
Creating 3D Diorama from Single Image with Deep
Learning
Martin Vejbora1, Elena Šikudová1

1Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Abstract
Creating 3D scenes is a time-consuming task that requires experience with modeling software. This paper presents a novel
approach that combines neural models for panoptic segmentation and monocular depth estimation to construct dioramas.
While previous research has explored generating dioramas from single images, to the best of our knowledge, there is no
research utilizing deep learning techniques for the task. This paper provides an analysis of existing approaches to diorama
generation. We then describe the construction of the diorama, where objects identified by segmentation are separated into
distinct images with transparent backgrounds. These images are then placed in a 3D scene, arranged to reflect the estimated
depth of each object. We also address several challenges that had to be overcome. Specifically, we employed fine-tuning to
address the limitations of the available depth model when applied to outdoor scenes. Our method has been implemented as
an add-on for the open-source 3D software Blender, utilizing neural models in the ONNX format for depth and segmentation
inferences.

Keywords
deep learning, diorama, Blender, panoptic segmentation, monocular depth estimation

1. Introduction
Creating 3D environments in modeling software can be
a repetitive and time-consuming task. However, lower-
quality models are usually sufficient for assets in the
background and further away from the camera. This is
where the use of automated tools can come in handy.

This paper focuses on creating dioramas which are sets
of planes placed in a 3D scene to evoke the perception
of depth. They are computationally cheap for rendering
since they do not utilize any complex mesh, making them
suitable for background assets. Dioramas work best when
the camera is facing them, moving slightly, and viewing
the diorama from slightly different angles. The effect
breaks when the diorama is viewed from a side.

Previous works used traditional machine learning tech-
niques to create dioramas, limiting their usage to hazy
input images, outdoor scenes, or images with zero or one
vanishing point. Moreover, their implementation was
either not published or is now outdated and no longer
functional, making them impractical to use.

We study the utilization of deep learning to automate
the process of creating dioramas. Our implementation
uses a pre-trained state-of-the-art model for panoptic
segmentation and a competitive model for depth estima-
tion that we fine-tune for outdoor scenes. The selected
models are powerful yet small enough to run on standard

ITAT’23: Information technologies – Applications and Theory, Septem-
ber 22–26, 2023, Tatranske Matliare, Slovakia
$ mvejbora@seznam.cz (M. Vejbora); sikudova@cgg.mff.cuni.cz
(E. Šikudová)
� 0000-0003-4572-4064 (E. Šikudová)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

computers or notebooks. Since research in deep learning
has been very progressive in recent years, we pay atten-
tion to designing the implementation in order to be able
to easily use better models in the future.

We implement our method as an add-on for the free
3D software Blender1, which supports all three major
platforms; Linux, Windows, and Mac. The add-on strives
to be easy to use, the user selects an input image, and the
add-on automatically creates a diorama from it without
a need to do any further manual steps in the process.

Even though the quality of the resulting diorama varies
based on the input image, our approach has weaker con-
straints on the input images than the previous works.

This paper is structured as follows. Section 2 provides
an overview of existing work on automatic diorama cre-
ation. Section 3 discusses the used framework and models
with a focus on fine-tuning the depth model. Then, this
section covers the implementation of the add-on and the
most significant design choices. Section 4 compares the
results of the original and fine-tuned depth models and
shows the visual appearance of the diorama. Further-
more, it discusses the strengths and weaknesses of our
solution. Final Section 5 summarizes what was achieved
and outline potential areas for future work.

2. Related Work
This section looks at existing work that automates cre-
ating dioramas or similar 3D entities from single input
images.

1https://www.blender.org/

mailto:mvejbora@seznam.cz
mailto:sikudova@cgg.mff.cuni.cz
https://orcid.org/0000-0003-4572-4064
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Based on the research of human depth perception, Assa
and Wolf [1] define depth cues, including partial occlu-
sion, texture density analysis, depth of focus, atmospheric
scattering, and object height in the visual field. They uti-
lize segmentation to obtain 10-20 major segments per
image and smaller patches called superpixels. They es-
timate relative depth differences among objects by com-
paring depth clues between superpixels on borders or
inside of bigger segments.

Having defined a new viewing point, authors render
a novel image that occludes certain parts of the original
image. They also use image completion techniques to
inpaint the previously occluded areas which become vis-
ible. Their approach yields the best results for outdoor
scenes with minimal regular patterns or straight lines.

Similarly to the previous approach, Make3D [2] uses
segment patches and defines depth cues both within and
between these patches. Instead of estimating a depth
map, authors build a 3D mesh from planes to represent
a scene from an input image. They train a Markov Ran-
dom Field (MRF) to model relationships between adjacent
patches. The MRF infers locations and rotations of seg-
ment planes in a three-dimensional space. This inference
is conditioned by over 500 local features computed from
each patch, along with various relationships computed
between patches. These inter-patch relationships involve
advanced edge detection or estimation of co-planarity
and co-linearity. Since an output of the algorithm is a
whole textured mesh, it allows easy synthesizing of novel
views.

