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Abstract
In many bioinformatics applications the task is to identify biologically significant locations in an individual genome. In our
work, we are interested in finding high-density clusters of such biologically meaningful locations in a graph representation
of a pangenome, which is a collection of related genomes. Different formulations of finding such clusters were previously
studied for sequences. In this work, we study an extension of this problem for graphs, which we formalize as finding a
set of vertex-disjoint paths with a maximum score in a weighted directed graph. We provide a linear-time algorithm for a
special class of graphs corresponding to elastic-degenerate strings, one of pangenome representations. We also provide a
fixed-parameter tractable algorithm for directed acyclic graphs with a special path decomposition of a limited width.
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1. Introduction
The rapid decreases in the cost of genome sequencing
led to a shift in genomics and bioinformatics from an-
alyzing a single representative genome per species to
analyzing genomes of many individuals. A collection of
related genomes analyzed jointly is called a pangenome
[1]. Pangenomes are often represented as graphs, in
which nodes correspond to parts of the sequences and
edges to adjacencies between these sequences observed
in at least one of the studied genomes [2, 3].

Introduction of pangenome graphs gave rise to a need
to extend many bioinformatics algorithms from working
with single sequences (strings) to graphs representing a
family of related sequences. In this work, we introduce
algorithms that identify clusters of biologically meaning-
ful positions in such pangenome graphs. In many areas
of bioinformatics, one can identify genome positions hav-
ing some biological function or property and then search
for dense clusters of such positions. The simplest exam-
ples are based on sequence content, such as looking for
GC-rich regions (regions with high density of bases C
and G) [4] or CpG islands (regions with high density of C
followed by G) [5]. Such areas are often associated with
functional elements such as genes or regulatory regions
[6, 7]. A more complex example is looking for clusters
of motifs representing transcription factor binding sites
[8]. We can also identify positions of mutations within
or between species and look for conserved regions lack-
ing such mutations [9] or regions with a high density
of mutations arising for example from horizontal gene
transfer [10]. All of these examples involve identifying
individual bases with some biological property and then
looking for groups of such bases located close together.

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

One possible formalization of locating such clusters
in a single DNA sequence is to assign a score to each
base which is positive for bases with the property of
interest and negative for other bases, and then look of
high-scoring intervals in the resulting sequence of scores.
Miklós Csűrös [4] formulated this approach as looking for
a set of disjoint intervals with maximum sum of scores,
where the user either restricts the number of intervals to
𝑘 or assigns some penalty 𝑥 to each interval in the output
set. The latter problem can be solved in linear time by a
simple dynamic programming algorithm, and will form
the basis of the approach outlined in this article.

Namely, we generalize the maximum-scoring seg-
ment set problem [4] from sequences of scores to
weighted directed graphs representing pangenomes. The
weights of individual nodes represent scores of bases in a
pangenome. In a sequence, a cluster is typically defined as
a contiguous segment (interval). In the graph extension,
one can consider various definitions of the concept of a
segment, such as a connected induced subgraph, or sub-
graphs with special properties, such as superbubbles with
a single source and sink [11]. However, we have decided
to look for clusters defined as paths in the graph. The ad-
vantages of considering paths include a simple problem
definition and tractability in some classes of graphs. A
path also has an intuitive meaning in a pangenome, as it
corresponds to a single sequence (either to a segment of
one of the constituent genomes of the pangenome or a
combination of multiple such genomes).

Our choice gives rise to the maximum-score disjoint
paths problem defined in the next section. In section 3,
we provide a linear-time algorithm for a special class of
graphs corresponding to elastic-degenerate strings [12].
In section 4, we give an algorithm for general directed
acyclic graphs. The complexity of this algorithm is expo-
nential in a parameter of a special path decomposition
of the graph, but linear in the overall size of the graph.
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Figure 1: An example of a weighted directed graph and the set of paths forming the solution to the maximum-score disjoint
paths problem for penalty 𝑥 = 3. The score of this solution is (1 + 1+ 2− 1+ 1+ 2− 𝑥) + (1+ 2+ 1− 𝑥) + (4− 𝑥) = 5.

2. Notation and problem
definition

In this work, we will consider a weighted directed graph
𝐺 with vertex set 𝑉 , edge set 𝐸 ⊆ 𝑉 2 and weight func-
tion 𝑤 : 𝑉 → R. We will first introduce graph termi-
nology and notation used in this work. For each edge
(𝑢, 𝑣) ∈ 𝐸 we call 𝑢 a predecessor of 𝑣 and 𝑣 a suc-
cessor of 𝑢. The set of all predecessors of 𝑣 is denoted
𝑁−(𝑣). The subgraph of 𝐺 induced by set 𝑋 ⊆ 𝑉 is the
graph 𝐺′ = (𝑋,𝐸 ∩𝑋2). A path is a sequence of dis-
tinct vertices (𝑣1, 𝑣2, . . . , 𝑣𝑛) such that (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸
for 𝑖 = 1, 2, . . . , 𝑛 − 1. A cycle is a path such that
(𝑣𝑛, 𝑣1) ∈ 𝐸. If 𝐺 does not contain a cycle, we call it a
directed acyclic graph (DAG). Vertices of each DAG can
be ordered topologically as 𝑣1, . . . , 𝑣𝑛 so that for each
edge (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 we have 𝑖 < 𝑗.

We are now ready to state our problem. The goal of
the maximum-score disjoint paths problem is for a given
graph 𝐺 and penalty 𝑥 ∈ R+ to find a set of vertex-
disjoint paths with the maximum sum of scores. The
score of a single path 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑛) is defined
as
∑︀𝑛

𝑖=1 𝑤(𝑣𝑖) − 𝑥. Figure 1 shows an example of the
input and output for this problem.

Note that the maximum-score disjoint paths problem
is NP-hard for arbitrary weighted directed graphs. The
NP-hardness can be easily proved by a reduction from
the Hamiltonian path problem. If we set the weight of
each vertex to 1 and penalty also to 1, the graph has
a Hamiltonian path if and only if the maximum-score
disjoint paths problem has a solution with score |𝑉 | − 1.
We will concentrate on DAGs. Our algorithms are an
extension of the dynamic programming algorithm by
Csűrös [4] for sequences of scores. The related problems
of finding a single segment with maximum score or 𝑘
segments in a sequence was studied by multiple authors
[4, 13, 14]. A single path can also be found on a weighted
tree [15, 16]. There are also algorithms for the related

maximum density segment problem [17].

