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Abstract
Let 𝐺 be a graph on 𝑛 vertices. The 𝑘-token graph (or symmetric 𝑘-th power) of 𝐺, denoted by 𝐹𝑘(𝐺) has as vertices

the
(︁
𝑛

𝑘

)︁
𝑘-subsets of vertices from 𝐺, and two vertices are adjacent when their symmetric difference is a pair of adjacent

vertices in 𝐺. In particular, 𝐹𝑘(𝐾𝑛) is the Johnson graph 𝐽(𝑛, 𝑘), which is a distance-regular graph used in coding theory.
In this paper, we present some results concerning the (adjacency and Laplacian) spectrum of 𝐹𝑘(𝐺) in terms of the spectrum
of 𝐺. For instance, when 𝐺 is walk-regular, an exact value for the spectral radius 𝜌 (or maximum eigenvalue) of 𝐹𝑘(𝐺)
is obtained. When 𝐺 is distance-regular, other eigenvalues of its 2-token graph are derived using the theory of equitable
partitions. A generalization of Aldous’ spectral gap conjecture (which is now a theorem) is proposed.
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1. Introduction
For a (simple and connected) graph 𝐺 = (𝑉,𝐸) with
adjacency matrix 𝐴, its local spectrum at vertex 𝑢 plays
a role similar to the (standard adjacency) spectrum when
the graph is ‘seen’ from vertex 𝑢. For instance, the local
spectra of 𝐺, for every 𝑢 ∈ 𝑉 , were used by Fiol and Gar-
riga [14] to prove the so-called ‘spectral excess theorem’,
which gives a quasi spectral characterization of distance-
regular graphs. In turn, this result was the crucial tool for
the discovery, by van Dam and Koolen [10], of the first
known family of non-vertex-transitive distance-regular
graphs with unbounded diameter. Besides, Fiol, Garriga,
and Yebra [16] used the local spectra to define the local
predistance polynomials, which were used to character-
ize a general kind of local distance-regularity (intended
for not necessarily regular graphs).

One of the most important parameters in spectral
graph theory is the index or spectral radius of a graph,
which corresponds to the largest eigenvalue of its adja-
cency matrix. This parameter has special relevance in
the study of many integer-valued graph invariants, such
as the diameter, the radius, the domination number, the
matching number, the clique number, the independence
number, the chromatic number, or the sequence of vertex
degrees. In turn, this leads to studying the structure of

23rd Conference ITAT, September 22 - 26th, 2023, Vysoke Tatry, Slo-
vakia.
*Corresponding author.
†

These authors contributed equally.
$ monicaandrea.reyes@udl.cat (M. A. Reyes);
cristina.dalfo@udl.cat (C. Dalfó); miguel.angel.fiol@upc.edu
(M. A. Fiol)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

graphs having an extremal spectral radius and fixed val-
ues of some of such parameters. See Brualdi, Carmona,
Van den Driessche, Kirkland, and Stevanović [4, Cap. 3].

In this work, we use some information given by the
local spectra to obtain new results about the spectral
radius of an ample family of graphs, which are known
as token graphs or symmetric 𝑘-th powers, defined as
follows. For a given integer 𝑘, with 1 ≤ 𝑘 ≤ 𝑛, the
𝑘-token graph 𝐹𝑘(𝐺) of 𝐺 is the graph whose vertex
set 𝑉 (𝐹𝑘(𝐺)) consists of the

(︀
𝑛
𝑘

)︀
𝑘-subsets of vertices

of 𝐺, and two vertices 𝐴 and 𝐵 of 𝐹𝑘(𝐺) are adjacent
whenever their symmetric difference 𝐴 △ 𝐵 is a pair
{𝑎, 𝑏} such that 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, and {𝑎, 𝑏} ∈ 𝐸(𝐺). In
Figure 1, we show the 2-token graph of the cycle 𝐶9 on
9 vertices. In particular, if 𝑘 = 1, then 𝐹1(𝐺) ∼= 𝐺; and
if 𝐺 is the complete graph 𝐾𝑛, then 𝐹𝑘(𝐾𝑛) ∼= 𝐽(𝑛, 𝑘),
where 𝐽(𝑛, 𝑘) denotes the Johnson graph, see Fabila-
Monroy, Flores-Peñaloza, Huemer, Hurtado, Urrutia, and
Wood [12].

The name ‘token graph’ also comes from the observa-
tion in [12], that vertices of 𝐹𝑘(𝐺) correspond to config-
urations of 𝑘 indistinguishable tokens placed at distinct
vertices of 𝐺, where two configurations are adjacent
whenever one configuration can be reached from the
other by moving one token along an edge from its cur-
rent position to an unoccupied vertex. Such graphs are
also called symmetric 𝑘-th power of a graph in Audenaert,
Godsil, Royle, and Rudolph [1]. They have applications
in physics; a connection between symmetric powers of
graphs and the exchange of Hamiltonian operators in
quantum mechanics is given in [1]. Our interest is in
relation to the graph isomorphism problem. It is well
known that there are cospectral non-isomorphic graphs,
where often the spectrum of the adjacency matrix of a
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Figure 1: The 2-token graph 𝐹2(𝐶9) of the cycle graph with
vertex set𝑉 (𝐶9) = Z9. The vertices inducing a circumference
(in dashed line) of radius 𝑟ℓ, with ℓ = 1, 2, 3, 4 and 𝑟1 > 𝑟2 >
𝑟3 > 𝑟4 are 𝑖𝑗 with dist(𝑖, 𝑗) = ℓ in 𝐶9.

graph is used. For instance, Rudolph [23] showed that
there are cospectral non-isomorphic graphs that can be
distinguished by the adjacency spectra of their 2-token
graphs, and he also gave an example for the Laplacian
spectrum. Audenaert, Godsil, Royle, and Rudolph [1] also
proved that 2-token graphs of strongly regular graphs
with the same parameters are cospectral and also derived
bounds on the (adjacency and Laplacian) eigenvalues of
𝐹2(𝐺) for general graphs. For more information, see
again [1] or [12].