The research paper called PEEP: Perceptually En-
hanced Exploration of Pictures [3] focuses on images
with zero or one vanishing point. PEEP maps an image
to 5 planes forming a pyramidal frustum to achieve a plau-
sible 3D effect. Similarly to the previous approaches, the
first step obtains segmentation patches. These patches
correspond to planes in three-dimensional space. Graph-
cut strategy on patches is used to fit points representing
frustum. If we limit ourselves to images with zero or
one vanishing point, authors claim their result is visually
more plausible even though geometrically less precise
than the one created by Make3D [2].

Zhao et al. [4] limit their depth estimation to a single
depth cue – atmospheric scattering. They use the Dark
Channel Prior dehazing algorithm to compute depth in
their research. Authors cluster depth and radiance out-
puts of the dehazing process obtaining approximately
five segments per image. After estimating the depth and
segmentation, the position and orientation of segment
planes are computed. Segmented alpha planes are placed
behind each other to form a resulting diorama.

A significant portion of the article is dedicated to en-
hancing the visual appeal of segmented images. The
authors blend the alpha channel of segment edges to cre-
ate smoother transitions between planes. Additionally,
areas of the photographed scene that were not visible
in the original image are filled with inpainting. Prior to
the actual inpainting, a few border pixels of the segment
edge are removed using erosion to prevent misclassified
pixels from affecting the inpainting algorithm. These
misclassified pixels often have colors different from the
color of the main object within the segment.

The main drawback of the described algorithm is that
it can only be applied to hazy images. This limitation
comes from the used depth estimation algorithm.

3. Proposed Solution
All the approaches described in Section 2 use some form
of segmentation and depth estimation. With recent ad-
vancements in neural networks, state-of-the-art solutions
for both tasks now use deep learning. However, to our
best knowledge, no publicly available research exists
where authors would create a diorama using deep learn-
ing.

While monocular depth estimation is an unambigu-
ous task, image segmentation is usually categorized into
one of three main tasks: instance, semantic and panoptic
segmentation. In instance segmentation, the objective
is to identify all instances of given object classes and to
determine masks for individual objects. Semantic seg-
mentation assigns a label category to every pixel in an
image while not distinguishing multiple instances of a
class. Panoptic segmentation, proposed by Kirillov et al.
[5], unifies semantic and instance segmentation by intro-
ducing two types of objects – things and stuff. Things
include countable objects like cars or people, where each
instance needs a distinct label. Stuff refers to uncountable
or amorphous regions like grass or sky, where it is not
possible or desired to distinguish individual instances.
Similarly to semantic segmentation, panoptic segmen-
tation labels all image pixels which makes it the most
suitable for our use-case. A comprehensive survey of
methods for all three segmentation tasks can be found in
[6].

Our algorithm takes the input image, cuts objects de-
tected by panoptic segmentation into separate images,
and places these images relatively behind each other
based on their average depth predicted by the monocular
depth estimation model. This approach is illustrated in
Figure 1.

Re-implementing a state-of-the-art model based on
its research paper can be challenging. Also, with trans-
former neural networks rapidly developing, new state-of-
the-art models for datasets like ADE20K [7] or NYUv2 [8]

Segmentation
Model

Depth Model

Figure 1: Diagram illustrating how segmentation and depth models are used to generate a diorama from the input image.

appear even multiple times a year. Therefore, better mod-
els will likely be available for our tasks in the future,
requiring us to re-implement the code again.

For these reasons, we have decided to use a high-
level framework called HuggingFace2 that contains im-
plemented models, including pre-trained weights that
can be downloaded from the HuggingFace hub 3. Hug-
gingFace has a large community, well-documented code,
and a lot of online resources. At the time of writing, it had
over 80,000 stars on GitHub. Most of its models are im-
plemented in PyTorch, but some also have a TensorFlow
or JAX version.

HuggingFace contains very capable models for both of
our tasks. The best panoptic model is OneFormer [9],
the state-of-the-art model for panoptic segmentation
on the ADE20K dataset according to the paperswith-
code.com ranking4 at the time of implementing our add-
on. The best depth estimation model from HuggingFace
is GLPN [10], ranked 7th on the NYU v2 dataset5. We
describe the details of these models in the following sec-
tions.

3.1. Panoptic Segmentation
Jain et al. [9] introduced OneFormer, a model that uni-
fies instance, semantic, and panoptic segmentation tasks.
OneFormer achieves state-of-the-art results on all three
tasks after training only once, simultaneously.

OneFormer takes two inputs, an RGB image, and a
text token. The token determines whether OneFormer
executes instance, semantic, or panoptic segmentation.
The model’s architecture is based on Mask2Former [11],
and it consists of three main parts: an encoder-decoder
backbone for extracting hierarchical features from the
input image, a query module that computes object queries

2https://huggingface.co/
3https://huggingface.co/models
4https://paperswithcode.com/sota/panoptic-segmentation-on-
ade20k-val

5https://paperswithcode.com/sota/monocular-depth-estimation-
on-nyu-depth-v2

from the input image, and a decoder head that predicts
the class and mask for each object query.

