝑘-uniform hypergraph.

2. Preliminaries
Our work is concerned with combinatorial structures

- hypergraphs. A hypergraph Γ = (𝑉 (Γ), E (Γ)) is an
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ordered pair of the vertex set 𝑉 (Γ) and the hyperedge

set E (Γ). In certain contexts, hyperedges may be referred

to as blocks. Each hyperedge 𝐸 ∈ E (Γ) is a nonempty

subset of the vertex set 𝑉 (Γ), i.e. 1 ≤ |𝐸| ≤ |𝑉 (Γ)|.
Generally, hyperedges are blocks of various sizes. Our fo-

cus is on 𝑘-uniform hypergraphs, which are hypergraphs

with hyperedges of the same size 𝑘, i.e. ∀𝐸 ∈ E (Γ) :
|𝐸| = 𝑘. Note that a 2-uniform hypergraph is also an

undirected graph. Our method requires working with

hypergraphs whose vertices are in the same number of

hyperedges. The degree 𝑑(𝑢) of a vertex 𝑢 in a hypergraph
Γ is the number of hyperedges which contain the vertex

𝑢. A hypergraph is 𝑑-regular if all vertices have the same

degree 𝑑, i. e. ∀𝑢 ∈ 𝑉 (Γ) : 𝑑(𝑢) = 𝑑. An automorphism
of a hypergraph Γ is a bijection 𝜑 : 𝑉 (Γ) ↦→ 𝑉 (Γ) such

that vertices 𝑣1, 𝑣2, ..., 𝑣𝑛 ∈ 𝑉 (Γ) form a hyperedge if

and only if vertices 𝜑(𝑣1), 𝜑(𝑣2), ..., 𝜑(𝑣𝑛) ∈ E (Γ) also

form a hyperedge. The automorphism group 𝐴𝑢𝑡(Γ) of a

hypergraph Γ is formed by the set of all automorphisms

of the hypergraph with the operation of composition.

Since we are dealing with groups and hypergraphs, defin-

ing a Cayley hypergraph is in place. Over the years, sev-

eral definitions of Cayley hypergraphs have been formu-

lated. The definitions differ in their approach to creating

hyperedges and in the minimal possible size of hyper-

edges. We choose the definition by Jajcay and Jajcayova

in [7] because it best suits our problem. Let P(𝐺) be

the powerset of the elements of 𝐺, 𝐺𝐿 be the left regular

action of 𝐺 and 𝑋 be

⋃︀𝑠
𝑖=1 𝐵

𝐺𝐿
𝑖 , where 𝐵𝑖 ∈ P(𝐺) for

1 ≤ 𝑖 ≤ |P(𝐺)|. A Cayley hypergraph 𝐻𝐶𝑎𝑦(𝐺,𝑋)
is a hypergraph Γ with the elements of 𝐺 as the vertex

set and the elements of 𝑋 as the hyperedge set. For a

𝑘-uniform 𝐻𝐶𝑎𝑦(𝐺,𝑋) it holds that 𝐵𝑖 ∈ P𝑘(𝐺).
We can define the regular representation of hy-

pergraphs based on previous definitions. The hyper-
graphical regular representation (HRR) of a group 𝐺
is a Cayley hypergraph 𝐻𝐶𝑎𝑦(𝐺,𝑋) where for ev-

ery two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐻𝐶𝑎𝑦(𝐺,𝑋)), there ex-

ists exactly one automorphism 𝜑 such that 𝜑(𝑢) =
𝑣 from the automorphism group of the hypergraph

𝐴𝑢𝑡(𝐻𝐶𝑎𝑦(𝐺,𝑋)). This means that the automorphism

group 𝐴𝑢𝑡(𝐻𝐶𝑎𝑦(𝐺,𝑋)) acts regularly on the set of

vertices of 𝑉 (𝐻𝐶𝑎𝑦(𝐺,𝑋)). Several researchers have

studied the existence of hypergraphical regular represen-

tations for various groups and types of hypergraphs.

