
Partial Symmetries and Symmetry Levels of Graphs – A
Census
Valter Cingel1, Matúš Gál1 and Tatiana B. Jajcayová1

1Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava, Slovakia

Abstract
The majority of graphs are well-known to be asymmetric, i.e., having no non-trivial automorphisms. Moreover, removing just
a single vertex from a vertex transitive graph may result in a graph with a trivial automorphism group; while removing a
vertex from a graph belonging to the family of minimal asymmetric graphs (introduced by Nešetřil) always leads to a graph
with a non-trivial automorphism group. Moreover, every two-vertex induced subgraph of any given graph Γ possesses a
non-trivial automorphism. These observations call for the use of the concept of a partial (graph) automorphism which is an
isomorphism between two induced subgraphs of a given graph.

The set of all partial automorphisms together with the operation of partial composition forms an inverse monoid. Based
on the study of inverse monoids of partial automorphisms, we propose to use a graph parameter we call the symmetry level of
a graph, defined to be the ratio between the maximal rank of a nontrivial partial automorphism and the order of the graph, as
a measure of the graph’s asymmetricity. In our paper, we present some basic observations concerning the symmetry levels of
graphs, and present some computational results concerning the symmetry levels of small asymmetric graphs.
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1. Introduction
While the order of the automorphism group of a finite
graph is considered to be one of the more important pa-
rameters of a given graph Γ, in view of the well-known
1963 result of Erdős and Rényi [1] asserting that almost
all graphs are asymmetric, i.e., having no non-trivial au-
tomorphisms, this parameter turns out to be generally
rather irrelevant. This fact has already been acknowl-
edged in [1], where the authors proposed to study the
symmetrization of a graph Γ achieved via removing 𝑟
and adding 𝑠 edges, and thereby producing a graph pos-
sessing at least one non-trivial automorphism. The de-
gree of asymmetry, 𝐴(Γ), is then defined to be the min-
imum of the sum 𝑟 + 𝑠 taken over all possible sym-
metrizations of Γ. They also noted that the asymmetry
of a graph of order 𝑛 can not exceed 𝑛−1

2
, and showed

that this estimate is asymptotically best possible, which
led them to the concept of the relative asymmetry of Γ,
𝑎(Γ) = 𝐴(Γ)

𝑛−1
2

. Clearly, 0 ≤ 𝑎(Γ) ≤ 1, for all finite

graphs, and 𝑎(Γ) = 0 for graphs possessing at least one
non-trivial automorphism.

In 1988, Nešetřil proposed a different approach to
studying the asymmetry level of finite graphs by sug-
gesting to study the order of asymmetric graphs with all
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induced subgraphs symmetric. Specifically, he proposed
the concept of a minimal asymmetric graph which is a
graph with no induced asymmetric subgraphs of order
at least 2. He conjectured the existence of only a finite
number of such graphs, and was proven to be right by
Schweitzer and Schweitzer in 2017 who have shown that
the complete list of such graphs consists of exactly 18
graphs [7].