To extract multi-scale features from the input image,
OneFormer uses Swin [12] backbone encoder and a multi-
scale deformable transformer [13] as a pixel decoder.
Pixel decoder leverages a deformable attention module
that limits attention to a local surrounding, mimicking
the inductive bias of convolutions. Like a typical hier-
archical decoder, it gradually upsamples the backbone
features with the aid of skip connections from the en-
coder layers of corresponding spatial resolutions. The
pixel decoder extracts features at 1

4
, 1
8

, 1
16

, and 1
32

of the
input resolution.

The query formulation module combines the task type
input "the task is {task}" in a 2-layer transformer
with 1

4
scale features from the pixel decoder to generate

query tokens Q. Each query token represents a potential
object or segment in the input image. These query tokens
are later passed to the transformer decoder, which verifies
that they correspond to an actual object, classifies them,
and creates a mask for them.

The last part of OneFormer’s architecture is the trans-
former decoder with classification and mask heads. The
input of the transformer decoder are object queries Q,
which are repeatedly combined with multi-scale features
from the pixel decoder. The transformer decoder consists
of a masked cross-attention, followed by a self-attention,
and a feed-forward network repeated 𝐿 times for each of
the 1

8
, 1
16

, and 1
32

pixel feature scales. The resulting fea-
tures are then passed to the classification and mask heads.
The classification head predicts a class or no-object for
each query token. The mask head, on the other hand,
computes a binary mask using pixel features at 1

4
resolu-

tion of the original image.

HuggingFace contains versions of OneFormer with
Swin backbone [12] pre-trained on the Cityscapes [14],
ADE20K [7], and COCO [15] datasets. Figure 2 compares
them on an indoor and outdoor scene. We observe that
the Cityscapes version yields competitive results on out-
door scenes but does not work at all on indoor scenes

(Figure 2d). That is due to the dataset’s structure contain-
ing annotations for 30 classes related only to autonomous
driving. On the other hand, models trained on ADE20K
and COCO produce comparable results, likely due to the
similar structure of both datasets. We choose the COCO
version because of its more permissive license.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Comparison of panoptic masks from outdoor (left)
and indoor (right) scenes obtained with OneFormer trained
on Cityscapes (c), (d), ADE20K (e), (f), and COCO (g), (h).

3.2. Monocular Depth Estimation
Global-Local Path Network (GLPN) [10] was intro-
duced in 2022, achieving state-of-the-art results for
monocular depth estimation on the NYU v2 dataset [8].
Additionally, the authors argue that GLPN is suitable for
real-life applications since it performs well also on im-
ages corrupted by methods such as added noise, Gaussian
blur, defocus, jpeg compression artifacts, or fog.

GLPN uses a hierarchical transformer encoder from
SegFormer [16] to extract features from the input image
at four different resolution levels. Each level’s encoder

block comprises several reduced self-attention and MLP-
Conv-MLP modules with residual skip connections. The
final component of each encoder block is the patch em-
bedding layer which employs overlapped convolution
with stride to reduce the spatial shape of hierarchical
features while increasing the number of channels.

A lightweight decoder is connected to the encoder on
multiple resolution layers through a Selective Feature
Fusion (SFF) module. This module enhances global fea-
tures with fine details of the local structures that may
have been lost in the latter encoder steps. SFFs connect
the encoder with the decoder, allowing the decoder to ac-
cess both the global path from the encoder and the local
path through the skip connections. SFF computes a two-
channel attention map where the input global features are
multiplied by one channel and the local features by the
other. These multiplications are element-wise along the
channel dimension. Finally, the resulting scaled global
and local features are added element-wise.

GLPN applies sigmoid as the last step, which scales the
depth output to the range [0, 1]. The result is multiplied
by the desired maximal depth in meters, which is specific
for each dataset.

HuggingFace offers two versions of GLPN, pre-trained
on either NYUv2 [8] or KITTI [17] dataset. A comparison
of their inference is shown in Figure 3.

(a) (b) (c)

(d) (e) (f)

Figure 3: Comparison of inference from outdoor (top) and
indoor (bottom) scenes using GLPN trained on KITTI (b), (e)
and NYUv2 (c), (f).

We choose the NYUv2 version as it produces more
consistent depth maps. The KITTI-trained model pro-
duces artifacts, such as a brighter stripe at the top part
of the indoor scene in Figure 3e or inconsistent depth
estimates of buildings in the left part of the outdoor scene
in Figure 3b. The top parts of the higher apartment build-
ing and the smaller buildings are estimated to be closer
(darker values) than the lower parts of the same real dis-
tance. We attribute these artifacts to the structure of the

KITTI dataset, which only contains images captured from
a car, so the model does not generalize well on varying
scenes. For instance, almost all KITTI images have a sky
at the top, and a sky does not have any valid depth values.
Thus, the model cannot learn anything there.

