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Abstract
Base calling in nanopore sequencing is a difficult and computationally intensive problem, typically resulting in high error rates.
In many applications of nanopore sequencing, direct analysis of raw signal is a viable alternative. Dynamic time warping
(DTW) is an important building block for raw signal analysis. In this paper, we propose several improvements to DTW class
of algorithms to better account for specifics of nanopore signal modeling. We have implemented these improvements in a new
signal-to-reference alignment tool Nadavca. We demonstrate that Nadavca alignments improve unsupervised methylation
detection over Tombo. We also demonstrate that by providing additional information about the discriminative power of
positions in the signal, an otherwise unsupervised method can approach the accuracy of supervised models.
Availability and implementation: Nadavca is available under MIT license at https://github.com/fmfi-compbio/nadavca.
Nanopore sequencing data sets are available from ENA bioproject PRJEB64246. Jaminaea angkorensis reference genome
assembly is available from Zenodo https://doi.org/10.5281/zenodo.8145315.

1. Background
DNA sequencing devices developed by Oxford Nanopore
Technologies (ONT), including the pocket-sized MinION,
measure changes in electrical current as a DNA strand
passes through a nanopore. The result is a sequence of
signal measurements (also called a squiggle). In this paper,
we provide an improved algorithm to align parts of the
squiggle to a known reference DNA sequence and show
that improved alignment accuracy benefits downstream
analysis in de novo methylation identification.

Typically, the first step in the analysis of nanopore se-
quencing data is base calling, which translates a squiggle
into a DNA sequence. The most successful base callers
are based on complex machine learning models, such as
recurrent neural networks [1, 2]. A typical median read
accuracy achieved by a base caller for R9.4.1 nanopores
employed in this study is approx. 97% [3], but when base
called reads are piled up at a deep coverage, the consensus
accuracy can be as high as 99.94% [4]. (ONT lists 98.3%
accuracy for R9.4.1 and 99% for newer R10.4.1 nanopores;
note that these numbers are based on accuracy in the
mode of the read accuracy distribution and are generally
higher than median accuracy.)

An alternative class of approaches avoids base call-
ing and works directly with the raw signal sequence.
The main motivation is to use the additional information
present in the raw signal, which is potentially lost in base
calling. Applications include mainly better modification
calling and methylation detection. Base calling is also
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computationally intensive, and thus in some situations,
working with the raw signal can be faster.

Basic properties of nanopore signal. The measured
electrical current depends mostly on the context of 𝑘
consecutive nucleotides passing through the nanopore.
A signal model predicts for each context of size 𝑘 the
expected signal level. For the case of nanopores in R9.4.1
flow-cells, which were used in this paper, a typical model
uses the context of size 𝑘 = 6. The DNA moves through
the pore at the speed of roughly 450 bases per second
and the signal is read at a frequency of 4000 samples per
second. This means that on average we have approx. 9
samples per one DNA context, but the actual number of
samples per context can vary significantly.

Signal-to-reference alignment and dynamic time
warping. One of the basic building blocks of nanopore
signal analysis is the alignment of squiggles to a known
reference sequence. The squiggle can be represented as
a sequence of numbers 𝑠1 · · · 𝑠𝑛. For each nucleotide 𝑟𝑖
of the reference sequence 𝑟1𝑟2 · · · 𝑟𝑚, we need to assign
the corresponding interval 𝑠𝑎𝑖𝑠𝑎𝑖+1 · · · 𝑠𝑏𝑖 of the squig-
gle which we call an event. Such squiggle-to-reference
alignment facilitates further analysis, allowing to find
significant differences between the squiggle and the refer-
ence signal computed based on the signal model applied
to the reference sequence. Identified differences typi-
cally correspond to sequence variants or modifications
[5]. Alignments also enable pooling together information
from multiple reads aligned to a single reference location
and to visualize squiggles in the genomic context [6].