In our paper, we propose to study a different measure
of asymmetricity of a graph Γ from both of the above.
Based on our research in the inverse monoids of par-
tial automorphisms of graphs, we realized that inverse
monoids are better suited for investigation of asymmetric
graphs, as the inverse monoid of partial automorphisms
of a graph Γ determines Γ uniquely [3] (regardless of
whether Γ is asymmetric or not). A partial automorphism
of a graphΓ = (𝑉,𝐸) is an isomorphism between two in-
duced subgraphs of Γ (with an automorphism of Γ being
a partial automorphism from Γ onto itself). The set of all
partial automorphisms of Γ together with the operation
of partial composition form an inverse monoid we shall
denote 𝑃𝐴𝑢𝑡(Γ). The order of an inverse monoid is its
cardinality, and the rank of a partial automorphism is the
size of its domain. Any Γ of order at least 2 possesses at
least one non-trivial (non-identity) partial automorphism
of rank 2, namely a partial automorphism mapping a
pair of adjacent vertices to any other such pair (in case
of the complement of 𝐾𝑛, one can take pairs of non-
adjacent vertices, and in a graph containing exactly one
edge, one can take the partial automorphism swapping its
end-points). On the other hand, the largest rank of a non-
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trivial partial automorphism of a non-asymmetric Γ is
the order of Γ, while the largest rank of a non-trivial par-
tial automorphism of a minimal asymmetric Γ of order 𝑛
is 𝑛−1. Since it is not hard to see that the largest rank of
a non-trivial partial automorphism of a graph Γ is related
to the order of Γ, the measure of asymmetry of a graph Γ
we propose to study is defined as the ratio between the
largest rank of a non-trivial partial automorphism of a
graph Γ and its order |𝑉 (Γ)|. As this ratio is equal to 1
if and only if Γ admits a non-trivial automorphism, we
will call this ratio the level of symmetry of Γ, denote it
by 𝑆(Γ), and note that 𝑆(Γ) < 1 for almost all graphs
Γ [1]. We find it important to emphasize, that the level
of symmetry of Γ might be greater than the order of a
smallest non-asymmetric induced subgraph of Γ; which
may happen if Γ contains two distinct but isomorphic
induced asymmetric subgraphs of orders larger than the
order of a smallest non-asymmetric induced subgraph of
Γ.

After the next section, where we collect several ba-
sic results concerning the level of symmetry of graphs
in general, we present some computational results con-
cerning graphs of orders for which the complete lists of
non-isomorphic graphs have already been determined.

2. Basic Results Concerning
Symmetry Levels of Graphs

As the concepts of partial automorphism, the inverse
monoid of partial automorphisms of a graph Γ, and the
level of symmetry of Γ are relatively new, in this section,
we present some basic facts.

The first result is a complete analogue of a well-known
result about automorphism groups of graphs.

Lemma 1. Let Γ be a graph, and let Γ̃ denote its com-
plement. A partial permutation of the vertices of Γ is a
partial automorphism of Γ if and only if, it is a partial
automorphism of Γ̃, and thus

𝑃𝐴𝑢𝑡(Γ) = 𝑃𝐴𝑢𝑡(Γ̃), and 𝑆(Γ) = 𝑆(Γ̃).

Proof 1. The claim follows from the well-known fact that
𝐴𝑢𝑡(Γ) = 𝐴𝑢𝑡(Γ̃) and the observation that a subgraph
of Γ induced by a subset 𝑅 ⊆ 𝑉 (Γ) is the complement of
the subgraph of Γ̃ induced by 𝑅.

The next result will provide us with a lower bound on
the level of symmetry of forests.

Lemma 2. Let Γ be a forest of order 𝑛. Then, 𝑆(Γ) ≥
𝑛−1
𝑛

.

Proof 2. We proceed by considering all possible orders of
connected components of Γ. As observed above, the level

of symmetry of Γ containing no edges is equal to 1. If
Γ contains a connected component consisting of a single
edge 𝑢𝑣 or two isolated vertices 𝑢, 𝑣, it admits a non-trivial
automorphism swapping 𝑢 and 𝑣 and leaving all other
vertices fixed, hence, 𝑆(Γ) = 1 again. If Γ contains a
component of order 3, it is necessarily a path 𝑢,𝑤, 𝑣 and
Γ admits a non-trivial automorphism swapping 𝑢 and 𝑣
and leaving all other vertices fixed; 𝑆(Γ) = 1. Finally,
suppose that Γ contains a component (a tree) 𝒯 of order
≥ 4. Then 𝒯 either contains two leaves 𝑢, 𝑣 attached to the
same 𝑤, or it contains a path 𝑤, 𝑢, 𝑣 of length 3 in which
𝑢 is of degree 2 and 𝑣 is of degree 1 (a leaf). In either case,
Γ admits a non-trivial partial automorphism of rank 𝑛− 1
swapping 𝑢 and 𝑣 and fixing all the other vertices of Γ but
the vertex 𝑤, which is left out of the domain of this partial
automorphism. Therefore, 𝑆(Γ) ≥ 𝑛−1

𝑛
.