What can be said about the spectrum of 𝐹𝑘(𝐺)? The
three main results that we want to recall are the follow-
ing.

Theorem 1.1. (Audenaert, Godsil, Royle, and
Rudolph [1]). All the strongly regular graphs with the
same parameters have cospectral symmetric squares (or
2-token graphs).

Theorem 1.2. (Dalfó, Duque, Fabila-Monroy, Fiol,
Huemer, Trujillo-Negrete, Zaragoza Martínez [8]).
For any graph 𝐺 on 𝑛 vertices, the Laplacian spectrum of
its ℎ-token graph is contained in the Laplacian spectrum
of its 𝑘-token graph for every 1 ≤ ℎ ≤ 𝑘 ≤ 𝑛/2.

Theorem 1.3 (Lew [20]). Let 𝐺 have Laplacian eigen-
values 𝜆1(= 0) < 𝜆2 ≤ · · · ≤ 𝜆𝑛. Let 𝜆 be an eigenvalue
of 𝐹𝑘(𝐺) not in 𝐹𝑘−1(𝐺). Then,

𝑘(𝜆2 − 𝑘 + 1) ≤ 𝜆 ≤ 𝑘𝜆𝑛.

In this paper, we mainly derive new results about the
spectral radius of token graphs, and it is organized as fol-
lows. The next section begins with some basic concepts,

definitions, and results. More precisely, we recall some
known results about the local spectra and derive the ba-
sic tools for computing the spectral radius. In Section 3,
we introduce the new concepts of 𝑘-algebraic connectiv-
ity and 𝑘-spectral radius. There, we study some of their
properties and propose and conjecture a generalization
of Aldou’s spectral gap conjecture, already a theorem
(see Caputo, Liggett, and Richthammer [6]). In Section
4, we give both lower and upper bounds for the spectral
radius of a token graph, which are shown to be asymptot-
ically tight. In the same section, we present some infinite
families in which the exact values of the spectral radius
are obtained. Finally, in the last section, we deal with
the case of distance-regular and strongly regular graphs,
where two results are presented in the form of Audenaert,
Godsil, Royle, and Rudolph’s result [1], and Lew’s result
[20].

2. Preliminaries

2.1. Graphs and their spectra
Let 𝐺 be a (simple and connected) graph with vertex set
𝑉 (𝐺) = {1, 2, . . . , 𝑛} and edge set 𝐸(𝐺). Let 𝐺 have
adjacency matrix 𝐴, and spectrum

sp𝐺 ≡ sp𝐴 = {𝜃𝑚0
0 , 𝜃𝑚1

1 , . . . , 𝜃
𝑚𝑑
𝑑 },

where 𝜃0 > 𝜃1 > · · · > 𝜃𝑑. Thus, by the Perron-
Frobenius theorem, 𝐺 has spectral radius 𝜌(𝐺) = 𝜃0.

Let 𝐿 = 𝐷 − 𝐴 be the Laplacian matrix of 𝐺, with
eigenvalues

𝜆1(= 0) < 𝜆2 ≤ · · · ≤ 𝜆𝑛.

Recall that 𝜆2 is the algebraic connectivity, and 𝐷 is the
diagonal matrix whose diagonal entries are the vertex
degrees of 𝐺.

2.2. The local spectra of a graph
Let 𝐺 have different eigenvalues 𝜃0 > · · · > 𝜃𝑑, with
respective multiplicities 𝑚0, . . . ,𝑚𝑑. If 𝑈 𝑖 is the 𝑛×𝑚𝑖

matrix whose columns are the orthonormal eigenvectors
of 𝜃𝑖, the matrix 𝐸𝑖 = 𝑈 𝑖𝑈

⊤
𝑖 , for 𝑖 = 0, 1, . . . , 𝑑, is the

(principal) idempotent of 𝐴 and represents the orthogo-
nal projection of R𝑛 onto the eigenspace Ker(𝐴− 𝜃𝑖𝐼).
The (𝑢-)local multiplicities of the eigenvalue 𝜃𝑖 are de-
fined as

𝑚𝑢(𝜃𝑖) = ‖𝐸𝑖𝑒𝑢‖2 = ⟨𝐸𝑖𝑒𝑢, 𝑒𝑢⟩ = (𝐸𝑖)𝑢𝑢

for 𝑢 ∈ 𝑉 and 𝑖 = 0, 1, . . . , 𝑑, where the vector 𝑒𝑢 is an
𝑛-dimensional vector with a 1 in the 𝑢-th entry and zeros
elsewhere. In particular, 𝑚𝑢(𝜃0) = 𝑣2𝑢 > 0, where 𝑣 is



the corresponding normalized Perron eigenvector. Al-
though the local multiplicities are, of course, not necessar-
ily integers, they have nice properties when the graph is
studied from a vertex, so justifying their name. Thus, they
satisfy