The squiggle alignment is typically performed by a
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class of algorithms called dynamic time warping (DTW),
originating in the field of speech processing [7]. The
alignment of a signal level 𝑠 to a position 𝑗 in the ref-
erence 𝑟 is evaluated by a scoring function 𝑑(𝑠, 𝑟, 𝑗),
which typically takes into account the context around
position 𝑗; for example, the scoring function 𝑑(𝑠, 𝑟, 𝑗) =
(𝑠−expectedsignal(𝑟𝑗−(𝑘−1)/2 · · · 𝑟𝑗+(𝑘−1)/2))

2 uses a
signal model based on the context of 𝑘 nucleotides (as-
suming 𝑘 is odd). Using a scoring function of this type,
we are looking for the alignment minimizing the score∑︀𝑚

𝑗=1

∑︀𝑏𝑗
𝑖=𝑎𝑗

𝑑(𝑠𝑖, 𝑟, 𝑗), which can be computed using
a dynamic programming algorithm similar to sequence
alignment.

In our experience, the DTW-like algorithms applied in
the context of MinION squiggle alignment show a variety
of artefacts. The scoring function allows squiggle to be
compressed or stretched arbitrarily in time, without any
penalty. If several consecutive sequence contexts along
the reference genome exhibit similar expected signal val-
ues in the signal model (which is not uncommon), there
is a large uncertainty in how the corresponding observed
signal should be split between the events. Depending
on the exact DTW implementation, this may lead to arti-
ficially short or artificially long events. Small amounts
of noise in the signal can easily lead to events split in-
correctly between multiple reference contexts. In fact,
the real squiggles often contain transitional readouts be-
tween signal levels corresponding to consecutive signal
contexts, sometimes even alternating between two con-
secutive contexts for some time. If the squiggle does not
correspond exactly to the reference sequence (e.g. in case
of single nucleotide variants or base modifications), DTW
tends to “hide” the differences between the reference and
the squiggle within the neighboring events. This subse-
quently affects the ability to detect such differences.

In this paper, we propose several improvements to the
DTW framework to overcome these obstacles. Instead
of simple maximization of the scoring function, we pro-
pose to employ alternative methods similar to posterior
decoding in probabilistic models [8, 9], to account for
uncertainty in the event boundaries. We enhance the
signal model underlying the scoring function to take into
account a wider context of the sequence and also specif-
ically model transitions between the contexts. We also
employ a two-iteration approach to signal normalization
to avoid artefacts resulting from incorrect shifting and
scaling of the squiggle. We have implemented these im-
provements in an alignment tool called Nadavca, and we
have evaluated their effect on the accuracy of detection
of base modifications in nanopore reads. To make the
running time practical, we use methods similar to banded
and anchored sequence alignment.

Supervised and unsupervised modification detec-
tion. It is known that modified nucleotides affect the
signal levels when passing through nanopore [10]. For
known modification patterns, such as CpG methylation,
it is possible to prepare artificially methylated sequences
and either estimate a signal model for contexts containing
methylated nucleotides [11, 12, 13] or to train a machine
learning algorithm, such as a neural network, to rec-
ognize signals from sequences that contain methylated
nucleotides [14, 15, 16]. We call this approach super-
vised methylation detection, since substantial amounts of
labeled training data are required to build such models.

In contrast, unsupervised modification detection can be
used when labeled training data is not available, or when
we are targeting previously uncharacterized DNA modi-
fications. One option is to compare signal values in reads
in the studied sample with signals in a control sample
devoid of modifications and look for statistically signif-
icant differences [6, 17]. However, it is also possible to
find putative modifications simply by comparing the ac-
tual signal with the expected signal predicted by a signal
model trained on unmodified sequences (this approach is
implemented for example in Tombo [18]). The strength
of this method is that it requires only unmodified training
data to obtain the signal model and then can be applied
directly to biological samples from various organisms
without the need for modified training data or matched
unmodified dataset for each analysis. The crucial step in
this approach is accurate alignment of signal to the ref-
erence to allow meaningful comparison with the model
signal. Using Nadavca signal-to-reference alignments,
we implemented a new tool nanometh for unsupervised
modification detection. We demonstrate that Nadavca
alignments increase the accuracy of unsupervised modi-
fication detection, and we also evaluate contribution of
individual features implemented in Nadavca.

2. Methods

2.1. Realignment of Signal to the
Reference with Posterior Decoding

The core part of Nadavca aligns a portion of nanopore
signal (values 𝑠1, · · · , 𝑠𝑛) to the corresponding part of
the reference genome (bases 𝑟1, · · · , 𝑟𝑚). The objective
is to improve the accuracy of an approximate alignment,
resulting from aligning base-called reads to the reference.