3.2.1. Fine-tuning

As shown in Figure 3, the selected model trained on
NYUv2 performs well on indoor scenes, and despite never
seeing any depth-annotated outdoor scenes, it general-
izes surprisingly well on them. However, there are still
some inconsistencies. For example, in Figure 3c, the two
smaller buildings are estimated to be further away than
the high apartment building behind them. To improve
the quality of our diorama on outdoor scenes, we decide
to fine-tune the model on the DIODE dataset [18], which
contains both indoor and outdoor scenes. It contains
around 17,000 outdoor images and almost 9,000 indoor
images, with all depth maps obtained using a laser scan-
ner. Figure 4 shows an example of RGB images, depth
maps, and binary validity masks which mark invalid
depth values by black color.

(a) (b) (c)

(d) (e) (f)

Figure 4: Example outdoor and indoor RGB images (a),(d),
corresponding depth maps (b),(e) and validity depth mask
(c),(f) from the DIODE dataset [18].

Similarly to the authors of GLPN, we use scale-
invariant log scale metric [19] with 𝜆 = 0.5 as the train-
ing loss function:

𝐿 =
1

𝑛

∑︁
𝑖

𝑑2𝑖 −
𝜆

𝑛2

(︃∑︁
𝑖

𝑑𝑖

)︃2

(1)

where 𝑑𝑖 = log 𝑦𝑖 − log 𝑦*
𝑖 , 𝑦 denotes a predicted

depth map, 𝑦* a ground truth, 𝑛 a total number of pixels
and 𝑖 an index of pixel. The authors show this metric is
invariant to the global scale of the predicted and ground
truth depth maps for 𝜆 = 1.0.

In the following text, we describe the hyperparameters
that achieve the best results in our training. We have
obtained them after experimenting with various settings.

Indoor Indoor & Outdoor Outdoor

Minimum 0.30 0.30 0.30
Average 3.58 9.55 12.59
Maximum 50.00 300.00 300.00

𝑄.001 0.38 0.39 0.41
𝑄.01 0.61 0.68 0.91
𝑄.10 1.06 1.36 2.37
𝑄.25 1.56 2.30 3.95
𝑄.50 2.48 4.25 7.41
𝑄.75 3.84 9.64 15.48
𝑄.90 6.09 21.47 28.44
𝑄.95 9.03 31.92 39.34
𝑄.99 32.72 61.69 76.10
𝑄.999 39.69 123.44 140.48

Table 1
Analysis of the training split of the DIODE dataset [18], pre-
senting minimum, average, maximum, and quantile values.

First, we need to adjust the depth range predicted
by the GLPN model. The available pre-trained model
outputs values in the 10-meter range as it was trained
on the NYUv2 dataset, which has a maximal distance
of 10 meters. On the contrary, our DIODE dataset was
obtained using a laser scanner with a maximal range
of 350 meters. We compensate for this difference by
adjusting the final scale, which multiplies the output of
the decoder sigmoid. A straightforward choice would be
to multiply the result by 350. For example, the authors
of the dataset also construct their baseline model [18]
to output depth values from 0 to 350 meters. However,
we achieve slightly better results using a smaller range,
and we argue it is sufficient. When analyzing the official
training split of the dataset, we found that more than
99.9% of the depth values of the joint indoor and outdoor
parts are smaller than 150 meters. Thus, we can safely
use 150 as the maximum depth value without limiting the
model too much. We hypothesize that this utilizes the
output range better, as well as the slope of the sigmoid
for computing gradients. The full analysis of the training
split of the DIODE dataset can be found in Table 1.

During training, when we feed the model with images,
we use data augmentation to improve its generalization
capabilities. We limit the augmentation techniques to a
subset of those used in the original paper. Specifically,
we apply horizontal flipping with a 50% probability and
make random adjustments to brightness (±0.2), contrast
(±0.2), hue (±0.2), and saturation (±0.3).

In the original research paper, the authors use train-
ing images with the resolution of 576×448. We have
conducted experiments with various resolutions, includ-
ing the original sizes of NYUv2 (640×480) and DIODE
(1024×768) images. However, we have found that chang-
ing the resolution does not significantly impact the ac-
curacy. As a result, we use a resolution of 640×480 for

most of our experiments. We attribute this robustness to
the fact that the SegFormer [16] backbone in GLPN does
not rely on fixed positional encodings concatenated to
the input patches. The variable resolution of the images
only changes the number of patches but not the encoded
value of the input patch.

For most of our experiments, we use a batch size of 8,
the maximum batch size where the training of 640×480
images fits in the 24GB memory of the NVIDIA Titan
RTX GPU that we mainly use.