3. An algorithm for 𝑛-layered
bubble graphs

In this section, we present a linear-time algorithm based
on dynamic programming for a special class of directed
acyclic graphs, which we call 𝑛-layered bubble graphs.

Definition 3.1 (𝑏-layered bubble). A 𝑏-layered bubble is
a directed acyclic graph with a start vertex 𝑠, an end vertex
𝑡 and 𝑏 non-empty vertex-disjoint directed paths, referred
to as layers, connecting 𝑠 and 𝑡.

Definition 3.2 (𝑛-layered bubble graph). An 𝑛-layered
bubble graph is a graph that can be constructed by taking
a sequence of vertices 𝑢1, . . . , 𝑢𝑘 and connecting each pair
of 𝑢𝑖 and 𝑢𝑖+1 by an edge or by a 𝑏-layered bubble with
the start vertex 𝑢𝑖 and the end vertex 𝑢𝑖+1 and with 2 ≤
𝑏 ≤ 𝑛.

An example of a 3-layered bubble graph can be seen
in the bottom part of Figure 2.

Connection to elastic degenerate strings. Al-
though the structure of the 𝑛-layered bubble graphs is
very simple, they correspond to a well-studied represen-
tation of pangenomes called elastic-degenerate strings
(EDSs) [12]. An EDS is a string containing elastic-
degenerate symbols. An elastic degenerate symbol is de-
fined as a set of strings, potentially of different lengths.
Thus the EDS represents a set of strings, each obtained by
choosing one of the strings from each elastic degenerate
symbol and concatenating them.

An EDS with each set containing at most 𝑛 strings
can be easily converted to an 𝑛-layered bubble graph by
replacing each elastic-degenerate symbol with a bubble,
each path spelling one string one character per node.
We add start and end vertices with zero weight for each



Figure 2: An example of an elastic-degenerate string and the corresponding 3-layered bubble graph. The bases are represented
as the vertices, their adjacencies as edges. Some vertices contain an empty string denoted as 𝜀.

bubble. Due to zero weight, they do not influence the
score of the solution. If an elastic-degenerate symbol
contains an empty string in its set, the path for this string
will also contain an auxiliary node with zero weight. An
example of a conversion of an EDS to a graph is shown
in Figure 2.

An algorithm for a simple path. Before giving the
full algorithm for 𝑛-layered bubble graphs, we will con-
sider the algorithm for a simple path (𝑣1, . . . , 𝑣𝑛). This
algorithm is very similar to the dynamic programming
algorithm given by Csűrös [4] except for a slightly dif-
ferent meaning of the selection value 𝑠 defined below.
The algorithm fills a two-dimensional matrix 𝑊 . For
1 ≤ 𝑖 ≤ 𝑛 and 𝑠 ∈ {0, 1}, value 𝑊 (𝑖, 𝑠) is the score
of the optimal solution using only vertices 𝑣1, . . . , 𝑣𝑖.
If 𝑠 = 1, we further constrain the solution to include
the last vertex 𝑣𝑖 in one of the selected paths. If 𝑠 = 0,
we place no further constraints on the solution. Values
𝑊 (𝑣𝑖, 𝑠) are computed for increasing values of 𝑖 using
the following equations:

𝑊 (1, 1) = 𝑤(𝑣1)− 𝑥

𝑊 (1, 0) = max{0,𝑊 (1, 1)}
𝑊 (𝑖, 1) = 𝑤(𝑣𝑖) + max{𝑊 (𝑖− 1, 0)− 𝑥,𝑊 (𝑖− 1, 1)}
𝑊 (𝑖, 0) = max{𝑊 (𝑖− 1, 0),𝑊 (𝑖, 1)}

For 𝑠 = 1, we always use vertex 𝑣𝑖 with score
𝑤(𝑣𝑖). One option is that it starts a new path, incur-
ring penalty of 𝑥. The rest of the solution will use only
nodes 𝑣1, . . . , 𝑣𝑖−1, thus having score 𝑊 (𝑖 − 1, 0). If
vertex 𝑣𝑖 continues an existing path, we instead use sub-
problem 𝑊 (𝑖 − 1, 1) ensuring that such a path exists.
For 𝑠 = 0, we consider the case when 𝑣𝑖 was used in the
path, which has score 𝑊 (𝑖, 1) and the case when it was
not used, which has score 𝑊 (𝑖− 1, 0).

An algorithm for bubble graphs. Let 𝐺 = (𝑉,𝐸)
be an 𝑛-layered bubble graph. We will partition its ver-
tices into sets 𝑁, 𝐽, 𝐿1, . . . , 𝐿𝑛 as follows (see also Fig-
ure 3). Each 𝑏-layered bubble in the graph consists of a
start vertex, an end vertex and 𝑏 disjoint paths 𝑞1, . . . , 𝑞𝑏
for 2 ≤ 𝑏 ≤ 𝑛. We will place internal vertices of each
path 𝑞𝑖 to set 𝐿𝑖 (the ordering of the paths within the
bubble is arbitrary but fixed). The end vertex of the bub-
ble will be placed to set 𝐽 . All remaining vertices will
be placed to set 𝑁 . Using the notation from Definition
3.2 for vertices 𝑢𝑖 forming the starts and ends of the bub-
bles, set 𝑁 includes vertex 𝑢1 and any vertex 𝑢𝑖 which
has a single predecessor. We further split each 𝐿𝑖 into
sets 𝐿𝑖,𝑓𝑖𝑟𝑠𝑡 and 𝐿𝑖,𝑙𝑎𝑡𝑒𝑟 , where 𝐿𝑖,𝑓𝑖𝑟𝑠𝑡 contains ver-
tices from 𝐿𝑖 that do not have a predecessor in 𝐿𝑖, and
𝐿𝑖,𝑙𝑎𝑡𝑒𝑟 = 𝐿𝑖 ∖ 𝐿𝑖,𝑓𝑖𝑟𝑠𝑡.