∑︀𝑑
𝑖=0 𝑚𝑢(𝜃𝑖) = 1 and

∑︀
𝑢∈𝑉 𝑚𝑢(𝜃𝑖) = 𝑚𝑖, for

𝑖 = 0, 1, . . . , 𝑑. The number 𝑎
(ℓ)
𝑢𝑢 of closed walks of

length ℓ rooted at vertex 𝑢 can be computed as

𝑎(ℓ)
𝑢𝑢 =

𝑑∑︁
𝑖=0

𝑚𝑢(𝜃𝑖)𝜃
ℓ
𝑖 (1)

(see Fiol and Garriga [14]). By picking up the eigenvalues
𝜃𝑖 with non-null local multiplicities, 𝜇0(= 𝜃0) > 𝜇1 >
· · · > 𝜇𝑑𝑢 , we define the (𝑢-)local spectrum of 𝐺 as

sp𝑢 𝐺 := {𝜇𝑚𝑢(𝜇0)
0 , 𝜇

𝑚𝑢(𝜇1)
1 , . . . , 𝜇

𝑚𝑢(𝜇𝑑𝑢 )

𝑑𝑢
},

with (𝑢-)local mesh, or set of distinct eigenvalues,
ev𝑢 𝐺 := {𝜇0 > 𝜇1 > · · · > 𝜇𝑑𝑢}. The eccentric-
ity of a vertex 𝑢 satisfies an upper bound similar to that
satisfied by the diameter of 𝐺 in terms of its distinct
eigenvalues. More precisely,

ecc(𝑢) ≤ 𝑑𝑢 = | ev𝑢 𝐺| − 1. (2)

In coding theory, 𝑑𝑢 corresponds to the so-called ‘dual
degree’ of the trivial code {𝑢}. For more information,
see Fiol, Garriga, and Yebra [16].

We use the following lemma to prove the results of
Section 4. Notice that this is just a reformulation of the
power method in terms of the number of walks given by
(1).

Lemma 2.1. Let 𝐺 be a finite graph with different eigen-
values 𝜃0 > · · · > 𝜃𝑑. Let 𝑤(ℓ)

𝑢 be the number of ℓ-walks
starting from (any fixed) vertex 𝑢, and let 𝑤(ℓ)

𝑢𝑢 be the num-
ber of closed ℓ-walks rooted at 𝑢. Then,

𝜌(𝐺) = lim
ℓ→∞

ℓ

√︁
𝑤

(ℓ)
𝑢 = lim

ℓ→∞
sup

ℓ

√︁
𝑤

(ℓ)
𝑢𝑢 ,

where ‘ sup’ denotes the supremum.

2.3. Regular partitions and their spectra
Let 𝐺 = (𝑉,𝐸) be a graph with vertex set 𝑉 = 𝑉 (𝐺),
adjacency matrix𝐴, and Laplacian matrix𝐿 . A partition
𝜋 of its vertex set 𝑉 into 𝑟 cells 𝐶1, 𝐶2, . . . , 𝐶𝑟 is called
regular (or equitable) whenever, for any 𝑖, 𝑗 = 1, . . . , 𝑟,
the intersection numbers 𝑏𝑖𝑗(𝑢) = |𝐺(𝑢) ∩ 𝐶𝑗 |, where
𝑢 ∈ 𝐶𝑖, do not depend on the vertex 𝑢 but only on the
cells 𝐶𝑖 and 𝐶𝑗 . In this case, such numbers are simply
written as 𝑏𝑖𝑗 , and the 𝑟 × 𝑟 matrices 𝑄𝐴 = 𝐴(𝐺/𝜋)
and 𝑄𝐿 = 𝐿 (𝐺/𝜋) with entries (𝑄𝐴)𝑖𝑗 = 𝑏𝑖𝑗 and

(𝑄𝐿)𝑖𝑗 =

⎧⎪⎨⎪⎩
−𝑏𝑖𝑗 if 𝑖 ̸= 𝑗,

𝑟∑︁
𝑗=1

𝑏𝑖𝑗 − 𝑏𝑖𝑖 if 𝑖 = 𝑗,

are, respectively, referred to as the quotient matrix and
quotient Laplacian matrix of 𝐺 with respect to 𝜋. In turn,
these matrices correspond to the quotient (weighted) di-
rected graph 𝐺/𝜋, whose vertices representing the 𝑟 cells,
and there is an arc with weight 𝑏𝑖𝑗 from vertex 𝐶𝑖 to ver-
tex 𝐶𝑗 if and only if 𝑏𝑖𝑗 ̸= 0. Of course, if 𝑏𝑖𝑖 > 0, for
some 𝑖 = 1, . . . , 𝑟, the quotient graph (or digraph) 𝐺/𝜋
has loops. Given a partition 𝜋 of 𝑉 with 𝑟 cells, let 𝑆
be the characteristic matrix of 𝜋, that is, the 𝑛× 𝑟 times
matrix whose columns are the characteristic vectors of
the cells of 𝜋. Then, 𝜋 is a regular partition if and only
if 𝐴𝑆 = 𝑆𝑄𝐴 or 𝐿𝑆 = 𝑆𝑄𝐿. Moreover, 𝑄𝐴 =
(𝑆⊤𝑆)−1𝑆⊤𝐴𝑆, and 𝑄𝐿 = (𝑆⊤𝑆)−1𝑆⊤𝐿 𝑆.
Thus, there is a strong analogy with similar results satis-
fied by the Laplacian matrices of the ℎ-token graph and
𝑘-token graph of 𝐺 for ℎ ≤ 𝑘.