The output alignment assigns an interval of the signal
sequence 𝑠𝑎𝑖 , · · · , 𝑠𝑏𝑖 (also called event) to each base
𝑟𝑖 of the reference. For the basic version of the algo-
rithm, we require that the intervals for adjacent bases
are adjacent in the signal sequence (i.e. 𝑎𝑖+1 = 𝑏𝑖 + 1).

The standard dynamic time warping (DTW) algorithm
is based on dynamic programming. We define subprob-



lem 𝐴𝑖,𝑗 , which represents the score of the best align-
ment of the squiggle segment 𝑠1 · · · 𝑠𝑖 to the reference
segment 𝑟1 · · · 𝑟𝑗 , assuming that the signal 𝑠𝑖 is aligned
to the reference base 𝑟𝑗 . 𝐴𝑖,𝑗 can be computed grad-
ually using a simple recurrence 𝐴𝑖,𝑗 = 𝑑(𝑠𝑖, 𝑟, 𝑗) +
min(𝐴𝑖−1,𝑗′ , 𝐴𝑖−1,𝑗−1), where 𝑑(𝑠𝑖, 𝑟, 𝑗) is the score
of aligning signal value 𝑠𝑖 to the reference sequence 𝑟
at position 𝑗. After finishing the computation, the fi-
nal alignment (intervals [𝑎𝑖, 𝑏𝑖]) can be easily computed
using standard methods for tracing back the dynamic pro-
gramming solution. The alignment can thus be visualized
as a path in this dynamic programming matrix.

Our alignment algorithm is inspired by the posterior
decoding approach to sequence alignment [8, 9]. While
the standard DTW seeks the alignment with the highest
overall score, our goal is to consider also a contribution
of sub-optimal alignments. Many of these alignments
can have scores very close to the optimum, representing
uncertainty in the true alignment. Posterior decoding
algorithms consider this uncertainty at each position of
the alignment.

To apply this principle to DTW, we first modify the
scoring scheme and instead of the distance score 𝑑(𝑠𝑖, 𝑟, 𝑗),
we use probabilistic score 𝑝(𝑠𝑖, 𝑟, 𝑗), which gives a prob-
ability of signal value 𝑠𝑖 being produced from the ref-
erence 𝑟 at position 𝑗. Details of this probabilistic scor-
ing scheme are described below. Now the score of the
alignment becomes the product of probabilities along the
alignment path

∏︀𝑚
𝑗=1

∏︀𝑏𝑗
𝑖=𝑎𝑗

𝑝(𝑠𝑖, 𝑟, 𝑗). Higher scores
indicate higher alignment quality.

The key concept in posterior decoding is the posterior
probability 𝑃𝑖,𝑗 which for each 𝑖 and 𝑗 sums the scores of
all alignments that align signal value 𝑠𝑖 to the reference
base 𝑟𝑗 . All values of 𝑃𝑖,𝑗 can be computed by Forward-
Backward algorithm similarly as in the context of pair
hidden Markov models [8, section 4.4]. Finally, we com-
pute the resulting alignment as a path through the matrix
𝑃 maximizing the product of individual posterior scores
𝑃𝑖,𝑗 (as in [9]), using a dynamic programming recurrence
similar to the standard DTW.

In the real data applications, we impose additional re-
strictions. The minimum length of each event 𝑏𝑖−𝑎𝑖+1
is constrained by the parameter min_event_length. The
very start and the very end of the signal may remain un-
aligned. The length of unaligned portions is at most
2bandwidth + 1, where bandwidth is a parameter de-
scribed below. Corresponding modifications of the al-
gorithms are straightforward.

2.2. Enhanced Signal Model
Accurate models of signal levels expected in different
sequence contexts are important for precise sequence
alignment. Tombo [18] by default uses the 6-mer model

Figure 1: Extended signal model

supplied by Oxford Nanopore, which predicts the ex-
pected signal based on the sequence context of length
6. Instead, we use a (restricted) 10-mer model which we
compute in the following way.