In our algorithm we will process the vertices in or-
der 𝑂 = 𝑣1, . . . , 𝑣|𝑉 |, which is a topological order of
the graph, and in which for each bubble we first list its
vertices from 𝐿1, then from 𝐿2 and so on.

Our dynamic programming algorithm fills a three-
dimensional matrix of scores 𝑊 (𝑖, 𝑠, ℓ), where 𝑣𝑖 ∈ 𝑉 ,
𝑠 ∈ {0, 1} is a selection value, and ℓ ∈ {𝐼, 𝐸} is a path
continuation value. Value 𝑊 (𝑖, 𝑠, ℓ) is the best score
among all sets of disjoint paths within some induced sub-
graph of 𝐺 satisfying some additional properties speci-
fied below.

The induced subgraph considered in 𝑊 (𝑖, 𝑠, ℓ) is de-
fined as follows:

• for 𝑣𝑖 ∈ 𝑁 ∪ 𝐽 ∪ 𝐿1:
the subgraph induced by {𝑣1, . . . , 𝑣𝑖},

• for 𝑣𝑖 ∈ 𝐿𝑘, 2 ≤ 𝑘 ≤ 𝑛 in a bubble 𝐵:
the subgraph induced by {𝑣1, . . . , 𝑣𝑖} ∩ 𝐿𝑘 ∩𝐵.

Thus the score in the first layer of the bubble contains
information about all previous vertices of the graph,
whereas in the remaining layers, we compute only local
scores along one path of the bubble.



Figure 3: An example of a 5-layered bubble graph and its split into sets 𝑁 , 𝐽 , 𝐿1 . . . 𝐿5.

The selection value 𝑠 constrains the set of paths in the
same way as in the simpler algorithm for a single path:

• 𝑠 = 1 means 𝑣𝑖 is selected in a path,
• 𝑠 = 0 means 𝑣𝑖 may or may not be selected in a

path (no constraint),

The constraint imposed by the path continuation value
ℓ depends on the type of the vertex and allows us to
ensure that a path entering a bubble from its start vertex
will continue in at most one layer of the bubble. For
𝑣𝑖 ∈ 𝐿1:

• ℓ = 𝐼 : there is no selected path which contains
both the bubble’s start vertex and the subsequent
vertex from 𝐿𝑘,𝑓𝑖𝑟𝑠𝑡 where 𝑘 > 1 (no constraint
on 𝐿1,𝑓𝑖𝑟𝑠𝑡).

• ℓ = 𝐸: the bubble’s start vertex is selected on a
path which continues with a vertex from 𝐿𝑘,𝑓𝑖𝑟𝑠𝑡

where 𝑘 > 1.

For 𝑣𝑖 ∈ 𝐿𝑘, 𝑘 > 1:

• ℓ = 𝐼 : the path from the bubble’s start vertex
continues on layer 𝐿𝑘 , i.e. both the bubble’s start
vertex and the 𝐿𝑘,𝑓𝑖𝑟𝑠𝑡 vertex of the current bub-
ble are selected;

• ℓ = 𝐸: there is no path containing both the cur-
rent bubble’s start vertex and the 𝐿𝑘,𝑓𝑖𝑟𝑠𝑡 vertex
of the current bubble.

In both cases, value ℓ = 𝐼 means that the path from
the start of the bubble continues along the path to which
the current vertex 𝑣𝑖 belongs. The possibility that the
path does not continue to any of the paths of the bubble
is included in case ℓ = 𝐼 for the first layer 𝐿1. Value
ℓ = 𝐸 always includes all cases not considered for ℓ = 𝐼 .

For 𝑣𝑖 ∈ 𝑁 ∪ 𝐽 , we will use only ℓ = 𝐼 , and we will
not impose any additional constraint. Value 𝑊 (𝑣𝑖, 𝑠, 𝐸)
is not defined and can be considered as being −∞.

To initialize the algorithm for the first node 𝑣1 in or-
dering 𝑂, we use similar formulas, as for the simpler case
of a single path:

𝑊 (1, 1, 𝐼) = 𝑤(𝑣1)− 𝑥

𝑊 (1, 0, 𝐼) = max{0,𝑊 (1, 1, 𝐼)}

Since 𝑣1 ∈ 𝑁 , we have 𝑊 (1, 0, 𝐸) = 𝑊 (1, 1, 𝐸) =
−∞.

Let us now consider some vertex 𝑣𝑎 for 𝑎 ≥ 2. We
will distinguish several cases. If 𝑣𝑎 /∈ 𝐽 , it has a single
predecessor, which we denote 𝑣𝑝. The simplest case is
analogous to the algorithm operating on a single path,
and applies to three cases: (1) 𝑣𝑎 ∈ 𝑁 and ℓ = 𝐼 , (2)
𝑣𝑎 ∈ 𝐿𝑘,𝑙𝑎𝑡𝑒𝑟 for any 𝑘 and any ℓ ∈ {𝐼, 𝐸}, and (3)
𝑣𝑎 ∈ 𝐿1,𝑓𝑖𝑟𝑠𝑡, ℓ = 𝐼 .

𝑊 (𝑎, 1, ℓ) = 𝑤(𝑣𝑎) + max{𝑊 (𝑝, 0, ℓ)− 𝑥,𝑊 (𝑝, 1, ℓ)}
𝑊 (𝑎, 0, ℓ) = max{𝑊 (𝑝, 0, ℓ),𝑊 (𝑎, 1, ℓ)}

Note that the value of ℓ is propagated along the layers in
the bubble.

The next case is 𝑣𝑎 ∈ 𝐿1,𝑓𝑖𝑟𝑠𝑡 and ℓ = 𝐸. Value
ℓ = 𝐸 means that the path from the predecessor (start of
the bubble) continues to some other layer of the bubble,
and thus we always apply the penalty if 𝑣𝑎 is included in
a path. Also, the predecessor 𝑣𝑝 is constrained to be on a
path, and thus we use 𝑊 (𝑝, 1, 𝐼) instead of 𝑊 (𝑝, 0, 𝐼).