2.4. Walk-regular graphs

Let 𝑎(ℓ)
𝑢 denote the number of closed walks of length ℓ

rooted at vertex 𝑢, that is, 𝑎(ℓ)
𝑢 = 𝑎

(ℓ)
𝑢𝑢. If these numbers

only depend on ℓ, for each ℓ ≥ 0, then 𝐺 is called walk-
regular, a concept introduced by Godsil and McKay in
[18].

Notice that, as 𝑎
(2)
𝑢 = 𝛿𝑢, the degree of vertex 𝑢, a

walk-regular graph is necessarily regular.
Moreover, a graph 𝐺 is called spectrally regular when

all vertices have the same local spectrum: sp𝑢 𝐺 =
sp𝑣 𝐺 for any 𝑢, 𝑣 ∈ 𝑉 . The following result (in De-
lorme and Tillich [11], Fiol and Garriga [15], and also
Godsil and McKay [18]) provide some characterizations
of such graphs.

Lemma 2.2 ([11],[15],[18]). Let 𝐺 = (𝑉,𝐸) be a
graph. The following statements are equivalent.

(𝑖) 𝐺 is walk-regular.
(𝑖𝑖) 𝐺 is spectrally regular.
(𝑖𝑖𝑖) The spectra of the vertex-deleted subgraphs are all

equal: sp (𝐺 ∖ 𝑢) = sp (𝐺 ∖ 𝑣) for any 𝑢, 𝑣 ∈ 𝑉 .

3. The 𝑘-algebraic connectivity
and 𝑘-spectral radius

In this section, we always consider the Laplacian spec-
trum. Let 𝐺 be a graph on 𝑛 vertices, and 𝐹𝑘(𝐺) its 𝑘-
token graph for 𝑘 ∈ {0, 1, . . . , 𝑛}. Note that 𝐹𝑘(𝐺) ∼=
𝐹𝑛−𝑘(𝐺) where, by convenience, 𝐹0(𝐺) ∼= 𝐹𝑛(𝐺) =
𝐾1 (a singleton). Moreover, 𝐹1(𝐺) ∼= 𝐺. From Dalfó,
Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete,
and Zaragoza Martínez [8], it is known that the Laplacian
spectra of the token graphs of 𝐺 satisfy

{0} = sp𝐹0(𝐺) ⊂ sp𝐹1(𝐺) ⊂ sp𝐹2(𝐺) ⊂ · · · ⊂ sp𝐹⌊𝑛/2⌋(𝐺).
(3)



Let denote 𝛼(𝐺) and 𝜌(𝐺) the algebraic connectivity
(see Fiedler [17]) and the spectral radius of a graph 𝐺,
respectively. Then, from (3), we have

𝛼(𝐺) ≥ 𝛼(𝐹2(𝐺)) ≥ · · · ≥ 𝛼(𝐹⌊𝑛/2⌋(𝐺)), (4)

𝜌(𝐺) ≤ 𝜌(𝐹2(𝐺)) ≤ · · · ≤ 𝜌(𝐹⌊𝑛/2⌋(𝐺)). (5)

The concepts of algebraic connectivity and spectral ra-
dius, together with (3)–(5), suggest the following defini-
tions.

Definition 3.1. Given a graph 𝐺 on 𝑛 vertices and an
integer 𝑘 such that 1 ≤ 𝑘 ≤ ⌊𝑛/2⌋, the 𝑘-algebraic
connectivity𝛼𝑘 = 𝛼𝑘(𝐺) and the 𝑘-spectral radius 𝜌𝑘 =
𝜌𝑘(𝐺) of 𝐺 are, respectively, the minimum and maximum
eigenvalues of the multiset sp𝐹𝑘(𝐺) ∖ sp𝐹𝑘−1(𝐺).

Notice that, since
(︀
𝑛
𝑘

)︀
>
(︀

𝑛
𝑘−1

)︀
for 1 ≤ 𝑘 ≤ ⌊𝑛/2⌋,

the parameters 𝛼𝑘 and 𝜌𝑘 always exist.
For instance, with 𝐺 = 𝑃6, the path on 6 vertices, we

have (approximately)

𝛼1(𝑃6) = 0.267, 𝛼2(𝑃6) = 0.572, 𝛼3(𝑃6) = 0.930,

and

𝜌1(𝑃6) = 3.732, 𝜌2(𝑃6) = 6.504, 𝜌3(𝑃6) = 7.487,

whereas for 𝐺 = 𝐶7, the cycle on 7 vertices, we get

𝛼1(𝐶7) = 0.753, 𝛼2(𝐶7) = 1.163, 𝛼3(𝐶7) = 1.269.

Moreover, from these definitions, the following facts
hold.