Since we use groups in our research, concepts from

group theory and their connection to hypergraphs are

needed. Given a group 𝐺 and a set 𝐴, the group action
of 𝐺 on 𝐴 is a map · : 𝐺 × 𝐴 ↦→ 𝐴 (denoted as 𝑔 · 𝑎,

∀𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴) with the following properties: ∀𝑔1, 𝑔2 ∈
𝐺,∀𝑎 ∈ 𝐴 : 𝑔1 · (𝑔2 · 𝑎) = (𝑔1 · 𝑔2) · 𝑎 and ∀𝑎 ∈ 𝐴 :
1𝐺 ·𝑎 = 𝑎. An orbit of an element 𝑎 ∈ 𝐴 under the action

of a group 𝐺 on a set 𝐴 is denoted as 𝐺 · 𝑎. In particular

for hyperedges, an orbit of a hyperedge 𝐸 ∈ E (Γ) is the

set of all hyperedges in E (Γ) that are equivalent to 𝐸

by the elements of group 𝐺 acting on E (Γ). It can be

defined formally as 𝐺 · 𝐸 = {𝑔 · 𝐸|𝑔 ∈ 𝐺,𝐸 ∈ E (Γ)},

where 𝐺 is the group acting on E (Γ) and · is the induced

action of 𝐺 on E (Γ). The intersection of different orbits

is empty.

An incidence structure of a hypergraph Γ is an ordered

pair I = (𝑉 (I ), 𝐸(I )). The vertex set 𝑉 (I ) is a

partition into two disjoint sets: 𝑉1 = 𝑉 (Γ) and 𝑉2 =
E (Γ). The edge set satisfies 𝐸(I ) ⊆ 𝑉1 × 𝑉2. Vertices

𝑣 ∈ 𝑉1 and 𝐸 ∈ 𝑉2 are incident iff 𝑣 ∈ 𝐸, i.e. 𝐸(I ) =
{(𝑣,𝐸)|𝑣 ∈ 𝐸,𝐸 ∈ E (Γ)}. The incidence structure of

a hypergraph Γ preserves the symmetries of Γ. Based on

[8], the automorphism group of the incidence structure

of a hypergraph Γ is isomorphic to the automorphism

group of Γ (Fig. 1).

In our method, we are using the concept of dual in-

cidence structure. A dual incidence structure I * =
(𝑉 (I *), 𝐸(I *)) of the incidence structure I is an or-

dered pair of the vertex set 𝑉 (I *) and the edge set

𝐸(I *). The partitions in the vertex set are swapped

compared to the partitions in the incidence structure.

Given a hypergraph Γ, the partitions of the dual inci-

dence structure are 𝑉1 = E (Γ) and 𝑉2 = 𝑉 (Γ) (Fig. 2).

We use the knowledge of complementary hypergraphs.

Let Γ be a 𝑘-uniform hypergraph. By Γ𝐶
, we denote

a 𝑘-uniform hypergraph defined as an ordered pair

(𝑉 (Γ),P𝑘(𝑉 (Γ))∖E (Γ)), i.e. the hyperedges of Γ𝐶
are

complements of the hyperedges of Γ. By 𝐻𝐶
, we denote

a (𝑉 (Γ) − 𝑘)-uniform hypergraph, where E (𝐻𝐶) are

complements of E (Γ) of size 𝑉 (Γ)− 𝑘.

3. Previous research and similar
questions

Foldes and Singhi [9] were the first to investigate the

problem of hypergraphical regular representation. They

proved the existence of a hypergraphical regular repre-

sentation via a 3-uniform hypergraph for every finite

group of odd order greater than or equal to 57. In the

same year, Foldes [10] proved that cyclic groups Z𝑛 (ex-

cept 𝑛 = 3, 4, 5) admit regular representation using a 3-

uniform hypergraph. Collaboratively, Foldes and Singhi

[11] established a polynomial lower bound 𝑝(𝑘) for the

order of the group that admits a hypergraphical regular

representation via 𝑘-uniform hypergraph for 𝑘 ≥ 3. For

every finite group 𝐺 such that 𝑝(𝑘) ≤ |𝐺|, there exists

a 𝑘-uniform hypergraph which is a hypergraphical reg-

ular representation of 𝐺. The lower bound for 𝑘 = 3
is 𝑝(3) > 26 and for 𝑘 ≥ 4 is 𝑝(𝑘) > 4𝑘 + 2. They

suggested that for 𝑘 = 3, the lower bound should be

improved to a linear polynomial of the form 𝑘+ 𝑐, where

𝑐 is a constant. Jajcay [12] studied the problem of hyper-

graphical regular representation for hypergraphs whose

hyperedges are not necessarily regular. He improved the
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Figure 1: For illustration, the hypergraph Γ (which is a
simple graph) has the set of vertices 𝑉 (Γ) = {1, 2, 3, 4},
the set of hyperedges E (Γ) = {{1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}} and 𝐴𝑢𝑡(Γ) = S4.
The incidence structure I of the hypergraph Γ is an
undirected graph with the vertex set 𝑉1 = 𝑉 (Γ) and
𝑉2 = E (Γ) and the edge set 𝐸(I ) = {(1, {1, 2}),
(1, {1, 3}), (1, {1, 4}), (2, {1, 2}), (2, {2, 3}), (2, {2, 4}),
(3, {1, 3}), (3, {2, 3}), (3, {3, 4}), (4, {1, 4}), (4, {2, 4}),
(4, {3, 4}) and 𝐴𝑢𝑡(S ) = S4.
The automorphism groups of I and Γ are isomorphic.