𝑊 (𝑎, 1, 𝐸) = 𝑤(𝑣𝑎) +𝑊 (𝑝, 1, 𝐼)− 𝑥

𝑊 (𝑎, 0, 𝐸) = max{𝑊 (𝑝, 1, 𝐼),𝑊 (𝑎, 1, 𝐸)}

In case of 𝑣𝑎 ∈ 𝐿𝑘,𝑓𝑖𝑟𝑠𝑡 for 𝑘 > 1, we will not use the
scores computed for the predecessor, because those are
propagated along the first layer. For ℓ = 𝐸 we use similar
formulas as for 𝑣1. For ℓ = 𝐼 the path has to continue
from 𝑣𝑝 to 𝑣𝑎, leading to more constrained formulas.

𝑊 (𝑎, 1, 𝐼) = 𝑤(𝑣𝑎)

𝑊 (𝑎, 0, 𝐼) = 𝑊 (𝑎, 1, 𝐼)

𝑊 (𝑎, 1, 𝐸) = 𝑤(𝑣𝑎)− 𝑥

𝑊 (𝑎, 0, 𝐸) = max{0,𝑊 (𝑎, 1, 𝐸)}



Finally, we will consider the most complex case 𝑣𝑎 ∈ 𝐽 ,
that is, the end vertex of a processed bubble with 𝑏 layers.
Vertex 𝑣𝑎 has in this case 𝑏 predecessors denoted here as
𝑣𝑝1 , . . . , 𝑣𝑝𝑏 , where 𝑣𝑝𝑘 is in layer 𝐿𝑘 . The values stored
in score matrix 𝑊 for 𝑝1, . . . , 𝑝𝑏 were calculated for 𝑏
disjoint subgraphs, and thus to get the score for 𝑎, the
algorithm has to sum up the scores for 𝑝1, . . . , 𝑝𝑏, while
ensuring that both at the start and end of the bubble the
penalties for new paths are applied properly.

To ensure that the selected path from the bubble’s
start vertex continues with at most one vertex 𝑣 ∈
𝐿𝑘,𝑓𝑖𝑟𝑠𝑡, 1 ≤ 𝑘 ≤ 𝑏, we have to use ℓ = 𝐼 for exactly
one predecessor and ℓ = 𝐸 for all the others. Recall that
the score for 𝑝1 when ℓ = 𝐼 also includes the possibility
that the selected path does not continue to any of the
layers from the bubble’s start vertex.

To calculate the score for 𝑊 (𝑎, 1, 𝐼) efficiently, three
groups of sums are created and their maximum is used
as 𝑊 (𝑎, 1, 𝐼).

The first group corresponds to the situation where 𝑣𝑎
starts a new path and incurs a penalty. Therefore it is
not important which of the predecessors, if any, were
included in some paths.

𝑔𝑟𝑜𝑢𝑝1 = max
𝑘

⎛⎝𝑊 (𝑝𝑘, 0, 𝐼) +
∑︁
𝑖 ̸=𝑘

𝑊 (𝑝𝑖, 0, 𝐸)

⎞⎠−𝑥
The maximum in 𝑔𝑟𝑜𝑢𝑝1 goes over 𝑏 sums, each

having path continuation value 𝐼 for a different pre-
decessor 𝑣𝑝𝑘 . The value 𝑔𝑟𝑜𝑢𝑝1 can be calculated in
𝑂(𝑏) time. First, the sum 𝑊 (𝑝1, 0, 𝐸) +𝑊 (𝑝2, 0, 𝐸) +
· · ·+𝑊 (𝑝𝑏, 0, 𝐸)− 𝑥 is calculated. Then the algorithm
changes exactly one addend at a time from 𝑊 (𝑝𝑘, 0, 𝐸)
to 𝑊 (𝑝𝑘, 0, 𝐼) and chooses the maximum sum.

The second group corresponds to the situation when
the path containing 𝑣𝑎 continues from some predecessor
𝑣𝑝𝑘 without incurring a penalty, and ℓ = 𝐼 for the same
predecessor 𝑣𝑝𝑘 :

𝑔𝑟𝑜𝑢𝑝2 = max
𝑘

⎛⎝𝑊 (𝑝𝑘, 1, 𝐼) +
∑︁
�̸�=𝑘

𝑊 (𝑝𝑖, 0, 𝐸)

⎞⎠
Similarly as for 𝑔𝑟𝑜𝑢𝑝1, the value 𝑔𝑟𝑜𝑢𝑝2 can be
calculated in 𝑂(𝑏) time by first calculating the sum
𝑊 (𝑝1, 0, 𝐸) + 𝑊 (𝑝2, 0, 𝐸) + · · · + 𝑊 (𝑝𝑏, 0, 𝐸), and
then always changing exactly one addend at a time from
𝑊 (𝑝𝑘, 0, 𝐸) to 𝑊 (𝑝𝑘, 1, 𝐼) and choosing the maximum
sum at the end.

The third group corresponds to the situation when
the path through 𝑣𝑎 continues from some predecessor
𝑣𝑝𝑘 without incurring a penalty, and ℓ = 𝐼 for another
predecessor 𝑣𝑝𝑗 where 𝑘 ̸= 𝑗. This means that the path
from the start of the bubble continues through a different
path than the path leading to the end of the bubble.

𝑔𝑟𝑜𝑢𝑝3 = max
𝑘 ̸=𝑗

(︃
𝑊 (𝑝𝑘, 1, 𝐸) +𝑊 (𝑝𝑗 , 0, 𝐼)

+
∑︁

𝑖 ̸=𝑘,�̸�=𝐽

𝑊 (𝑝𝑖, 0, 𝐸)

⎞⎠
In this case, Θ(𝑏2) sums of length 𝑏 need to be calcu-

lated and compared. This could be done in 𝑂(𝑏2) time
similarly as above, only considering all pairs of prede-
cessors 𝑣𝑝𝑘 and 𝑣𝑝𝑗 . However, with some care, the max-
imum sum can be calculated in 𝑂(𝑏) time as follows.
The algorithm first calculates the sum 𝑊 (𝑝1, 0, 𝐸) +
𝑊 (𝑝2, 0, 𝐸) + · · · + 𝑊 (𝑝𝑏, 0, 𝐸) as in group 2. Then
it finds addends 𝑊 (𝑝𝑦, 0, 𝐸) and 𝑊 (𝑝𝑧, 0, 𝐸) which
when replaced with 𝑊 (𝑝𝑦, 0, 𝐼) and 𝑊 (𝑝𝑧, 1, 𝐸) maxi-
mize the sum.