The next series of results are all based on the idea of
constructing partial automorphisms by ‘ignoring’ neigh-
bors of a specified pair of vertices.

Lemma 3. Let Γ be a graph of order 𝑛, and let 𝑢 and 𝑣 be
two vertices ofΓ of degrees 𝑑𝑢, 𝑑𝑣 sharing 𝑟 common neigh-
bors. Then there exists a non-trivial partial automorphism
of Γ of rank at least 𝑛− 𝑑𝑢 − 𝑑𝑣 + 𝑟. In addition, if 𝑢 and
𝑣 are adjacent in Γ, there exists a partial automorphism of
Γ of rank at least 𝑛− 𝑑𝑢 − 𝑑𝑣 + 𝑟 + 2.

Proof 3. The domain of the desired partial automorphism
is the set of vertices of Γ minus the neighbors of 𝑢 and 𝑣
that fixes all the vertices in its domain and swaps 𝑢 and 𝑣.
The rank (i.e., the cardinality of its domain) of such partial
automorphism can be easily seen to be equal to the values
stated in the statement of the lemma.

Corollary 1. Let Γ be a graph of order 𝑛, and let 𝑚 be
the maximum of the values 𝑛− 𝑑𝑢 − 𝑑𝑣 + 𝑟 or 𝑛− 𝑑𝑢 −
𝑑𝑣+𝑟+2, if 𝑢 and 𝑣 are adjacent, over all pairs of distinct
vertices 𝑢, 𝑣 ∈ 𝑉 (Γ). Then 𝑆(Γ) ≥ 𝑛−𝑚

𝑛
. In particular,

if 𝑢 and 𝑣 are vertices of minimum degrees 𝑑𝑢, 𝑑𝑣 among
all vertices of Γ, 𝑆(Γ) ≥ 𝑛−𝑑𝑢−𝑑𝑣

𝑛
.

The above corollary yields a relatively high level of
symmetry for all graphs containing two vertices of small
degree. Even though this may seem like a rather strong
requirement, two vertices of high degree are likely to
share some common neighbors, and moreover, Lemma 1
allows us to extend the result to the opposite case of
graphs in which all the vertices have high degrees. The
interesting cases lie therefore among the graphs in which
the majority of vertices are of degree roughly 𝑛

2
; with 𝑛

being the order of the graph. However, instead of pro-
ceeding further and improving the above lower bounds,
we choose to state a series of open questions inspired
by our results on possible levels of symmetry which will
be addressed in the last section of our paper where we



present computational evidence toward answering the
questions listed here.

Question 1. Does there exist a graph Γ of order 𝑛 and
level of symmetry equal to 𝑛−𝑘

𝑛
for arbitrarily large 𝑘 ≥ 2?

The following two results do not resolve this question,
but suggest a possible relation between the parameters
𝑛 and 𝑘.

Lemma 4. Let 𝑘 < 𝑛 be positive integers, and suppose
that the number of asymmetric graphs of order 𝑘 is smaller
than

(︀
𝑛
𝑘

)︀
. Then, the level of symmetry of any graph Γ of

order 𝑛 is greater than or equal to 𝑘
𝑛

.

Proof 4. If Γ is of order 𝑛, and
(︀
𝑛
𝑘

)︀
is greater than the

number of asymmetric graphs of order 𝑘, the list of all
𝑘-vertex induced graphs of Γ necessarily contains an in-
duced non-asymmetric subgraph of order 𝑘 or contains two
isomorphic asymmetric induced subgraphs of order 𝑘. In
either case, Γ admits a non-trivial partial automorphism
whose domain is a 𝑘-vertex induced subgraph of Γ, and
whose rank is therefore 𝑘.