First, we align the training dataset (described below) to
the reference genome using Nadavca with the default 6-
mer model. Computing the mean signal for each 10-mer
would lead to a huge model, requiring a gigantic amount
of data in order to cover each 10-mer with enough sam-
ples. Therefore, we restrict our 10-mer model by express-
ing it as the sum of three separate sub-models: a base 6-
mer model 𝑀𝐶 for the central part of the context and two
4-mer models 𝑀1 and 𝑀2 that fine-tune the result based
on more distant bases. For a context 𝑟 = 𝑟1𝑟2 . . . 𝑟10, the
expected level 𝜇(𝑟) of the signal is computed as follows:
𝜇(𝑟) = 𝑀1(𝑟1 . . . 𝑟4)+𝑀𝐶(𝑟3 . . . 𝑟8)+𝑀2(𝑟7 . . . 𝑟10)
(see Figure 1 for illustration). Models 𝑀1,𝑀2, and 𝑀𝐶

are estimated simultaneously for all 4-mers and 6-mers re-
spectively, by fitting the observed signal levels using the
least-squares method. The probabilistic score 𝑝(𝑠𝑖, 𝑟, 𝑗)
is now computed based on 𝑠𝑖 ∼ 𝑁(𝜇(𝑟𝑗−4 . . . 𝑟𝑗+5), 𝜎)
for constant 𝜎 = 0.3.

2.3. Transitional States
The simplest models [19] of the nanopore signal assume
that the signal can be partitioned into events, each event
corresponding to one position in the reference and thus
having a roughly uniform signal level influenced by the
local sequence context. However, transitions between
events are not instantaneous, and as a result, the mea-
sured signal may include intermediate values between
the expected levels typical for two adjacent events or it
may even jump back and forth between these levels (see
Figure 2).

In Nadavca, we handle these phenomena by inserting a
special "transitional state” between each pair of adjacent
reference bases 𝑟𝑖 and 𝑟𝑖+1. The primary score for align-
ing signal 𝑠𝑗 to this transitional state is computed from a
special distribution as opposed to the 𝑘-mer distribution
used normally. While this distribution can depend on
the sequence context, for simplicity we currently use a
constant score 0.01. Thus, any signal aligned to these
positions is penalized, regardless of the signal level and
the sequence context. This simple heuristic works well



Figure 2: Example of transitions between states. Green
dots show observed intermediate values between signal levels.
Red dots represent signal values that jump back and forth
between adjacent states.

target: AAC CAC GTTGTCCACT-TC-TTCGTC AAC TGG

base call: GGT GTT GTT-TCCACTCTC-TT-GTC GGT CCC

Figure 3: Alignment of the base call to the target deter-
mines the reference window that needs to be aligned to
the signal. Blue color highlights the aligned window, orange
represents the context needed for the signal model.

in practice.
The posterior decoding algorithm aligns transitional

states to intervals of signal values, but these intervals are
not constrained to have a minimum required length; they
can even be empty. The intervals aligned to transitional
states are omitted from Nadavca’s output, and thus the
output events corresponding to the reference bases may
have gaps between them.

2.4. Fast Implementation With Banded
Alignment

To avoid slow computation of the full dynamic program-
ming matrix, we use the banded alignment heuristic
around an approximate guide alignment obtained by
aligning the base called sequence to the reference.

In particular, we first base call each read, and align
the base called sequence to the target genomic sequence
using BWA-MEM [20]. The BWA-MEM alignment will
determine the window of the target genome to which
we need to align the signal. This window is padded with
several additional bases from base call to introduce con-
text for the signal model; please note that these bases
may be different from the target due to the adapters or
barcodes present at the beginning or at the end of the
read (see Figure 3). The resulting sequence will serve as
the reference for the signal alignment.

Figure 4: Areas of interest for efficient signal alignment

In the next step, we consider all matched bases from
the BWA-MEM alignment. For each base called base 𝑏𝑗
matched to a reference base 𝑟𝑖, we locate the interval
𝑠𝑐...𝑑 in the signal that corresponds to 𝑏𝑗 according to
the Events table provided by Guppy. Interval 𝑠𝑐...𝑑 will
be anchored to the reference base 𝑟𝑖 and we call the set
of all anchors the guide alignment.

We use the guide alignment to determine the portion of
the signal that needs to be aligned to the reference. It will
extend from the start of the interval in the first anchor
to the the end of the interval in tha last anchor, extended
further on both ends by the bandwidth parameter.