To do this, the algorithm first finds 𝑝𝑐 and 𝑝𝑑 (𝑐 ̸=
𝑑) for which the difference 𝑊 (𝑝𝑦, 0, 𝐼) −𝑊 (𝑝𝑦, 0, 𝐸)
is the largest and second largest, respectively. Next,
it finds 𝑝𝑒 and 𝑝𝑓 (𝑒 ̸= 𝑓 ) for which the difference
𝑊 (𝑝𝑧, 1, 𝐸) − 𝑊 (𝑝𝑧, 0, 𝐸) is the largest and second
largest, respectively. Both these computations can be
done in 𝑂(𝑏) time. Finally we use these values to as-
semble the final value for 𝑔𝑟𝑜𝑢𝑝3. If 𝑝𝑐 ̸= 𝑝𝑒, then the
addend 𝑊 (𝑝𝑐, 0, 𝐸) is replaced with 𝑊 (𝑝𝑐, 0, 𝐼), and
𝑊 (𝑝𝑒, 0, 𝐸) with 𝑊 (𝑝𝑒, 1, 𝐸). If 𝑝𝑐 = 𝑝𝑒, then one of
the addends is replaced by 𝑊 (𝑝𝑑, 0, 𝐼) or 𝑊 (𝑝𝑓 , 1, 𝐸)
instead, whichever results in a larger sum.

Finally, the value of 𝑊 (𝑎, 1, 𝐼) is derived in the fol-
lowing way:

𝑊 (𝑎, 1, 𝐼) = 𝑤(𝑣𝑎) + max

⎧⎪⎨⎪⎩
𝑔𝑟𝑜𝑢𝑝1

𝑔𝑟𝑜𝑢𝑝2

𝑔𝑟𝑜𝑢𝑝3

To compute 𝑊 (𝑎, 0, 𝐼), we take the maximum of
𝑊 (𝑎, 1, 𝐼) representing the case that 𝑣𝑎 is selected and
the value 𝑔𝑟𝑜𝑢𝑝4 representing the case that 𝑣𝑎 is not
selected. The value of 𝑔𝑟𝑜𝑢𝑝4 is computed similarly as
𝑔𝑟𝑜𝑢𝑝1, except that the penalty term −𝑥 is not applied.
For 𝑣𝑎 ∈ 𝐽 , value 𝑊 (𝑎, 0, 𝐸) and 𝑊 (𝑎, 1, 𝐸) are not
defined and can be considered as being −∞.

Once the algorithm fills in the entire matrix 𝑊 , the
overall score can be found in 𝑊 (|𝑉 |, 0, 𝐼). Note the the
last vertex 𝑣|𝑉 | belongs to 𝑁 ∪ 𝐽 , and thus the value for
ℓ = 𝐼 does not pose any constraint on the selected paths.
To reconstruct the set of paths leading to the optimal
score, we can store for each value of matrix 𝑊 which
case was used to obtain it and then follow these values
from 𝑊 (|𝑉 |, 0, 𝐼) all the way to 𝑊 (1, ?, 𝐼).

Regarding the time complexity of the algorithm, cal-
culating the scores for each vertex outside of 𝐽 is done
in 𝑂(1) time. Calculating the scores for a vertex 𝑣𝑎 ∈ 𝐽



with indegree 𝑏 takes 𝑂(𝑏) time, but this can be amor-
tized among the 𝑏 predecessors of 𝑣𝑎, each of which has
indegree 1. Therefore both the time and space complexity
of the algorithm is 𝑂(|𝑉 |).

4. An algorithm for general DAGs
In the previous section, we described an algorithm for
the maximum-score disjoint paths problem on 𝑛-layered
bubble graphs. Although such graphs can provide a rep-
resentation of a pangenome, their power is limited. In
this section, we provide a fixed-parameter tractable algo-
rithm for a general DAG, which can solve the problem
in time 𝑂(2𝑤 · 𝑤 · |𝑉 |) if it is provided with a special
directed path decomposition with the width bounded by
parameter 𝑤. In the rest of the section, we first define
this decomposition and then describe the algorithm.

Definitions. We define the decomposition and its
width in the next definition, see also example in Figure 4.

Definition 4.1 (Directed path decomposition). Let 𝐺 =
(𝑉,𝐸) be a directed graph. A directed path decomposition
of 𝐺 is a sequence of subsets (𝑋1, . . . , 𝑋𝑛) of 𝑉 (we refer
to them as bags of vertices), with three properties:

(i) For each edge (𝑢, 𝑣) ∈ 𝐸, there exists an 𝑖 ∈
{1, . . . , 𝑛} such that both 𝑢 and 𝑣 belong to bag 𝑋𝑖.

(ii) For every three bags 𝑋𝑖, 𝑋𝑗 and 𝑋𝑘 such that 1 ≤
𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛 we have 𝑋𝑖 ∩𝑋𝑘 ⊆ 𝑋𝑗 .

(iii) For each edge (𝑢, 𝑣) ∈ 𝐸 if 𝑣 ∈ 𝑋𝑗 then there exists
a bag 𝑋𝑖 containing 𝑢 where 𝑖 ≤ 𝑗.

The width of the path decomposition is 𝑤 =
max𝑖∈{1,...,𝑛} |𝑋𝑖| − 1.

One can also define the directed pathwidth of graph
𝐺 as the minimum value 𝑤 such that 𝐺 has a path de-
composition with width 𝑤.

Our definitions of a directed path decomposition and
a directed pathwidth are extensions of the well-studied
path decomposition for undirected graphs [18]. The path
decomposition of graph 𝐺 can be interpreted as a thick-
ened path graph. The path width is a value describing
how much this path is thickened to get 𝐺. To adapt
the undirected path decomposition for our purposes, we
added the third condition. It allows the algorithm to pro-
cess bags in order and ensure that predecessors of each
node are already processed when we process the first bag
with this node.