Corollary 2. Let 𝑛 be a positive integer and let 𝑘 be the
smallest positive integer satisfying the inequality

𝑛(𝑛− 1)(𝑛− 2) · · · (𝑛− 𝑘 + 1) ≥ 2(
𝑘
2). (1)

The level of symmetry of any graph Γ of order 𝑛 is greater
than or equal to 𝑘

𝑛
.

Proof 5. Our proof is based on a rather rough estimate. As
it is well-known, the number of non-labeled non-isomorphic

graphs of order 𝑘 is at most 2(
𝑘
2)
𝑘!

, and so the same must be
true for the number of non-isomorphic asymmetric graphs
of order 𝑘. Thus, applying Lemma 4 yields the desired
result for all graphs of order 𝑛 satisfying the inequality(︃

𝑛

𝑘

)︃
=

𝑛!

𝑘!(𝑛− 𝑘)!
≥ 2(

𝑘
2)

𝑘!

which can be simplified into (1).

Even though the above corollary does not resolve Ques-
tion 1, it does yield the result that the minimal rank of
a partial automorphism of a graph increases with the
order of the graph. More precisely, solving the equa-

tion 𝑛(𝑛 − 1)(𝑛 − 2) · · · (𝑛 − 𝑘 + 1) ≈ 2(
𝑘
2) yields

𝑘 ≈ log√2 𝑛 which gives the approximate lower bound

𝑆(Γ) ≥ log√
2
𝑛

𝑛
, for all graphs Γ of order 𝑛. This re-

sult does not, however, take into the account the struc-
tural properties of graphs. In fact, preliminary results
of the first of the authors suggest the improved bound
𝑆(Γ) ≥ 𝑛

3
. This motivates us to state the following

refinement of Question 1:

Question 2. What is the minimal level of symmetry of a
graph Γ of order 𝑛 as a function of 𝑛?

Finally, we pose one more question the answer to
which might prove useful in determination of 𝑃𝐴𝑢𝑡(Γ).

Question 3. When given two graphs of the same order,
does higher symmetry level of one of them necessarily mean
that it will also have a larger monoid of partial automor-
phisms?

3. Census of Symmetry Levels of
Small Graphs and Their Inverse
Monoids of Partial
Automorphisms

The results contained in this section all come from a
Diploma Thesis [2] and are based on an application and
an algorithm for finding partial symmetries of graphs
developed therein. A quick summary of the obtained
results includes the following:

• An exhaustive search of all graphs of order 𝑛 ≤
10 determined the symmetry levels of all of them
and showed that all of them have level of symme-
try at least 𝑛−2

𝑛
.

• A recursive construction of graphs of order 𝑛 =
11 from asymmetric graphs of order 10 yielded a
complete list of graphs of order 11 whose level of
symmetry is 11−3

11
; it also determined that there

are no graphs of order 11 with the level of sym-
metry 11−𝑘

11
, 4 ≤ 𝑘 ≤ 𝑛.

• Constructions of graphs with smaller level of sym-
metry include a record graph of symmetry level
𝑛−4
𝑛

, for 𝑛 = 14.
• Randomized constructions of graphs with smaller

level of symmetry yield graphs of symmetry level
𝑛−5
𝑛

, for 𝑛 ≥ 15.

3.1. Minimal asymmetric graphs
As stated already in the Introduction, all minimal asym-
metric graphs are of the symmetry level 𝑛−1

𝑛
, with 𝑛

being the order of the graph. Figure 1 shows the smallest
(with respect to the order and number of edges) asym-
metric graph. Under inspection we see, that the graph
does not have any non-trivial symmetries, but its every
induced subgraph on at least two vertices has non-trivial
automorphisms.