(𝑖) 𝜌𝑘(𝐺) ≥ 𝛼𝑘(𝐺) ≥ 0.
(𝑖𝑖) 𝛼1(𝐺) = 𝛼(𝐺) (the standard algebraic connec-

tivity of 𝐺) and 𝜌1(𝐺) = 𝜌(𝐺) (the standard
spectral radius of 𝐺).

(𝑖𝑖𝑖) Since 𝐹𝑘(𝐾𝑛) ∼= 𝐽(𝑛, 𝑘) (the Johnson graph),
we have

𝛼𝑘(𝐾𝑛) = 𝜌𝑘(𝐾𝑛) = 𝑘(𝑛+ 1− 𝑘),

𝑘 = 1, . . . , ⌊𝑛/2⌋.
In particular, 𝛼1(𝐾𝑛) = 𝜌1(𝐾𝑛) = 𝑛,
𝛼2(𝐾𝑛) = 𝜌2(𝐾𝑛) = 2(𝑛− 1), and so on.

The equalities in (𝑖𝑖𝑖) come from the fact that the Johnson
graph 𝐽(𝑛, 𝑘) has different Laplacian eigenvalues 𝜆𝑗 =
𝑗(𝑛+ 1− 𝑘), with multiplicities 𝑚𝑗 =

(︀
𝑛
𝑗

)︀
−
(︀

𝑛
𝑗−1

)︀
for

𝑗 = 0, 1, . . . , 𝑘.
From what is known about token graphs, we can sug-

gest some conjectures and state some results, as follows.

Conjecture 3.2. For any graph 𝐺,

𝛼1(𝐺) ≤ 𝛼2(𝐺) ≤ · · · ≤ 𝛼⌊𝑛/2⌋(𝐺).

Because of (4), if Conjecture 3.2 holds, also does the
conjecture proposed in [8], that is, 𝛼(𝐹𝑘(𝐺)) = 𝛼(𝐺)
for any 𝑘 ≤ 𝑛/2. In fact, the last equality follows from
the proof of Aldous’ spectral gap conjecture given by
Caputo, Ligget, and Richthammer in [6]. By this result,
what we can state is that min{𝛼2, . . . , 𝛼⌊𝑛/2⌋} ≥ 𝛼1.

Conjecture 3.3. For any graph 𝐺,

𝜌1(𝐺) ≤ 𝜌2(𝐺) ≤ · · · ≤ 𝜌⌊𝑛/2⌋(𝐺).

Notice that, from (5), if this conjecture holds, then
𝜌𝑘(𝐺) = 𝜌(𝐹𝑘(𝐺)) for any 𝑘 ≤ 𝑛/2.

Lemma 3.4. For any graph 𝐺 and its complementary
graph𝐺, the 𝑘-algebraic connectivity and 𝑘-spectral radius
of 𝐺 satisfy

𝛼𝑘(𝐺) + 𝜌𝑘(𝐺) = 𝑘(𝑛− 𝑘 + 1).

Moreover, 𝛼(𝐺) = 𝑛− 𝜌(𝐺), as it is well known.

Corollary 3.5. For any graph 𝐺 on 𝑛 vertices,

𝛼𝑘(𝐺) ≤ 𝑘(𝑛− 𝑘 + 1), 𝑘 = 1, . . . , ⌊𝑛/2⌋.
𝜌𝑘(𝐺) ≤ 𝑘(𝑛−𝑘 + 1), 𝑘 = 1, . . . , ⌊𝑛/2⌋.

From Lemma 3.4 and Proposition 5.2, we get the following
result, which will be proved in Section 5.

Corollary 3.6. Let 𝐺 be a bipartite distance-regular
graph. Let 𝐿(𝐹2/𝜋) be the quotient matrix in (15) with
spectral radius 𝜌𝐿(𝐹2/𝜋). Then,

𝛼2(𝐺) =

(︃
𝑛

2

)︃
− 𝜌𝐿(𝐹2/𝜋).

4. The spectral radius of token
graphs

In contrast with the previous section, in this section, we
always consider the spectral radius of the adjacency ma-
trix of a (connected) graph. Consider a graph𝐺with spec-
tral radius 𝜌(𝐺) and vertex-connectivity 𝜅 (the minimum
number of vertices whose suppression either disconnects
the graph or results in a singleton). By taking the spec-
tral radii of its 𝑈 -deleted subgraphs, with 𝑈 ⊂ 𝑉 and
|𝑈 | = 𝑘 < 𝜅, we define the following two parameters:

𝜌𝑘𝑀 (𝐺) = max{𝜌(𝐺 ∖ 𝑈) : 𝑈 ⊂ 𝑉, |𝑈 | = 𝑘},

𝜌𝑘𝑚(𝐺) = min{𝜌(𝐺 ∖ 𝑈) : 𝑈 ⊂ 𝑉, |𝑈 | = 𝑘}.

Notice that, if 𝐺 is walk-regular, then 𝜌1𝑀 (𝐺) =
𝜌1𝑚(𝐺) = 𝜌(𝐺 ∖ 𝑢) for every vertex 𝑢. If 𝐺 is distance-
regular with degree 𝛿, it is known that it has vertex-
connectivity 𝜅(𝐺) = 𝛿 (see Brouwer and Koolen [3]).