A different path decomposition for directed graphs was
previously studied [19, 20], which omits the first condi-
tion and uses a less strict version of the third condition
as follows: “For each edge (𝑢, 𝑣) ∈ 𝐸 there exists 𝑖 ≤ 𝑗
such 𝑢 ∈ 𝑋𝑖 and 𝑣 ∈ 𝑋𝑗”. However, such a relaxed

definition does not seem to lead to an efficient algorithm
for our problem.

The following lemma shows a useful property of a
directed path decomposition.

Lemma 4.1. Let 𝐺 = (𝑉,𝐸) be a directed graph and
𝑃 = (𝑋1, . . . , 𝑋𝑛) its directed path decomposition. As-
sume 𝑋𝑖 is the bag where vertex 𝑣 appears for the first
time in 𝑃 , i.e. 𝑣 ∈ 𝑋𝑖 and 𝑣 /∈ 𝑋𝑗 where 𝑗 < 𝑖. Then bag
𝑋𝑖 contains all predecessors of 𝑣.

Proof. From (𝑖𝑖𝑖) in Definition 4.1, we know that each
predecessor 𝑝 of 𝑣 has to be in some bag 𝑋ℎ for ℎ ≤ 𝑖.
Based on (𝑖) in Definition 4.1, there exists a bag 𝑋𝑘

containing vertices 𝑝 and 𝑣. Since 𝑋𝑖 is the bag where
𝑣 appears for the first time in 𝑃 , 𝑖 ≤ 𝑘. Based on (𝑖𝑖) in
Definition 4.1, 𝑋𝑖 contains 𝑝 ∈ 𝑋ℎ ∩𝑋𝑘 .

Corollary 4.1. The pathwidth of a directed graph 𝐺 is
at least the maximum indegree of 𝐺, where the indegree
of vertex 𝑣 is the number of 𝑣’s predecessors |𝑁−(𝑣)|.

In our algorithm, we will use a special form of the di-
rected path decomposition, in which a single new node is
added in each bag. Below we define it formally and show
that any directed path decomposition can be efficiently
converted into this form without increasing the width.

Definition 4.2 (Incremental path decomposition). Let
𝐺 = (𝑉,𝐸) be a DAG and 𝑃 = (𝑋1, . . . , 𝑋𝑛) its di-
rected path decomposition. We consider 𝑋0 = ∅. We call
𝑃 an incremental path decomposition if |𝑋𝑖 ∖𝑋𝑖−1| = 1
for 1 ≤ 𝑖 ≤ 𝑛. The vertex in 𝑋𝑖 ∖ 𝑋𝑖−1 is called the
incremental vertex.

Note that an incremental path decomposition of a DAG
𝐺 = (𝑉,𝐸) consists of exactly |𝑉 | bags, as exactly one
vertex is added in each bag and each vertex needs to be
added exactly once.

Lemma 4.2. Let 𝐺 = (𝑉,𝐸) be a DAG and 𝑃 =
(𝑋1, . . . , 𝑋𝑛) its directed path decomposition of width 𝑤.
It can be converted to an incremental path decomposition
for 𝐺 with a width at most 𝑤 in 𝑂(𝑤 · |𝑉 |) time.

Proof. Let us assume that |𝑋𝑖 ∖ 𝑋𝑖−1| = 𝑘. If 𝑘 = 0
then 𝑋𝑖 ⊆ 𝑋𝑖−1, and therefore, 𝑋𝑖 can be left out of the
path decomposition without breaking properties (𝑖), (𝑖𝑖)
and (𝑖𝑖𝑖) from Definition 4.1. If 𝑘 > 1, we create a path
decomposition 𝑃 ′ = 𝑋1, . . . 𝑋𝑖−1, 𝑌,𝑋𝑖, . . . 𝑋𝑛 where
|𝑌 ∖ 𝑋𝑖−1| = 1 and |𝑋𝑖 ∖ 𝑌 | = 𝑘 − 1. By repeating
these steps, we get an incremental path decomposition.

To construct 𝑌 , we consider a topological order of
vertices in 𝐺 and select the vertex 𝑣 which is the first
in this topological order among vertices in 𝑋𝑖 ∖ 𝑋𝑖−1.
This means that 𝑣 has no predecessor in 𝑋𝑖 ∖𝑋𝑖−1. Bag
𝑌 is constructed as 𝑌 = (𝑋𝑖−1 ∩ 𝑋𝑖) ∪ {𝑣}. Clearly,



Figure 4: An example of a directed path decomposition with width 2 according to Definition 4.1.

decomposition 𝑃 ′ satisfies all properties from Definition
4.1. Also notice that |𝑌 | ≤ |𝑋𝑖|, i.e. the width of the path
decomposition was not increased.

Finally, set 𝑌 can be constructed in 𝑂(𝑤) time, and
as we repeat this process at most |𝑉 | times, the total
running time is 𝑂(𝑤 · |𝑉 |). The topological order can be
computed in 𝑂(|𝑉 |+ |𝐸|) time. Note that |𝐸| ≤ 𝑤 · |𝑉 |
as each vertex has at most 𝑤 incoming edges.

An algorithm that uses an incremental decomposi-
tion. We now describe an algorithm for solving the
maximum-score disjoint paths problem for a DAG 𝐺 =
(𝑉,𝐸) and penalty 𝑥. The input to the algorithm is an
incremental path decomposition 𝑃 = (𝑋1, . . . , 𝑋𝑛) of
𝐺. The algorithm runs in 𝑂(2𝑤 · 𝑤 · |𝑉 |) time where 𝑤
is the width of 𝑃 . Let 𝐺𝑖 be the subgraph of 𝐺 induced
by vertices in 𝑋1 ∪ · · · ∪𝑋𝑖.