lower bound 𝑝(𝑘) ≥ 6 for hypergraphs with varying

sizes of hyperedges. Also, he showed the non-existence

of a hypergraphical regular representation for four fi-

nite groups Z3,Z4,Z4,Z2
2. It supports the findings in

[10]. Nonetheless, his solution heavily depends on hy-

pergraphs with hyperedges of different sizes. In this case,

criteria for admitting a regular representation are less re-

strictive than for 𝑘-uniform hypergraphs. Consequently,

a group that does not admit a hypergraphical regular

representation via a non-uniform hypergraph does not

admit a hypergraphical regular representation via a 𝑘-

uniform hypergraph. Furthermore, Jajcay and Jajcayova

[13] listed the groups without a hypergraphical regular

representation by 3-uniform hypergraphs. The list in-

cludes the groups mentioned in [12], as well as some

other groups: Z3,Q8,Z3
2,Z3

4,Z3
5,D5 × Z5. Their col-

league Martin Mačaj verified computationally that there

exists a hypergraphical regular representation through

3-uniform hypergraph for groups of order 6 ≤ |𝐺| ≤ 32.

Recently, we computationally verified [5] a generalised

conjecture by Jajcayová [14]. We stated which groups

admit or do not admit a hypergraphical regular repre-

sentation via 𝑘-uniform hypergraph for groups of or-

ders less than or equal to 32 and the whole spectrum of

3 ≤ 𝑘 ≤ |𝐺|.

4. Overview of methods
We aim to find hypergraphical regular representations

for groups of order greater than 32. We already found hy-

pergraphical representations of groups of order less than

33 in [5]. However, exhaustive search, the main method

in [5], is challenging for groups of greater order. We de-

cided to merge the method from [5] with the method by

Erskine and Tuite in [6] to obtain hypergraphical regular

representation for groups of greater order. We briefly

describe these methods.

The computational method in [5] was based on theoret-

ical proofs in [13]. We went through all groups of orders

less than 33. For each group, we computed the permuta-

tion of the right multiplication for each element within

the group. Based on the permutations, we obtained or-

bits of 𝑘-uniform hyperedges. As a next step, we went

through all combinations of orbits. We constructed the

hypergraph and asked for its automorphism group. If

the order of the automorphism group was equal to the

order of the group, we confirmed the existence of the

hypergraphical regular representation for that group.

Erskine and Tuite [6] used their method to obtain new

record graphs. A record graph is a graph with the smallest

known number of vertices for a given girth (size of the

smallest cycle in the graph) and degree of vertices. We

will adopt their method to create a 𝑑-regular 𝑘-uniform

hypergraph Γ and construct an incidence structure I
from Γ (Fig. 1). Subsequently, we obtain dual incidence

structure I *
from which we can obtain a 𝑘-regular 𝑑-

uniform hypergraph known as the dual hypergraph Γ*

(Fig. 2). The dual hypergraph Γ*
has the same automor-

phism group as the original hypergraph Γ. However, the

order of the dual hypergraph is
𝑑
𝑘
|𝑉 (Γ)|. The order of

Γ*
can be smaller, equal or greater than the order of Γ

depending on values of 𝑑 and 𝑘.
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Figure 2: Dual incidence structure and dual hypergraph of
the hypergraph in Fig. 1

By combining these methods, we state a proposition

(Proposition 1) for solving the problem of hypergraphical

regular representation of groups of order greater than 32.

Based on the proposition and the relationship between

the order of Γ and Γ*
, we can construct a hypergraphical

regular representation of a group with greater order from

a group of a smaller order.

Proposition 1. Let Γ be a 𝑑-regular 𝑘-uniform hyper-
graph with property |E (Γ)| = |𝐴𝑢𝑡(Γ)|. By construct-
ing a dual hypergraph Γ*, we can obtain a hypergraph-
ical regular representation of a group 𝐺 via 𝑘-regular 𝑑-
uniform hypergraph, where 𝐺 ∼= 𝐴𝑢𝑡(Γ) ∼= 𝐴𝑢𝑡(Γ*)
and |𝑉 (Γ*)| = |E (Γ)| = |𝐴𝑢𝑡(Γ*)|.