Table 1 shows the minimal asymmetric graphs, their
numbers of vertices, edges, pairwise non-isomorphic in-
duced subgraphs (number of isomorphism classes), and
number of partial symmetries. We know from Lemma 1
that the partial automorphism monoids for a graph Γ



Figure 1: The smallest (with respect to the order and number
of edges) asymmetric graph; graph X1 in the list of asymmetric
graphs in [7].

and its complement Γ̃ are equal. Similarly, the number of
induced subgraphs and the number of partial symmetries
is the same for any graph and its complement. Hence,
the list contains only 9 of the 18 minimal asymmetric
graphs (which come in complementary pairs).

We also found the partial automorphism monoid for
each of the minimal asymmetric graphs. [2] contains the
complete list of these monoids.

3.2. Symmetry Levels of Small Graphs
The second author created an application to provide an in-
terface for easy work with graphs, graph symmetries, and
partial symmetries. As a result, a simple script allowed
us to answer the question whether there exist graphs of
order 𝑛 ≤ 10 of symmetry levels 𝑛−1

𝑛
. The script relied

on the list of (non-isomorphic) unlabelled simple graphs
generated by McKay and published in GAP format [4].
Erdős and Rényi already established that there are no
asymmetric graphs with 2 ≤ 𝑛 ≤ 5 vertices [1]. Since
there are no asymmetric graphs with 5 vertices, it fol-

Graph Vertices Edges # of # of
code non-isomorphic partial

induced symmetries
subgraphs

X1 6 6 20 768
X2 6 7 22 704
X3 6 7 20 714
X4 6 7 21 680
X9 7 6 28 3373
X10 7 7 30 2793
X11 7 8 29 2553
X15 8 9 45 9728
X16 8 10 45 8560

Table 1
The number of non-isomorphic induced subgraphs and partial
symmetries of minimal asymmetric graphs (graph codes taken
from [7]).

lows that none of the 8 asymmetric graphs of order 6, of
which all are minimal, have asymmetric subgraphs with 5
vertices [6][7]. Using the above mentioned script, it was
then shown that of all the 1044 of order 7, exactly 152
are asymmetric [5]. None of these graphs have symme-
try level 7−2

7
. Of the 3696 asymmetric unlabelled graphs

with 8 vertices, there are 8 graphs with symmetry level
8−2
8

. Of all asymmetric graphs of orders 9 and 10, 2608
are of symmetry level 9−2

9
and more than a million of

symmetry level 10−2
10

.
Based on the findings from [1], we know that almost

all finite graphs are asymmetric. Thus, as 𝑛 grows, the
number of asymmetric graphs with 𝑛 vertices gets closer
to the total number of all graphs of order 𝑛. It is also rea-
sonable to expect that the number of asymmetric graphs
of order 𝑛 and symmetry level 𝑛−2

𝑛
should be increasing

with the growth of 𝑛. This pattern seems to be supported
by the obtained data, as only 8 graphs of order 8 are of
symmetry level 8−2

8
, 2608 graphs of order 9 have sym-

metry level 9−2
9

, and more than a million have symmetry
level 10−2

10
(of almost 8 million asymmetric graphs).

Checking all previously found graphs determined that
no graphs of order ≤ 10 are of symmetry level 𝑛−3

𝑛
.

We avoided using the developed program to check all
unlabelled graphs with 11 vertices, since there are more
than a billion such graphs. Instead, a different approach
was used. Based on the list of all asymmetric graphs of
order 10, a program created all possible 11-vertex graphs
by adding a new vertex. In total, there are 210 possible
ways of adding a new vertex to a 10-vertex graph. Using
this approach, we found 11-vertex graphs with symmetry
level 11−3

11
.