In the original paper, the authors use the polynomial
learning rate schedule with a factor of 0.9, which in-
creases the learning rate from 3×10−5 to 1×10−4 in the
first half of training and then decreases it from 1× 10−4

to 3× 10−5 in the second half. Accordingly, we employ
a learning rate schedule where the learning rate first in-
creases and then decreases. We use a standard PyTorch
implementation of the 1cycle learning rate policy with a
peak learning rate of 1× 10−4.

3.3. Blender Add-on
In this section, we describe the implementation of our
Blender add-on, the design decisions we have made, and
some adjustments that the add-on does to improve the
visual appearance of the final result.

Blender6 is a powerful open-source software for 3D
graphics released under the GNU General Public License
(GPL). It supports a wide range of graphics-related tasks,
including modeling, still image rendering, and anima-
tion creation. Blender is a cross-platform application
that can be run on Linux, Windows, and Mac comput-
ers. Although Blender is mostly developed in C++, it also
provides a Python API, allowing add-ons to be developed.

3.3.1. Model Deployment

Both our HuggingFace models, GLPN and OneFormer,
are implemented in PyTorch. While trained models can
run in a native PyTorch environment, using it for pro-
duction has some disadvantages.

Firstly, users of our add-on would need to download
the large PyTorch Python module, which can take up
several gigabytes of disk space. On a testing Windows
machine, the installed PyTorch occupies about 1 GB, and
the size increases to 4 GB for the GPU version with CUDA
support. Another disadvantage is that PyTorch natively
uses eager execution mode, which is convenient for de-
veloping models, but it is slower compared to a graph
mode, where a computational graph of all operations
is constructed before execution, allowing for powerful
optimizations.

To solve some of these issues, PyTorch offers Torch-
Script, a statically typed subset of the Python language

6https://www.blender.org/

that’s better suited for deployment. Models implemented
in PyTorch can be converted into a computational graph
in TorchScript format using the torch.jit.trace()
or torch.jit.script() methods. The TorchScript
graph representation can be compiled just before execu-
tion and run using PyTorch JIT, which further optimizes
models using runtime information. There are also ahead-
of-time compilers for TorchScript, such as the TensorRT
compiler for NVIDIA GPUs.

Machine learning models can also be deployed in Open
Neural Network Exchange (ONNX) format. ONNX was
created as a format for interoperability between different
frameworks. Both PyTorch and TensorFlow offer meth-
ods for converting models to the ONNX format. PyTorch
models are converted using the torch.onnx.export()
method.

Multiple runtimes exist for models in ONNX; the most
used one is onnxruntime, maintained by Microsoft. It
enables models to run on Windows, Linux, and Mac, as
well as in a web browser or on mobile devices. With all
its dependencies, onnxruntime only requires around
600 MB for the GPU version and 150 MB for the CPU-
only version. onnxruntime also provides options for
optimizing models, including quantization which reduces
computation precision, making models smaller and faster.

We have chosen to use ONNX in our add-on because it
is easy to convert models into this format and allows us to
experiment with optimizing inference speed in the future.
Using ONNX also enables us to decouple the add-on code
from PyTorch, so if a better model becomes available, we
can simply convert it to ONNX even if it is implemented
in TensorFlow. Then the new model could be used in the
add-on without needing to refactor the code or requiring
users to install another runtime.

3.3.2. Creating a Diorama

The workflow of the add-on begins with the user selecting
an input image. Depth and segmentation models in the
ONNX format are then used to perform inferences. An
example of the input image, along with the depth map
and the panoptic segmentation mask generated inside
the add-on, is shown in Figure 5.

(a) Input image. (b) Segmentation
mask.

(c) Depth map.

Figure 5: Input image with inferences of deep learning models
inside the add-on.

The input image is cut along the segment borders,

resulting in a set of images where each contains only one
object from the panoptic map, and the rest of the pixels
are transparent. A 2D plane is spawned in a Blender scene
for each segmented image, and the planes are textured
with the segmented images. The planes are positioned
behind each other, based on the average depth of their
segments, and scaled to match the camera’s perspective.
The more distant planes appear larger, creating a sense
of depth, as shown in Figure 6a.

(a) No inpainting. (b) Inpainted holes from the
foreground objects.

Figure 6: Comparison of a diorama with and without inpaint-
ing.

3.3.3. Cutout Inpainting

Figure 6a shows that the basic diorama created as de-
scribed above has artifacts that disrupt the depth percep-
tion. The most noticeable artifacts are the holes from
foreground objects when the diorama is viewed from an
angle. We address this issue with inpainting, which fills
in missing parts of the image based on existing parts.
We experiment in the add-on with multiple inpainting
methods; however, the best results are usually achieved
with the inpainting algorithm available in Blender’s com-
positor.

Blender’s inpainting algorithm starts at an image edge
and gradually spreads the color of the edge to the more
distant pixels. However, inpainting performed straight
from the edge is prone to artifacts, as shown in Figure 7
where dark pixels from a segmented mountain are in-
painted into the sky. Especially at complex boundaries, it
happens very often that edges contain pixels from the oc-
cluding objects. To avoid these artifacts, we apply erosion
to remove pixels from the borders of segments before
computing the inpainting. In our add-on, the width of
the removed edges is empirically set to 3 pixels. Figure 8
shows a comparison between inpainting with and with-
out erosion, while an example of the final diorama with
inpainting applied is shown in Figure 6b.