The guide alignment will also define an area of inter-
est for dynamic programming. Recall that our posterior
alignment uses three passes of dynamic programming
(forward, backward, and posterior), and all three of them
will consider only such alignment paths that are con-
tained within the area of interest. All values outside of
the area of interest are considered as zeroes. For each ref-
erence base 𝑟𝑖, the area of interest contains the interval
of signal positions between the start of the closest anchor
at or before base 𝑟𝑖 and the end of the closest anchor at
or after base 𝑟𝑖; this interval is extended by bandwidth
positions on both ends (Figure 4).

2.5. Signal Renormalization
Raw nanopore signal needs to be normalized by applying
read-specific shift and scale parameters (denoted 𝛼 and
𝛽 respectively). Given a single raw signal level 𝑠raw and
the parameters 𝛼 and 𝛽, the normalized signal level is
(𝑠raw − 𝛼)/𝛽. This normalization can influence subse-
quent alignment [21] and other processing. In Nadavca,
we initially normalize the signal by using the median
signal value in a read as 𝛼 and the median of |𝑠raw − 𝛼|
in a read as 𝛽. This median-based normalization is, how-
ever, sensitive to various nanopore data artefacts. For
this reason, we improve the normalization by an iterative
procedure [22, 21, 18].

In particular, after the initial normalization, the re-
alignment algorithms assigns signal values to particular



reference locations. For each such aligned location, our
enhanced signal model predicts a particular expected
signal level. In the next iteration, we update normaliza-
tion parameters 𝛼 and 𝛽 to minimize the sum of squared
errors between the expected and observed signal val-
ues in the read (omitting signal values aligned to tran-
sitional states). Subsequently, we repeat the process by
re-computing the alignment and recomputing normaliza-
tion again. We observed, that two iterations are sufficient
to achieve a good accuracy.

2.6. Unsupervised Detection of DNA
Modification Through Anomalies

DNA modifications typically cause small shifts in sig-
nal values. Given an accurate signal-to-reference align-
ment, this property can be exploited to detect DNA mod-
ifications by comparison of expected signal values pre-
dicted from a signal model to the observed signal values
in individual events produced by the alignment. Here,
we mostly follow the approach used by Tombo de novo
modification detection module [18]. However, we sub-
stitute our improved signal-to-reference alignment and
enhanced signal model to demonstrate their usefulness.

In particular, let [𝑎, 𝑏] be an event aligned to the refer-
ence context 𝑟. Let 𝑚 is the event mean, i.e. the mean of
signal values 𝑠𝑎 . . . 𝑠𝑏. As an indicator of DNA modifica-
tion, we compute the p-value that value 𝑚 comes from a
distribution 𝑁(𝜇(𝑟), 𝜎) defined by the enhanced signal
model.

This simple method, however, does not lead immedi-
ately to accurate modification detection. On one hand,
the shifts in signal values are small and thus individual
p-values assigned to events are rarely significant. On the
other hand, a typical modification affects several events
near the modified base. Following the method outlined
in Tombo, we combine p-values from three adjacent po-
sitions using the Fisher’s combined probability test [23]
to form a more reliable indicator.

Finally, we output scores for positions where the ref-
erence sequence matches a user-supplied pattern recog-
nized by the methyltransferase enzyme potentially active
in a given sample. For each position with the pattern,
we consider a window of length 11 centered on the po-
tentially modified base and report the maximum score
within this window.

2.7. Nanopore Sequencing
High-molecular weight (HMW) genomic DNA was pre-
pared from an overnight culture of Jaminaea angkorensis
C5b (CBS 10918; [24]) grown in yeast-peptone-dextrose
(YPD) medium (1 % (w/v) yeast extract, 2 % (w/v) peptone,
2 % (w/v) glucose) at 28°C with constant aeration. Yeast
cells were harvested by centrifugation, washed with 20