Utilizing the previous findings and our extensive li-
brary, we implemented a function 𝑓𝑖𝑛𝑑_𝑠𝑦𝑚_𝑑, which
takes a graph as an argument and returns its symmetry
level. Then we extended the approach described pre-
viously by taking any 𝑛-vertex asymmetric graph and
creating an 𝑛 + 1-vertex graph by adding a new ver-
tex. In total, there are 2𝑛 different ways of doing this,
since the new vertex is either isolated or it is added as
a neighbor to any 𝑘-vertex subset of the set of vertices,
1 ≤ 𝑘 ≤ 𝑛. The function ℎ𝑎𝑠_𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦_𝑙𝑒𝑣𝑒𝑙 is
then used to verify whether the new graph has a desired
symmetry level. Using this approach recursively, graphs
of order 14 vertices and symmetry level 14−4

14
were con-

structed. Unfortunately, this approach is computationally
difficult and would not be appropriate for finding all 14
vertex graphs with a given level of symmetry.

Finally, in order to construct graphs of order 𝑛 and
symmetry level 𝑛−5

𝑛
, random graphs of orders between

15 and 30were generated and their symmetry levels were
determined. The search did yield some graphs of sym-
metry level 𝑛−5

𝑛
. Due to the combinatorial explosion oc-

curring when working with graphs, their subgraphs, and
symmetries, exhaustive searches become very quickly



infeasible.

3.3. Number of partial automorphisms
Due to the fast rise of the number of partial symmetries
with respect to the rise of the orders of the considered
graphs, we wanted to know if one can predict the number
of partial symmetries of a graph by looking at its struc-
ture. For this reason, the numbers of partial symmetries
for all unlabelled graphs of orders 𝑛, 3 ≤ 𝑛 ≤ 9, were
calculated.

To find the number of partial automorphisms of a given
graph Γ, it suffices to find all isomorphism classes of
induced subgraphs of Γ, the corresponding numbers of
induced subgraphs belonging to these classes, and the
orders of the automorphism groups of representatives in
these classes. The number of partial symmetries within
a specific isomorphism class 𝐼 can then be calculated
using the formula |𝐼|2 × |𝐴𝑢𝑡(𝑟𝑒𝑝𝐼)|, where 𝑟𝑒𝑝𝐼 is a
representative of 𝐼 .

Figure 2: The number of partial symmetries for all 9-vertex
graphs, dot size denotes the number of graphs.

Figure 2 shows the number of partial symmetries for
graphs with 9 vertices, where we excluded 𝐾9 and its
complement. The size of the dot scales proportionally
to the number of graphs having that number of partial
symmetries. One can quickly notice how symmetrical
this image is. It is to be expected, since we already know
that a graph and its complement share the same partial
automorphism monoid structure and therefore have the
same number of partial symmetries.

By studying the results obtained for all graphs with 9 or
fewer vertices, we made the following observations. Ob-
viously, the number of partial symmetries of an 𝑛-vertex
graph Γ is equal to the number of partial permutations
of an 𝑛-element set, if and only if, Γ is isomorphic to

the complete graph 𝐾𝑛 or its complement. Removal of
just one edge from 𝐾𝑛 significantly reduces the number
of partial symmetries. For 𝑛 = 9, the number drops
from 17, 572, 114 partial symmetries in case of 𝐾9 to
4, 582, 270 partial symmetries for 𝐾9 ∖ {𝑒}.

Next, we noticed that for graphs with 𝑘 edges, 1 ≤
𝑘 ≤ 9, there is always one graph with a number of par-
tial symmetries higher than all the other 𝑘-edge graphs.
These special graphs consist of a 𝑘-vertex star with all
other vertices being isolated.

Despite 𝐾9 having more than 17 million partial sym-
metries, the mean number of partial symmetries for
graphs of order 9 is only 22154, a decrease of 99.5%.
We also calculated the mean values for graphs of 3 to 8
vertices, and based on the data, we predicted the mean of
partial symmetries for graphs with fewer than 17 vertices.
The prediction can be seen in Fig. 3.

Figure 3: Mean number of partial symmetries for graphs with
3-9 vertices with predictions for graphs with 10-16 vertices.
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