The algorithm processes individual bags in the decom-
position one at a time. When processing bag 𝑋𝑖 the
algorithm computes maximum scores of solutions in the
subgraph 𝐺𝑖. In the first algorithm, we have considered
for each ending vertex 𝑣𝑖 solutions for different settings
of binary variables 𝑠 and ℓ. Here we will consider 2|𝑋𝑖|

different solutions, each corresponding to a different sub-
set 𝐴 ⊆ 𝑋𝑖. We will call these subsets configurations.
Configuration 𝐴 determines which vertices from 𝑋𝑖 are
the last vertices in individual paths contained in a solu-
tion of the problem. The algorithm thus computes a score
matrix 𝑊 (𝑖, 𝐴) which contains the score of the best set
of paths within 𝐺𝑖 such that if 𝐵 is the set of last vertices
of these paths, then 𝐴 = 𝐵 ∩𝑋𝑖.

Let us assume that the scores for 𝑋𝑖−1 are already
known, and we want to calculate scores for 𝑋𝑖. Let 𝑣𝑖 be
the incremental vertex of 𝑋𝑖. Consider a configuration
𝐴 ⊆ 𝑋𝑖. We will consider two cases.

First, if 𝑣𝑖 /∈ 𝐴, then the incremental vertex is not
used in any path because it is not the last vertex of any
path, and it cannot be in the middle of a path, as it does
not have any successors in 𝐺𝑖. Therefore we copy some
score computed for 𝑋𝑖−1 to 𝑊 (𝑖, 𝐴). However, we need
to consider multiple configurations for 𝑋𝑖−1 as there
can be multiple vertices in 𝑋𝑖−1 which are not part of
𝑋𝑖. These vertices can be part of a configuration for
𝑋𝑖−1 but are no longer relevant for 𝑋𝑖. To this end, for
each configuration 𝐴 of 𝑋𝑖 we will define set 𝑝(𝑖, 𝐴) of
configurations of 𝑋𝑖−1 that agree with 𝐴 on the vertices
shared between 𝑋𝑖−1 and 𝑋𝑖. Formally,

𝑝(𝑖, 𝐴) = {𝐵 ⊆ 𝑋𝑖−1 |𝑋𝑖−1∩𝑋𝑖∩𝐴 = 𝑋𝑖−1∩𝑋𝑖∩𝐵}.

Score 𝑊 (𝑖, 𝐴) can then computed as follows:

𝑊 (𝑖, 𝐴) = max
𝐵∈𝑝(𝑖,𝐴)

𝑊 (𝑖− 1, 𝐵)

In the second case, 𝑣𝑖 ∈ 𝐴. The path containing 𝑣𝑖 can
be either a single vertex, in which case we apply penalty
𝑥, or 𝑣𝑖 can follow some vertex 𝑢 ∈ 𝑋𝑖−1. In that case
𝑢 must be in the configuration for 𝑋𝑖−1, because it was
the last vertex before addition of 𝑣𝑖. But it is not in
the configuration for 𝑋𝑖, because it is now followed by
𝑣𝑖. We consider all possibilities for predecessor 𝑢 of 𝑣𝑖
which is not in𝐴 and for configuration𝐵 for𝑋𝑖−1 which
contains 𝑢, but otherwise agrees with 𝐴 on the vertices
shared between 𝑋𝑖−1 and 𝑋𝑖. Note that all predecessors
of 𝑣𝑖 are in both 𝑋𝑖 (according to Lemma 4.1) and 𝑋𝑖−1

(because only a single vertex is added to 𝑋𝑖).

𝑊 (𝑖, 𝐴) = 𝑤(𝑣𝑖)+

max

{︃
max𝐵∈𝑝(𝑖,𝐴) 𝑊 (𝑖− 1, 𝐵)− 𝑥

max𝑢∈𝑁−(𝑣𝑖)∖𝐴 max𝐵∈𝑝(𝑖,𝐴∪{𝑢}) 𝑊 (𝑖− 1, 𝐵)



To initialize the algorithm, we set 𝑊 (0, ∅) = 0. The final
score is the maximum of 𝑊 (|𝑉 |, 𝐴) among all configu-
rations 𝐴 of 𝑋|𝑉 |. The paths can be again reconstructed
by keeping track of which configuration 𝐵 was used to
compute each score in matrix 𝑊 .

The above formulas are not convenient for implemen-
tation because we need to iterate over multiple config-
urations 𝐵 ⊆ 𝑋𝑖−1 for each configuration 𝐴 ⊆ 𝑋𝑖. It
is easier to organize computation in a forward fashion,
where we first initialize 𝑊 (𝑖, 𝐴) to −∞ for all 𝐴 and
then iterate over all configurations 𝐵 of 𝑋𝑖−1 and use
𝑊 (𝑖 − 1, 𝐵) to update up to 𝑤 + 2 relevant values of
𝑊 (𝑖, 𝐴), as shown in Algorithm 1. The algorithm clearly
works in 𝑂(2𝑤 ·𝑤 · |𝑉 |) time, provided that sets 𝐴 and 𝐵
can be manipulated in 𝑂(1) time, which is a reasonable
assumption since they are used to address the matrix and
thus presumably fit into a single computer word.

Algorithm 1 Computation of matrix 𝑊 given an incre-
mental path decomposition 𝑋1, . . . , 𝑋|𝑉 | and incremen-
tal vertices 𝑣1, . . . , 𝑣𝑛.

𝑊 (0, ∅) = 0
for all 𝑖 ∈ {1, . . . , |𝑉 |} do

for all 𝐴 ⊆ 𝑋𝑖 do
𝑊 (𝑖, 𝐴)← −∞

end for
for all 𝐵 ⊆ 𝑋𝑖−1 do

𝐴← 𝐵 ∩𝑋𝑖

𝑊 (𝑖, 𝐴) = max{𝑊 (𝑖, 𝐴),𝑊 (𝑖− 1, 𝐵)}
𝐴′ ← 𝐴 ∪ {𝑣𝑖}
𝑊 (𝑖, 𝐴′) = max{𝑊 (𝑖, 𝐴′),𝑊 (𝑖 − 1, 𝐵) +
𝑤(𝑣𝑖)− 𝑥}
for all 𝑢 ∈ 𝐵 ∩𝑁−(𝑣𝑖) do