Moreover, Dalfó, Van Dam, and Fiol [7] showed that
sp(𝐺 ∖ 𝑈) only depends on the distances in 𝐺 between
the vertices of 𝑈 . Thus, for every 𝑘 ≤ 𝛿−1, the computa-
tion of 𝜌𝑘𝑀 (𝐺) and 𝜌𝑘𝑚(𝐺) can be drastically reduced by
considering only the subsets 𝑈 with different ‘distance-
pattern’ between vertices. For instance, if 𝐺 has diameter
𝐷,

𝜌2𝑀 (𝐺) = max
1≤ℓ≤𝐷

{𝜌(𝐺 ∖ {𝑢, 𝑣}) : dist𝐺(𝑢, 𝑣) = ℓ},

𝜌2𝑚(𝐺) = min
1≤ℓ≤𝐷

{𝜌(𝐺 ∖ {𝑢, 𝑣}) : dist𝐺(𝑢, 𝑣) = ℓ}.

In general, by using interlacing (see Haemers [19] or
Fiol [13]), we have the following result.

Lemma 4.1. Let 𝐺 be a graph with 𝑛 vertices, vertex-
connectivity 𝜅, and eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑛.
Then, for every 𝑘 = 1, . . . , 𝜅− 1,

𝜆𝑘+1 ≤ 𝜌𝑘𝑀 (𝐺) ≤ 𝜆1, (6)

𝜆𝑛 ≤ 𝜌𝑘𝑚(𝐺) ≤ 𝜆𝑛−𝑘. (7)

From the above results, Lemma 2.1, and the bounds
for the spectral radius of graph perturbations obtained
in Dalfó, Garriga, and Fiol [9] and Nikiforov [21], we get
the following main result.

Theorem 4.2. Let𝐺 be a graph with spectral radius 𝜌(𝐺)
and vertex-connectivity 𝜅 > 1. Given an integer 𝑘, with
1 ≤ 𝑘 < 𝜅, let 𝜌𝑘𝑀 (𝐺) and 𝜌𝑘𝑚(𝐺) be the maximum and
minimum of the spectral radii of the 𝑈 -deleted subgraphs
of 𝐺, where |𝑈 | = 𝑘.

(𝑖) The spectral radius of the 𝑘-token graph 𝐹𝑘(𝐺)
satisfies

𝑘𝜌𝑘−1
𝑚 (𝐺) ≤ 𝜌(𝐹𝑘(𝐺)) ≤ 𝑘𝜌𝑘−1

𝑀 (𝐺). (8)

(𝑖𝑖) If 𝐺 is a graph of order 𝑛 and diameter 𝐷, the
spectral radius of the 𝑘-token graph𝐹𝑘(𝐺) satisfies

𝜌(𝐹𝑘(𝐺)) ≤ 𝑘

(︂
𝜌(𝐺)− 1

𝑛𝜌(𝐺)2𝐷

)︂
. (9)

(𝑖𝑖𝑖) If 𝐺 is walk-regular and 𝑘 = 2 (that is, 𝐹2(𝐺) is
the 2-token graph of 𝐺), then

𝜌(𝐹2(𝐺)) = 2𝜌1𝑚(𝐺) = 2𝜌1𝑀 (𝐺). (10)

As commented in [22], for large values of 𝜌(𝐺) and 𝐷,
the right hand of (9) yields the correct order of magnitude
of 𝜌(𝐻), with 𝐻 a proper subgraph of 𝐺. Thus, we can
say that, asymptotically, the spectral radius of 𝐹𝑘(𝐺) is
𝑘 times the spectral radius of 𝐺. Moreover, in the case
when 𝐺 is regular, (𝑖𝑖) can be rewritten as

𝜌(𝐹2(𝐺)) ≤ 𝑘

(︂
𝜌(𝐺)− 1

𝑛(𝐷 + 1)

)︂
, (11)

(see again[22, Th. 4]).
Since the different eigenvalues of the path 𝑃𝑛 on 𝑛

vertices are 𝜃𝑖 = 2 cos
(︁

𝑖𝜋
𝑛+1

)︁
for 𝑖 = 1, . . . , 𝑛, and

the spectral radius of the complete bipartite graph is
𝜌(𝐾𝑚,𝑛) =

√
𝑚𝑛, we get the following results.

Corollary 4.3. Let 𝑃𝑛 and 𝐶𝑛 be, respectively, the path
and cycle graph on 𝑛 vertices. Let 𝑃∞ and 𝐶∞ be, respec-
tively, the infinite path and cycle graphs.

(𝑖) 𝜌(𝐹2(𝑃𝑛)) ≤ 4 cos(𝜋/𝑛) and 𝜌(𝐹2(𝑃∞)) = 4,
(𝑖𝑖) 𝜌(𝐹2(𝐶𝑛)) = 4 cos(𝜋/𝑛) and 𝜌(𝐹2(𝐶∞)) = 4,
(𝑖𝑖𝑖) 𝜌(𝐹2(𝐾𝑛,𝑛)) = 2

√︀
𝑛(𝑛− 1).

Notice a pair of examples:

• 𝐹2(𝐶3) = 𝐶3 = 𝐾3 has spectrum {−1[2], 2},
whereas 𝑃2 has {−1, 1}.

• 𝐹2(𝐶4) = 𝐾2,4 has spectrum {−2
√
2, 0[6],

2
√
2}, whereas 𝑃3 has {−

√
2, 0,

√
2}.