5. Algorithm
We created an algorithm from methods in Section 4 and

implemented it in the system for discrete computational

algebra - GAP [15]. It is a free and open-source system

with its own programming language and importable pack-

ages with multiple implemented functions. We used two

packages: DESIGN and GRAPE. The algorithm was imple-

mented in GAP version 4.12.2. The GAP system does not

have a specific structure for a hypergraph. Closest to the

hypergraph structure is a block design in DESIGN pack-

age. The DESIGN package is for constructing, classifying,

partitioning and studying block designs. By definition,

the block design is very similar to our incidence structure

of a hypergraph. The use of the package is conditioned

by the previous import of GRAPE package. The GRAPE
package is designed for computations, constructions and

analysis of graphs with relations to groups.

In our algorithm (Algorithm 1), we go through all

groups. For each group, we obtain the right multipli-

cation permutations of the group elements stored in the

variable permutations. We get orbits of hyperedges

from permutations in the variable orbits. A detailed

explanation of these commands can be found in [5]. We

compute the number of all possible 𝑘-uniform hyper-

edges and store it in the variable numAllEdges. We

use this variable to compute the maximal possible de-

gree of vertices in a 𝑘-uniform hypergraph saved in the

variable maxDegree. Both variables numAllEdges and

maxDegree are needed for recognising a complement

hypergraph Γ𝐶
later.

We construct hypergraphs from combinations of or-

bits. By 𝑐-combination of orbits, we denote a combina-

tion of 𝑐 orbits. Based on [12], we know that we need

to construct hypergraphs from 𝑐-combinations of or-

bits in the range 1 ≤ 𝑐 ≤ ⌊ |𝑜𝑟𝑏𝑖𝑡𝑠|
2

⌋. Hypergraphs

constructed from 𝑐-combinations of orbits in the range

⌊ 𝑜𝑟𝑏𝑖𝑡𝑠
2

⌋ + 1 ≤ 𝑐 ≤ |𝑜𝑟𝑏𝑖𝑡𝑠| are complements of the

hypergraphs above. We compute the upper bound for

combinations of orbits and store it in the variable bound.

In a for-cycle, we go through all values of 𝑐 in the range

1 ≤ 𝑐 ≤ bound. For every value 𝑐, we compute all 𝑐-

combinations of orbits. For each combination of orbits,

we extract the particular edges to the edges variable. We

construct a hypergraph Γ with a block design structure in

DESIGN package. If the hypergraph is regular, we have a

𝑑-regular 𝑘-uniform hypergraph, which is important for

the dual hypergraph method by [6]. Then, we compute

the automorphism group of Γ. We are interested only

in hypergraphs with 𝐴𝑢𝑡(Γ) > 32, as we already know

which groups of order less than 33 admit hypergraphi-

cal regular representation [5]. If 𝐴𝑢𝑡(Γ) > 32, we have

three options. First, if |𝐴𝑢𝑡(Γ)| = |E (Γ)|, we have found

a hypergraphical regular representation via 𝑘-regular 𝑑-

uniform hypergraph for group 𝐺, where 𝐺 ∼= 𝐴𝑢𝑡(Γ).



Second, if |𝐴𝑢𝑡(Γ)| = (𝑛𝑢𝑚𝐴𝑙𝑙𝐸𝑑𝑔𝑒𝑠 − |E (Γ)|), we

are able to construct a complement hypergraph Γ𝐶
to

hypergraph Γ. The hypergraph Γ𝐶
is a hypergraphical

regular representation via 𝑘-regular (𝑚𝑎𝑥𝐷𝑒𝑔𝑟𝑒𝑒− 𝑑)-
uniform hypergraph for group 𝐺, where 𝐺 ∼= 𝐴𝑢𝑡(Γ).
Third, if |𝐴𝑢𝑡(Γ)| = |E (𝐻𝐶)|, we can obtain a comple-

ment hypergraph 𝐻𝐶
to hypergraph Γ. The hypergraph

𝐻𝐶
is a hypergraphical regular representation via 𝑘-

regular 𝑑′-uniform hypergraph, where 𝐺 ∼= 𝐴𝑢𝑡(Γ) and

𝑑′ is the regularity of 𝐻𝐶
.