mM EDTA pH 8.0, resuspended in 100 mM EDTA pH 8.0,
2 % (v/v) 2-mercaptoethanol and incubated for 15 min at
room temperature. Cells were then pelleted, resuspended
in 0.15 M NaCl, 100 mM EDTA pH 8.0 and disrupted by
vortexing with glass beads (0.4-0.5 mm, Sigma) three
times for 30 s, followed by addition of sodium dodecyl
sulfate (SDS) to 0.1 % (w/v). Nucleic acids were obtained
by series of phenol and phenol : chloroform : isoamylal-
cohol (25 : 24 : 1) extractions, precipitated with an equal
volume of 96 % (v/v) ethanol, washed with 70 % (v/v)
ethanol, and air-dried. The precipitate was dissolved in
TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and
RNA was removed by RNase A (150 µg/mL digestion) for
30 min at 37°C. DNA was extracted by phenol : chloro-
form : isoamylalcohol (25 : 24 : 1), precipitated with 0.1
M NaCl and two volumes of 96 % (v/v) ethanol, washed
with 70 % (v/v) ethanol, air-dried, dissolved in TE buffer
and further purified using a Genomic-tip 100/G (Qiagen).

HMW DNA of the yeast Magnusiomyces capitatus NRRL
Y-17686 (CBS 197.35; [25]) was prepared essentially as
described above, except that prior the phenol extractions,
yeast cells were resuspended in 1 M Sorbitol, 10 mM
EDTA pH 8.0 and converted to spheroplasts using zy-
molyase 20T (0.125 mg/mL; Seikagaku) treatment for
60-90 min at 37°C. Spheroplasts were then lyzed in 0.15
M NaCl, 100 mM EDTA pH 8.0, 0.1 % (w/v) SDS.

Nanopore sequencing was carried out in a MinION
Mk1B device using a FLO-MIN106 (R9.4.1, revD) flow
cell (Oxford Nanopore Technologies). The sequencing
libraries were constructed essentially as described in
the manufacturer’s instructions. Datasets of control un-
modified DNA and DNA methylated in vitro were pre-
pared using the PCR barcoding kit (SQK-PBK004, Ox-
ford Nanopore Technologies). Briefly, HMW DNA was
sheared in a g-Tube (Covaris) at 2700 ×g or 4300 ×g in
a MiniSpin Plus centrifuge (Eppendorf). Fragmented
DNA (∼ 200 ng) was treated using a NEBNext Ultra II
End repair / dA-tailing module (New England Biolabs)
and ligated to the Barcode adapters (BCA) from the se-
quencing kit (SQK-PBK004) using a Blunt/TA Ligase Mas-
ter Mix (New England Biolabs). DNA samples (∼10 ng)
were then amplified using the Rapid Barcode primers
(LWB, SQK-PBK004) and LongAmp Taq DNA polymerase
(New England Biolabs) and treated by exonuclease I (New
England Biolabs). DNA aliquots (∼1 µg) were modified
using 160 µM S-adenosyl methionine and methyltrans-
ferases M.EcoRI (40 U), M.BamHI (12 U), or M.HhaI (25
U) (New England Biolabs) for 1 hour at 37°C. The methyl-
transferase reactions were then stopped at 65°C for 20
min. The modification by M.TaqI (10 U) was carried out
at 65°C for 1 hour. DNA was purified on AMPure XP
beads and eluted into 10 mM Tris.Cl pH 8.0, 50 mM NaCl.
Methylated and control barcoded DNAs were pooled in
equal ratio. Rapid adapters (RAP, SQK-PBK004) were
attached to the ends of pooled DNAs (∼400 ng). The



Table 1
Data set overview. To produce data sets control0 and control1, the DNA was first synthesized using PCR and thus was
free of any natural DNA modifications. For each of the met-* data sets, the DNA was further treated by one of the enzymes
introducing specific DNA modifications at specific sites, as outlined in the table. The modification site within the pattern is
marked with *.

Name Species Enzyme Pattern Mod. # reads Median length Total length (Mbp)
control0 M. capitatus - - - 809,061 2,351 2,013.8
control1 J. angkorensis - - - 250,983 1,952 624.5

met-EcoRI J. angkorensis M.EcoRI GAA*TTC 6mA 280,330 1,790 622.7
met-BamHI J. angkorensis M.BamHI GGATC*C 4mC 351,607 1,699 717.0
met-HhaI J. angkorensis M.HhaI GC*GC 5mC 489,885 1,706 1,018.7
met-TaqI J. angkorensis M.TaqI TCGA* 6mA 390,153 1,727 833.6

library preparation, flow cell priming, and loading were
completed as described in the protocol (SQK-PBK004,
version PBK_9073_v1_revA_23May2018).