5. The case of distance-regular
graphs

In this section, we adopt the terminology of Brouwer,
Cohen, and Neumaier [2] for distance-regular graphs.
Furthermore, since we examine both the adjacency and
Laplacian spectra, we will denote their respective spectral
radii as 𝜌𝐴 and 𝜌𝐿. In the following result, consider
that 𝐺 is a distance-regular graph with degree 𝛿 = 𝑏0,
diameter 𝑑, intersection array

𝜄(𝐺) = {𝑏0, 𝑏1, . . . , 𝑏𝑑−1; 𝑐1, 𝑐2, . . . , 𝑐𝑑}. (12)

or intersection matrix

𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑐1
𝑏0 𝑎1 𝑐2

𝑏1 𝑎2
. . .

. . .
. . . 𝑐𝑑

𝑏𝑑−1 𝑎𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

where 𝑎𝑖 = 𝑑− 𝑏𝑖 − 𝑐𝑖, for 𝑖 = 1, . . . , 𝑑.

Lemma 5.1. Let 𝐹2(𝐺) be the 2-token graph of a
distance-regular graph 𝐺 with degree 𝛿 = 𝑏0, diameter 𝑑,
and intersection array 𝜄(𝐺) as in (12). Then, 𝐹2 = 𝐹2(𝐺)
has a regular partition 𝜋 with quotient matrix and quotient
Laplacian matrix

𝐴(𝐹2/𝜋) = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1 𝑏1
𝑐2 𝑎2 𝑏2

𝑐3 𝑎3
. . .

. . .
. . . 𝑏𝑑−1

𝑐𝑑 𝑎𝑑

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (14)



𝐿 (𝐹2/𝜋) =

2

⎛⎜⎜⎜⎝
𝑏1 −𝑏1

−𝑐2 𝑐2 + 𝑏2 −𝑏2

−𝑐3 𝑐3 + 𝑏3

.
.
.

.
.
.

.
.
. −𝑏𝑑−1

−𝑐𝑑 𝑐𝑑

⎞⎟⎟⎟⎠ , (15)

where 𝑐𝑖 + 𝑎𝑖 + 𝑏𝑖 = 𝛿, for 𝑖 = 0, 1, . . . , 𝑑.

The following result shows that the quotient matrices of
a regular partition can be used to find the spectral radius
or Laplacian spectral radius of the 2-token graph of 𝐺.

Proposition 5.2. Let 𝐺 be a distance-regular graph with
adjacency and Laplacian matrices 𝐴 and 𝐿 . Let 𝐹2(𝐺) be
its 2-token graph with adjacency and Laplacian matrices
𝐴(𝐹2) and 𝐿(𝐹2) with respective spectral radii 𝜌𝐴(𝐹2)
and 𝜌𝐿(𝐹2). Let 𝐴(𝐹2/𝜋) and 𝐿(𝐹2/𝜋) be the quotient
matrices in (14) and (15) with respective spectral radii
𝜌𝐴(𝐹2/𝜋) and 𝜌𝐿(𝐹2/𝜋). Then, the following holds:

(𝑎) 𝜌𝐴(𝐹2) = 𝜌𝐴(𝐹2/𝜋).
(𝑏) 𝜌𝐿(𝐹2) ≥ 𝜌𝐿(𝐹2/𝜋), with equality if 𝐺 is bipar-

tite.

In fact, the eigenvalues of 𝐴(𝐹2/𝜋) are 2 times the
zeros of the so-called conjugate polynomial 𝑝𝑑 of the dis-
tance polynomial 𝑝𝑑 of 𝐺 (with 𝑝𝑑(𝐴) = 𝐴𝑑, where 𝐴𝑑

is the 𝑑-distance matrix of 𝐺). The conjugate polyno-
mials were introduced by Fiol and Garriga in [14], and
are defined on the mesh {𝜃0, 𝜃1, . . . , 𝜃𝑑} in terms of the
distance polynomials 𝑝0, 𝑝1, . . . , 𝑝𝑑 as

𝑝𝑖(𝜃𝑖) =
𝑝𝑑−𝑖(𝜃𝑖)

𝑝𝑑(𝜃𝑖)
for 𝑖 = 0, 1, . . . , 𝑑.

Thus, in particular 𝑝𝑑(𝜃𝑖) = 𝑝𝑑(𝜃𝑖)
−1 and, up to a

constant, 𝑝𝑑(x) equals the characteristic polynomial of
1
2
𝐴(𝐹2/𝜋) (for more details, see Cámara, Fàbrega, Fiol,

and Garriga [5]).
Let us show an example.

Example 5.3. The Heawood graph 𝐻 (which is the
point/line incidence graph of the Fano plane) is a bipar-
tite distance-regular graph with 𝑛 = 14 vertices, diame-
ter three, and intersection array {𝑏0, 𝑏1, 𝑏2; 𝑐1, 𝑐2, 𝑐3} =
{3, 2, 2; 1, 1, 3}. The Laplacian spectral radius of 𝐻 is
𝜌𝐿(𝐻) = 6, and the algebraic connectivity of 𝐻 is
𝛼1(𝐻) = 𝑛 − 𝜌𝐿(𝐻) = 8. By Proposition 5.2, the 2-
token graph 𝐹2 = 𝐹2(𝐻) has a regular partition 𝜋 with
quotient matrix

𝐴(𝐹2/𝜋) = 2

⎛⎝ 0 1 0
2 0 3
0 2 0

⎞⎠ ,

and quotient Laplacian matrix

𝐿 (𝐹2/𝜋) = 2

⎛⎝ 2 −1 0
−2 3 −3
0 −2 3

⎞⎠ .