3.3.4. Depth of the Sky

Another issue that arises in our diorama creation is the
incorrect depth estimation of the sky. We can see in
Figure 5c that the sky is estimated to be closer than the

Figure 7: Artifacts of inpainting without erosion.

(a) Inpainting without ero-
sion.

(b) Inpainting applied after
3-pixel erosion.

Figure 8: Comparison of inpainting with and without erosion.

building as it has darker values in the depth map. This
happens because the distance of the sky cannot be learned
from real-world datasets. The distance of the sky cannot
be measured, and it would effectively need to be infinity
compared to other distances in the image. The DIODE
dataset [18], which we use for fine-tuning, is not an ex-
ception, and it contains masks indicating invalid depth
values for the sky in ground-truth maps.

We use a segmentation model already available in our
add-on to address this issue. The panoptic mask con-
tains the classified pixels of the sky if it is present in the
input image. We then move the plane with the sky seg-
ment behind all other segments to create a more realistic
representation of the scene.

4. Results and Discussion
In this section, we discuss the performance of our fine-
tuned GLPN model and compare its results with the orig-
inal model trained on the NYUv2 dataset [8]. We also
analyze the dioramas created by our solution and discuss
its strengths and weaknesses.

4.1. Results of Fine-tuning
We use the official validation split of the DIODE
dataset [18], which contains both indoor and outdoor
scenes, to compare the two depth models. A challenge
with the comparison is that the original pre-trained ver-
sion of GLPN outputs depth values between 0 and 10
meters, while DIODE’s measured depth values go up to
350 meters. To select the right method for the compar-
ison, we hypothesize that the trained GLPN model has

↓RMSE ↓AbsRel ↓SILog1.0 ↑ 𝛿1 ↑ 𝛿2 ↑ 𝛿3

Indoor
NYUv2 2.828 0.383 0.189 0.287 0.564 0.703
Ours 1.951 0.403 0.153 0.332 0.685 0.880

Outdoor
NYUv2 14.909 0.726 0.339 0.005 0.026 0.099
Ours 7.993 0.462 0.245 0.341 0.662 0.897

All
NYUv2 9.714 0.579 0.275 0.126 0.257 0.359
Ours 5.395 0.437 0.205 0.337 0.672 0.890

Table 2
Comparison of GLPN trained on NYUv2 and our fine-tuned version, metrics are computed on the official validation split of the
DIODE dataset and ↓ means smaller is better while ↑ means the opposite. From left to right the metrics are root mean square
error (RMSE), absolute difference scaled by ground-truth values (AbsRel), scale-invariant log scale loss with 𝜆 = 1 (SILog1.0)
and percentage of predictions relative to ground truths within threshold 𝛿𝑖 = max(𝑑

𝑑* ,
𝑑*

𝑑
) < 1.25𝑖 for 𝑖 ∈ {1, 2, 3}.

either a dominant notion of absolute depth or a dominant
notion of relative distances. If the dominant notion is
absolute depth, the model would correctly estimate the
depth of objects closer than 10 meters and return the
maximum value for everything further away. On the
other hand, if the dominant notion is relative distances,
the model would estimate which objects are closer than
others correctly, even in outdoor scenes. We can see in
Figure 9 that the second option is prevalent. For example,
the outdoor scene in Figure 9b shows a building that is
further than 10 meters and still not estimated as the max-
imal depth. Moreover, Figure 9h shows a street nearly
a hundred meters long, and the NYUv2 model is able
to estimate the relative relations of objects correctly, as
well as the direction of the depth gradient on the street,
only that it estimated a big depth change in the first few
meters and then a smaller change further away.

Based on this observation, we suggest comparing the
models using the scale-invariant log scale metric with
𝜆 = 1.0 (SILog1.0) [19]. It is invariant to the scale of the
predicted and ground truth depth maps which allows
for fair comparison of models trained on datasets with
different ranges. This is in contrast to training where we
used SILog with 𝜆 = 0.5 to jointly learn relative depth
relations together with absolute depth values.