2.8. Training and Testing Data Sets
All nanopore reads were base called by Albacore version
2.3.1. Base called reads were aligned to their respective
reference genomes by BWA-MEM [26]. The reads that did
not align to the reference for at least 80% of their length
were discarded. Table 1 shows basic characteristics of
resulting data sets.

Data set control0 was used for the purpose of training
extended signal model. Mixtures of reads from control1
and met-* data sets were used for the purpose of testing
the application of our methods to DNA methylation de-
tection. Note that control0 and control1 data sets were
produced from phylogenetically distant species and thus
there is no overlap between training and testing sets.

3. Results and Discussion

3.1. Realignment by Nadavca Eliminates
Apparent Alignment Artefacts

Alignment of the signal to the reference sequence seg-
ments the signal into events, each event corresponding
to a different context read by the pore. If the DNA moved
through the pore at a constant speed, each event would
span approximately 9 values.

We have used Tombo [18], Nanopolish [11], and Na-
davca to realign the signal to the reference sequence,
using data set control1. Figure 5 shows the comparison
of event length distributions. Only Nanopolish allows
events of length 0 (skip of the context), Tombo appar-
ently has a minimum event length 3 (even though rarely
it also outputs events of length 1 and 2), and in Nadavca
we require each event to be of length at least 2. With
Tombo, there is a clear bias against events of length 4, and
preference for events of lengths 3 and 6; which appears
to be an artefact of the alignment process. Interestingly,

Figure 5: Event length distribution on dataset control1. Blue
Tombo, orange Nadavca, green Nanopolish.

Nanopolish does not report events of length 1 or 2. In
case of Nadavca, the only apparent artefact is a higher
abundance of events of length 2, which is a consequence
of the requirement of minimum length 2 for each event.

3.2. Unsupervised Single-Molecule
Single-Site DNA Modification
Detection

To evaluate the effect of Nadavca alignments on down-
stream analysis, we have implemented a simple tool
nanometh for detection of methylation and other DNA
modifications from the nanopore signals. We have used
the following general framework for detection of modifi-
cations (see Methods for details):

1. Use Nadavca to align signal values of a read to
the reference sequence

2. For each event implied by the alignment, compare
the mean signal value within the event to the
expected signal level from our enhanced signal
model, producing a p-value

3. P-values from several adjacent positions are com-
bined to a single score



Table 2
Comparison of accuracy of methylation detection. The table lists AUC scores from the predictions of unsupervised tools
(Tombo, Nadavca/nanometh) and a supervised tool trained for 5mC detection Nanopolish. Both Tombo and Nadavca report a
score for each event, we aggregate these results at a particular position by using a maximum score in a window of 11 events
centered around the site matching the methylation pattern. We switched off the horizontal aggregation of signal in Nanopolish
(by setting minimum separator to 1), as it decreased its accuracy.

Software tool Parameters Methylation pattern
GAA*TTC GGATC*C GC*GC TCGA*

Tombo de novo mode 70.39 65.60 73.00 57.04
Nadavca / nanometh 75.03 68.09 78.59 63.03
Nadavca / nanometh offsets -1,0,2 - - 90.8 -

Nanopolish min. separator 1 - - 91.90 -

4. Only scores for positions matching a user-supplied
sequence pattern, such as GCGC, are written to
the output.

We compare our results with de novo mode of Tombo.
Note that unlike most other methods, Nadavca and Tombo
do not require any training, besides training the sequence
context model. To make the results comparable, we use
similar formulas for computing the p-values and scores
as Tombo, however, substituting different signal align-
ment and different signal context model. For Tombo we
have used parameters supplied directly with the tool.

We use a newly produced testing set from the genome
of fungus Jaminaea angkorensis [24]. Genomic DNA was
amplified by PCR, producing DNA devoid of any native
modifications, and then one part (control) was left un-
modified, and each of four additional parts were modified
by a different methyltransferase enzyme. Each enzyme
methylates either adenine or cytosine at a fixed position
within a specific sequence pattern (for example, M.HhaI
methylates the first cytosine in the pattern GCGC). In
each test, we use a mixture of reads from the control sam-
ple and from one of the modified samples. We consider
only positions matching the pattern of the corresponding
enzyme (in the reference genome) and classify them as
positives or negatives based on the sample of origin. Note
that the signal model was trained on a data set from a
different organism to avoid overfitting.