The eigenvalues of 𝐴(𝐹2/𝜋) are 0,±4
√
2, whereas those

of 𝐿(𝐹2/𝜋) are 0, 8 ± 2
√
3. Thus, we conclude that

𝜌𝐴(𝐹2(𝐻)) = 4
√
2 and 𝜌2(𝐻) = 𝜌𝐿(𝐹2(𝐻)) =

8 + 2
√
3. From this and Lemma 3.4, we have that

𝛼2(𝐻) = 2(𝑛 − 1) − 𝜌2(𝐻) = 18 − 2
√
3, which is

greater than 𝛼1(𝐻) = 8. Consequently, the algebraic con-
nectivity of 𝐹2(𝐻) equals that of 𝐻 , as expected. Besides,
the 3-distance polynomial of 𝐻 is 𝑝3(𝑥) = 1

3
(𝑥3 − 5), so

that the conjugate polynomial 𝑝3 must satisfy 𝑝3(±3) =
𝑝3(±3)−1 = ± 1

4
, and 𝑝3(±

√
2) = 𝑝3(±

√
2)−1 =

∓
√
2

2
. This results into 𝑝3(𝑥) = 1

12
𝑥3 − 2

3
𝑥, with

roots 0,±2
√
2, which correspond to the eigenvalues of

1
2
𝐴(𝐹2/𝜋), as predicted.

Other consequences of Lemma 5.1 and Proposition 5.2
are the following. First, in the form of Audenaert, God-
sil, Royle, and Rudolph’s (see [1]), we get the following
result.

Corollary 5.4. All distance-regular graphs with diame-
ter 𝑑 and the same parameters have symmetric squares with
the same, at least, 𝑑 different (adjacency and Laplacian)
eigenvalues. In particular, such graphs have the spectral
radii 𝜌𝐴 and 𝜌𝐿.

Thus, the natural question is if, as in the case of strongly
regular graphs, all distance-regular graphs with the same
parameters are also cospectral.

Moreover, in the vein of Lew’s result (see [20]) and, by
using interlacing, we get the following consequence.

Corollary 5.5. Let 𝐺 be a distance-regular graph with
(adjacency) eigenvalues 𝜃0 > 𝜃1 > · · · > 𝜃𝑑. Then, 2-
token graph 𝐹2(𝐺) has some eigenvalues 𝜇0 > 𝜇1 >
· · · > 𝜇𝑑−1 satisfying

2𝜃𝑖+1 ≤ 𝜇𝑖 ≤ 2𝜃𝑖, 𝑖 = 0, . . . , 𝑑− 1.

5.1. Strongly regular graphs
Let 𝐺 be a (connected) strongly regular graph on 𝑛 ver-
tices, which is a distance-regular graph with diameter 2.
Let 𝐺 have parameters (𝑛, 𝑑, 𝑎, 𝑐), that is, 𝐺 is 𝑑-regular
(with 𝑏0 = 𝑑), 𝑎1 = 𝑎, and 𝑐2 = 𝑐. Then, its intersection
matrix is

𝐵 =

⎛⎝ 0 1 0
𝑑 𝑎 𝑐
0 𝑑− 𝑎− 1 𝑑− 𝑐

⎞⎠ .

Then, the 2-token graph 𝐹2 = 𝐹2(𝐺) has a regular par-
tition 𝜋 with quotient matrix

𝐴(𝐹2/𝜋) =

(︂
2𝑎 2𝑐

2𝑑− 2𝑎− 2 2𝑑− 2𝑐

)︂
,



and quotient Laplacian matrix

𝐿 (𝐹2/𝜋) =

(︂
2𝑑− 2𝑎− 2 −2𝑐
−2𝑑+ 2𝑎+ 2 2𝑐

)︂
.

Such a regular partition was given by Audenaert, Godsil,
Royle, and Rudolph in [1], and noted that the adjacency
eigenvalues of 𝐴(𝐹2/𝜋) are

𝜃1,2 = 𝑑+ (𝑎− 𝑐)±
√︀

[𝑑− (𝑎− 𝑐)]2 − 4𝑐.

They also commented that the positive eigenvalue 𝜃1
has a positive eigenvector (Perron vector) and, so, it cor-
responds to the (adjacency) spectral radius 𝜌𝐴(𝐹2(𝐺)).
In contrast, the quotient Laplacian matrix 𝐿(𝐹2/𝜋) has
eigenvalues 𝜆1 = 0 and 𝜆2 = 2(𝑑− 1)− 2(𝑎− 𝑐). Now,
the eigenvector of 𝜆2 is orthogonal to 1. Then, we can
only conclude that the Laplacian spectral radius of 𝐹2(𝐺)
satisfies

𝜌𝐿(𝐹2(𝐺)) ≥ 2(𝑑− 1)− 2(𝑎− 𝑐). (16)

For instance, the cycle on five vertices 𝐶5 is strongly reg-
ular with parameters (5, 2, 0, 1). Its Laplacian spectral
radius is (approximately) 𝜌𝐿(𝐹2(𝐺)) = 6.2361, whereas
the lower bound in (16) gives 4.
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