Table 2 provides results for several metrics, including
SILog1.0. We can see that our fine-tuning significantly
improved SILog1.0 on outdoor scenes. This result is also
supported by the observations from Figure 9. The ground-
truth map in Figure 9a shows that the right part of the
building is further away than the left part; however, the
NUYv2-trained model estimates the whole building as
approximately the same distance in Figure 9b while our
fine-tuned model estimates it more correctly in Figure 9c.
On the other hand, SILog1.0 on indoor scenes improved
by a smaller margin which supports the selection of this
metric for comparison since we know that the original
model was already well-trained for indoor scenes. Again,
the indoor scene in Figure 9 supports the similarity of
indoor SILog1.0 metrics by showing that both models

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Comparison of depth maps estimated with the orig-
inal GLPN model trained on NYUv2 (b, e, h) and our version
fine-tuned on DIODE (c, f, i). Input images and ground truth
values (a, d, g) are from the validation split of DIODE [18].

estimate the depth similarly.
To assess if improvement in SILog1.0 metric from

Table 2 is statistically significant, we computed the
Wilcoxon signed-rank test between the metric values
obtained from the original and fine-tuned models. The
p-values were computed separately for indoor and out-
door scenes as well as for the indoor and outdoor scenes
together. The tests on all three sets confirmed that the im-
provement in SILog1.0 achieved through our fine-tuning
is statistically significant on the level of 𝛼 = 0.001.

Moreover, we can see from Table 2 that other metrics
also improved with fine-tuning, but comparing them is
not fair due to the different output scales. Interestingly,
the original model achieved better absolute relative dif-
ference (AbsRel) on indoor scenes. We hypothesize that

this indicates that the original model works slightly bet-
ter on near objects, as AbsRel penalizes the errors in
depth estimation more for close objects by dividing the
estimation difference by the ground-truth values. Since
more than 95% of values in the training split’s indoor part
are smaller than 10 meters (as shown in Table 1), errors
from not estimating distances beyond 10 meters are not
significant.

4.2. Evaluation of Dioramas
Comparing dioramas presents a challenge due to the ab-
sence of a definitive ground truth. Therefore, in this
section, we focus on outlining the strengths and weak-
nesses of our approach.

Our solution for creating dioramas works decently for
various types of scenes. Particularly, the effect is en-
hanced if there are multiple objects in the foreground
that can pop up from the background. We have also
identified that it works well for outdoor scenes with a
clear depth separation between objects, as shown in Fig-
ures 10b and 10d.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10: Examples of created dioramas.

However, our solution has some limitations related
to the used deep learning models or to the method of
constructing the diorama. Firstly, an object with varying
depth, such as a wall that is partially in the foreground
and partially in the background, has to be placed in a
single depth-plane in our diorama, which can result in an
incorrect position relative to other objects in the scene, as
shown in Figure 10h. The rear wall is segmented together
with the side walls and therefore placed incorrectly in
front of the chairs and tables. This is a general limitation
of all plane-based dioramas. In some cases, rotating the
planes in the diorama according to the depth gradient
of each segment could improve the issue. However, this
would not always help, as with the walls of the room in
our example.

To improve the diorama from Figure 10h, we would
need first to split the walls into separate segments. This
brings us to the next issue related to the definition of the
panoptic segmentation task. Models are not trained to
segment instances of objects from the stuff category,
such as walls, roads, or vegetation, so all instances from
one category end up in the same plane in our diorama.
Figure 10f shows an example of this issue, depicting an
ancient tomb where our segmentation model marks al-
most everything as a single wall object.

Lastly, our solution struggles with segmentation of
objects with complex shapes, as seen in Figure 11, where
tree branches without leaves are segmented together with
the surrounding sky pixels. This limitation is due to the
resolution of the used panoptic model and thus, it may
be improved with better models in the future.

Figure 11: Imprecise segmentation of detailed object.

Despite these limitations, our solution is usable in
many cases, and we believe it can be already helpful
in a graphics workflow. Compared to previous works
described in Section 2, our solution is less restrictive in
terms of the general input image requirements. For exam-
ple, dioramas created by Assa and Wolf [1] work mostly
on outdoor scenes without regular patterns and straight
lines. PEEP [3] is limited to images with zero or one van-
ishing point as it is fitting frustums to the images, and
Zhao et al. [4] restrict their solution to hazy images only.

5. Conclusion and Future Work
We started this paper by providing an overview of ex-
isting methods for automatic diorama construction and
identifying their limitations. Then, we decided to use
recent deep-learning models to overcome some of those
limitations. We reviewed the fundamentals of current
deep learning models for monocular depth estimation
and panoptic segmentation and selected a suitable, well-
developed framework with transformer-based models.
We chose a state-of-the-art model for panoptic segmenta-
tion and a competitive model for depth estimation which
we fine-tuned to improve performance on outdoor scenes.
Furthermore, we investigated ways of deploying deep
learning models and we selected the ONNX format as
the most suitable for future updates.

Even though the resulting add-on has some limitations,
using deep learning to create dioramas is a promising
approach. Overall, we believe our implementation is
already a useful tool for creating dioramas in Blender,
and we expect to continuously improve it.

One option for future work is to focus on improving
all the small adjustments made to the cutout images,
as the visual quality of dioramas depends on them sig-
nificantly. For example, the current inpainting method
simply spreads the color of the edge pixels into the holes.
Our algorithm would benefit from a more advanced in-
painting algorithm, such as one based on deep learning.

While we showed in this paper that separate depth
and segmentation models can be used for generating dio-
ramas. There is still an open question for future research
if deep learning can be used for an end-to-end solution.