We do not attempt to set a threshold for calling a site
methylated, instead we compute AUC score which eval-
uates each method over all choices of the threshold. In
the computation of accuracy, each pattern occurrence
within each read is considered separately. Table 2 shows
an overview of results and comparison to Tombo de novo
mode. On all of our methylation data sets, nanometh
significantly outperforms Tombo.

3.3. Comparison to Supervised
Methylation Detection

Unlike Nadavca/nanometh, most tools for methylation
detection are supervised, requiring a separate training set

for each type of modification (usually obtained by creat-
ing artificially methylated samples). As a representative
of supervised tools, we have selected Nanopolish, which
also strives to find an accurate alignment of the signal
values to the reference, but explicitly includes modified
bases in an extended alphabet of its signal context model.
We decided to compare with Nanopolish mainly because
its approach is closest to ours and does not include any
extensive neural network training. Yet, in a recent com-
parison study [27], Nanopolish compared very well to
the approaches based on deep learning, including Guppy,
DeepSignal [14], DeepMod [28], and Megalodon.

We run Nanopolish with model parameters supplied
with the tool.

Comparison of Nadavca to Nanopolish for the GCGC
pattern is shown in Table 2. There is still a large gap in
performance, which is to be expected—while Nanopolish
uses training data set to learn the differences between
methylated and unmethylated bases, unsupervised tools
only require information on composition of signal from
unmodified bases.

We have also run Nadavca in a semi-supervised mode,
where instead of aggregating information from a window
of length 11, it is given an information on the most infor-
mative positions relative to the location of the pattern (in
case of GCGC these are offsets -1, 0, and 2) and the final
score is the sum of scores at these positions. In this mode,
the performance of Nanopolish can be almost matched
even with our otherwise unsupervised tool.

3.4. Contribution of Individual Algorithm
Features

We were also interested, how individual features of Na-
davca affect the accuracy. Therefore, we started with a
baseline modification detection tool and added individual
features one at a time: posterior alignment, renormal-
ization, modeling transitional signal states, and using an
extended k-mer model. The results are shown in Table 3.
Replacing Tombo resquiggle with posterior alignment
with renormalization already helps to increase the ac-



Table 3
Contributions of individual features to methylation prediction accuracy.

Squiggle alignment Methylation pattern
GAATTC GGATCC GCGC TCGA

tombo (incl. renormalization) 70.39 65.60 73.00 57.04
nadavca (posterior alignment) 66.23 65.19 71.60 58.60

+renormalization 73.90 64.65 80.65 61.01
+transitions 75.78 65.71 81.54 62.07

+extended k-mer model 75.03 68.09 78.59 63.03

curacy significantly. Adding transitions and extending
the 𝑘-mer model further increases the accuracy, in some
cases significantly.

4. Conclusions
In this work, we introduced Nadavca, a nanopore sig-
nal aligner that incorporates several enhancements to
the DTW algorithm. Compared to existing aligners, Na-
davca’s output exhibits improved accuracy by eliminating
length distribution artifacts and eliminating the need for
event segmentation as a preliminary step. We demon-
strated the efficacy of our alignment method by achieving
state-of-the-art results in unsupervised methylation de-
tection.

Most of the current tools for methylation detection
in nanopore signal are supervised and based on deep
learning (see e.g. Guppy, DeepSignal [14], DeepMod [28],
Megalodon, or Remora). A disadvantage of these tools is
that they require a substantial amount of labeled training
data. Such data sets are available for the most common
methylation types (e.g. CpG methylation) for which those
tools were trained, but it is impossible to use these tools
to discover less common or novel DNA modifications,
where an unsupervised approach is needed. While un-
supervised approaches are at a clear disadvantage when
compared to supervised approaches in detection of com-
mon methylation types, by incorporating additional in-
formation such as affected signal positions due to methy-
lation, our approach yields comparable results to Nanop-
olish (non-deeep-learning supervised approach) that has
recently been shown to perform very well among the
supervised methylation detection methods [27].

In the future, we aim to further refine our alignment
technique by addressing alignment artifacts, particularly
in regions where the expected signals for two events
are similar, resulting in ambiguous alignments. Another
task is to adapt our methods to the new generation R10
nanopores.
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