Algorithm 1 Pseudocode (one group): identifying HRR

of groups of greater order

function(order, i, k)
group = SmallGroup(order, i)

permutations = Action(group,AsList(group),OnRight)

orbits = OrbitsDomain(permutations, Combina-

tions([1..order], k), OnSets)

numAllEdges = Binomial(order, k)

maxDegree = numAllEdges * k / order

bound = Int(Size(orbits)/2)

for 1 ≤ numOfOrbits ≤ bound do
for all combinations of orbits of size

𝑛𝑢𝑚𝑂𝑓𝑂𝑟𝑏𝑖𝑡𝑠 do
edges = Concatenation(combination of orbits)

gamma = BlockDesign(order, edges)

if gamma is regular then
autGroup = AutomorphismGroup(gamma)

if |𝑎𝑢𝑡𝐺𝑟𝑜𝑢𝑝| > 32 then
if |𝑎𝑢𝑡𝐺𝑟𝑜𝑢𝑝| = |𝑒𝑑𝑔𝑒𝑠| then

print found 𝑘-regular 𝑑-uniform HRR

end if
if |𝑎𝑢𝑡𝐺𝑟𝑜𝑢𝑝| = (𝑛𝑢𝑚𝐴𝑙𝑙𝐸𝑑𝑔𝑒𝑠 −
|𝑒𝑑𝑔𝑒𝑠|) then

print found 𝑘-regular (𝑚𝑎𝑥𝐷𝑒𝑔𝑟𝑒𝑒−
𝑑)-uniform HRR (complement 1)

end if
if |𝑎𝑢𝑡𝐺𝑟𝑜𝑢𝑝| = NrBlockDesign-

Blocks(ComplementBlockDesign(gamma))

then
print found (𝑜𝑟𝑑𝑒𝑟 − 𝑘)-regular 𝑑′-
uniform HRR (complement 2)

end if
end if

end if
end for

end for
end function

6. Results of experiments
We ran our algorithm for groups of orders smaller than

15. Groups of order greater than 10 were not fully ex-

Table 1
Hypergraphical regular representations via 𝑘-uniform hyper-
graph for groups of orders greater than 32

𝐺 with HRR |𝐺| k
C3 x (C3 : C4) 36 12; 24
C3 x A4 36 12; 24
C6 x S3 36 12; 24
S3 x S3 36 12; 16; 20; 24
C13 : C3 39 9; 30
C2 x (C5 : C4) 40 12; 16; 24; 28
C2 x (C7 : C3) 42 9; 33
C7 : C6 42 9; 33
A4 : C4 48 12; 16; 32; 36
C2 x C2 x A4 48 12; 16; 32; 36
C2 x S4 48 8; 12; 16; 32; 36
C4 x A4 48 12; 16; 32; 36
D8 x S3 48 12; 16; 32; 36
GL(2,3) 48 18
C13 : C4 52 8; 12; 40
C9 : C6 54 24; 30
C11 : C5 55 20; 35
(C6 x S3) : C2 72 18; 54
(S3 x S3) : C2 72 32
C3 x S4 72 18; 54
C13 : C6 78 18; 60
C2 x (C7 : C6) 84 18; 66
(A4 : C4) : C2 96 24; 72
(C2 x C2 x A4) : C2 96 24; 72
(C2 x S4) : C2 96 24; 72
(C4 x A4) : C2 96 24; 72
C2 x C2 x S4 96 24; 72
C4 x S4 96 24; 72
C11 : C10 110 30
(C3 x C3) : ((C4 x C2) : C2) 144 36
C2 x ((S3 x S3) : C2) 144 36
S3 x S4 144 36
S4 x S3 144 36
C2 x ((C2 x C2 x C2 x C2) : C5) 160 64

plored for greater values of 𝑘 since the computational

complexity and time increased with increasing 𝑘. Also,

the density of printed results decreased with increasing

𝑘. We attribute the smaller amount of printouts to the

fact that with increasing 𝑘, there is a higher probability

of finding hypergraphical regular representation via 𝑘-

uniform hypergraph for the starting group 𝐺. However,

we are more interested in 𝑘-uniform hypergraphs Γ that

are not regular representations of the starting group 𝐺
as 𝐴𝑢𝑡(Γ) ≉ 𝐺 and |𝐴𝑢𝑡(Γ)| is greater (or smaller) than

|𝐺|. Thus, these 𝑘-uniform hypergraphs can be regular

representations for groups of greater (or smaller) order

than 𝐺.

We first launched our algorithm without the restric-

tion |𝐴𝑢𝑡(Γ)| > 32 to verify our algorithm by obtain-

ing hypergraphical regular representations for groups

of orders smaller than 33. We obtained numerous hy-



pergraphical regular representations for those groups

that confirmed the correctness of our algorithm. Then,

we looked for hypergraphical regular representations of

groups of orders greater than 32. Groups and values of 𝑘,

for which we found hypergraphical regular representa-

tions via 𝑘-uniform hypergraphs, are presented in Table

1. The names of the groups are in GAP notation. Most

of the hypergraphical regular representations are from

complementary hypergraphs 𝐻𝐶
.
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