The quality of dioramas is closely linked to how users
perceive 3D information from it, which is inherently
subjective. Thus, conducting a user study to compare our
method with prior research would be beneficial.

Acknowledgments
The work was supported by grant number SVV-202-
09/260699.

References
[1] J. Assa, L. Wolf, Diorama construction from a single

image, Computer Graphics Forum 26 (2007) 599 –
608.

[2] A. Saxena, M. Sun, A. Y. Ng, Make3d: Learning
3d scene structure from a single still image, IEEE
Transactions on Pattern Analysis and Machine In-
telligence 31 (2009) 824–840.

[3] M. Agus, A. J. Villanueva, G. Pintore, E. Gobbetti,
PEEP: Perceptually Enhanced Exploration of Pic-
tures, in: M. Hullin, M. Stamminger, T. Weinkauf

(Eds.), Vision, Modeling & Visualization, The Euro-
graphics Association, 2016.

[4] L. Zhao, M. Hansard, A. Cavallaro, Pop-up mod-
elling of hazy scenes, in: V. Murino, E. Puppo
(Eds.), Image Analysis and Processing — ICIAP 2015,
Springer International Publishing, Cham, 2015, pp.
306–318.

[5] A. Kirillov, K. He, R. Girshick, C. Rother, P. Dol-
lar, Panoptic segmentation, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[6] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtar-
navaz, D. Terzopoulos, Image segmentation using
deep learning: A survey, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 44 (2022)
3523–3542. doi:10.1109/TPAMI.2021.3059968.

[7] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso,
A. Torralba, Scene parsing through ade20k dataset,
in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017.

[8] N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor
segmentation and support inference from rgbd im-
ages, in: A. Fitzgibbon, S. Lazebnik, P. Perona,
Y. Sato, C. Schmid (Eds.), Computer Vision – ECCV
2012, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012, pp. 746–760.

[9] J. Jain, J. Li, M. Chiu, A. Hassani, N. Orlov, H. Shi,
Oneformer: One transformer to rule universal im-
age segmentation, CoRR abs/2211.06220 (2022).
arXiv:2211.06220.

[10] D. Kim, W. Ga, P. Ahn, D. Joo, S. Chun,
J. Kim, Global-local path networks for monocu-
lar depth estimation with vertical cutdepth, CoRR
abs/2201.07436 (2022). arXiv:2201.07436.

[11] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov,
R. Girdhar, Masked-attention mask transformer
for universal image segmentation, in: Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2022, pp. 1290–
1299.

[12] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin,
B. Guo, Swin transformer: Hierarchical vision trans-
former using shifted windows, 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV)
(2021) 9992–10002.

[13] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, J. Dai, De-
formable DETR: deformable transformers for end-
to-end object detection, CoRR abs/2010.04159
(2020). arXiv:2010.04159.

[14] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. En-
zweiler, R. Benenson, U. Franke, S. Roth, B. Schiele,
The cityscapes dataset for semantic urban scene
understanding, in: Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2016.

http://dx.doi.org/10.1109/TPAMI.2021.3059968
http://arxiv.org/abs/2211.06220
http://arxiv.org/abs/2201.07436
http://arxiv.org/abs/2010.04159

[15] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollár, C. L. Zitnick, Microsoft coco:
Common objects in context, in: D. Fleet, T. Pajdla,
B. Schiele, T. Tuytelaars (Eds.), Computer Vision
– ECCV 2014, Springer International Publishing,
Cham, 2014, pp. 740–755.

[16] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Al-
varez, P. Luo, Segformer: Simple and efficient de-
sign for semantic segmentation with transform-
ers, in: Neural Information Processing Systems
(NeurIPS), 2021.

[17] A. Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision
meets robotics: The kitti dataset, International
Journal of Robotics Research (IJRR) (2013).

[18] I. Vasiljevic, N. Kolkin, S. Zhang, R. Luo, H. Wang,
F. Z. Dai, A. F. Daniele, M. Mostajabi, S. Basart, M. R.
Walter, G. Shakhnarovich, DIODE: A Dense Indoor
and Outdoor DEpth Dataset, CoRR abs/1908.00463
(2019).

[19] D. Eigen, C. Puhrsch, R. Fergus, Depth map predic-
tion from a single image using a multi-scale deep
network, in: Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, K. Weinberger (Eds.), Advances in
Neural Information Processing Systems, volume 27,
Curran Associates, Inc., 2014.

	1 Introduction
	2 Related Work
	3 Proposed Solution
	3.1 Panoptic Segmentation
	3.2 Monocular Depth Estimation
	3.2.1 Fine-tuning

	3.3 Blender Add-on
	3.3.1 Model Deployment
	3.3.2 Creating a Diorama
	3.3.3 Cutout Inpainting
	3.3.4 Depth of the Sky

	4 Results and Discussion
	4.1 Results of Fine-tuning
	4.2 Evaluation of Dioramas

	5 Conclusion and Future Work