𝐴′′ ← 𝐴′ ∖ {𝑢}
𝑊 (𝑖, 𝐴′′) = max{𝑊 (𝑖, 𝐴′′),𝑊 (𝑖 − 1, 𝐵) +
𝑤(𝑣𝑖)}

end for
end for

end for

Creating an incremental path decomposition.
Our algorithm gets the incremental path decomposition
as an input. For completeness we describe a heuristic
algorithm for creating an incremental path decompo-
sition for a DAG 𝐺, although, not necessarily the one
with the smallest width. Let 𝑣1, . . . , 𝑣𝑛 be a topological
ordering of 𝐺. We put these vertices into subsequent
bags, i.e. 𝑋𝑖 = {𝑣𝑖}. These bags already fulfill property
(𝑖𝑖𝑖) from Definition 4.1. From Lemma 4.1 we know that
the bag where a vertex appears for the first time also
contains all its predecessors. To achieve this, we add
all predecessors of 𝑣𝑖 into bag 𝑋𝑖. This does not break
property (𝑖𝑖𝑖) from Definition 4.1, and it fulfills property

(𝑖). To fulfill property (𝑖𝑖) in Definition 4.1, we find the
first and last occurrence of each vertex 𝑣 in the bags,
and add vertex 𝑣 into the bags in between. This does not
break property (𝑖) and (𝑖𝑖𝑖) from Definition 4.1 and it
fulfills property (𝑖𝑖). The complexity of this algorithm is
𝑂(𝑤 · |𝑉 |).

The resulting path decomposition is incremental.
Namely, bag 𝑋𝑖 is the first bag where vertex 𝑣𝑖 appears,
and therefore, |𝑋𝑖∖𝑋𝑖−1| ≥ 1. The difference of the sets
cannot be 2 or more, as then the other additional vertex
has to be 𝑣𝑗 where 𝑗 < 𝑖which means it appeared already
in bag 𝑋𝑗 , and due to condition (𝑖𝑖) from Definition 4.1
it means 𝑣𝑗 ∈ 𝑋𝑖−1.

5. Experiments
We created a prototype implementation of the algorithm
for 𝑛-layered bubble graphs from Section 3; this im-
plementation can be found at https://github.com/evicy/
thesis. We tested our implementation on the task of iden-
tifying GC-rich regions in a pangenome of Escherichia
coli bacterium. The GC content of DNA sequences, i.e.
the percentage of guanine (G) and cytosine (C) bases, is
a frequently used statistic when analyzing genomes. It
has been well studied across organisms, revealing con-
nections between the GC content and various genomic
characteristics [21]. GC-rich regions were also used in the
study of the maximum segment sum problem by Csűrös
[4].

To prepare our data set, we used the complete genome
of E. coli K12-MG1655 as the reference genome [22] and
sequencing reads from several strains of E. coli isolated
from supermarket produce [23]. The reads were down-
loaded from project PRJNA563564 in the European Nu-
cleotide Archive (ENA) database [24]. We mapped the
reads to the genome using BWA [25], processed align-
ments by SAMtools [26] and then discovered sequence
variants for individual strains compared to the reference
genome using Freebayes [27], The resulting VCF file
with sequence variants was used to construct a elastic-
degenerate string by the EDSO [28] tool. Our tool then
transforms this EDS to an 𝑛-layered bubble graph where
vertices are single bases (as in Figure 2) and runs our
algorithm.

We have tested nine inputs listed as 0, . . . , 8 in Ta-
ble 1. The first input with ID 0 contains only the refer-
ence genome, where we effectively solve the maximum-
scoring segment set problem of Csűrös [4]. Each suc-
cessive input adds one additional strain of E. coli to the
growing pangenome. To find paths with a high GC con-
tent, we assigned weight 1 to bases 𝐺 and 𝐶 and weight
-2 to bases 𝐴 and 𝑇 . We tested several values of penalty
𝑥 ∈ {5, 6, 7, 8, 9, 10}. These weights mean that the GC
content of a selected path is at least 66% to achieve posi-

https://github.com/evicy/thesis
https://github.com/evicy/thesis


ID Used genomes |𝑉 |

0 only the reference [22] 4,641,654
1 ID 0 and SRR10058833 4,686,570
2 ID 1 and SRR10058834 4,743,566
3 ID 2 and SRR10058835 4,768,722
4 ID 3 and SRR10058836 4,769,070
5 ID 4 and SRR10058837 4,769,264
6 ID 5 and SRR10058838 4,883,827
7 ID 6 and SRR10058839 4,883,922
8 ID 7 and SRR10058840 4,884,102

Table 1
Pangenomes used in our experiment.

Figure 5: Coverage of a pangenome by selected paths repre-
senting high GC clusters.

tive score, while the GC content of the E. coli genome is
50.8% on average. The penalty ensures that the length of
each selected path is at least 𝑥.

In Figure 5, we can see the coverage, i.e. the percentage
of the graph that is covered by the selected paths. As
expected, the coverage decreases with increasing penalty.
By adding genomic sequences to the pangenome, the cov-
erage is increasing, because some of the new variants will
introduce 𝐶’s and 𝐺’s that can be used by the selected
paths.

6. Conclusion
In this work, we have defined the maximum-score dis-
joint paths problem and provided two algorithms for
solving it. The first algorithm runs in linear time on 𝑛-
layered bubble graphs, which can represent pangenomes
expressed as elastic-degenerate strings. The second al-
gorithm runs on general DAGs in time 𝑂(2𝑤 · 𝑤 · |𝑉 |)
where 𝑤 is the width of a special directed path decom-
position defined in this work. We also show the results
of a prototype implementation of our first algorithm. In
future work, we plan to apply our algorithms to differ-

ent biological questions stemming from comparative or
functional genomics.

Note that our algorithms are purely combinatorial,
while many existing approaches for single genomes use
statistical methods [29, 10, 30, 31, 32, 33], Csűrös [4] notes
that the scores and penalties can be set so that the prob-
lem represents finding the maximum likelihood positions
of the clusters defined by a two-state hidden Markov
model or optimal under complexity penalties, thus pro-
viding a link between the combinatorial and statistical
versions of the problem for a single genome. Nonetheless,
it is an interesting problem to provide an appropriate ex-
tensions of statistical models used in sequence analysis
for pangenome graphs.

From a more theoretical point of view, it would be
interesting to characterize the complexity of our problem
on different classes of directed graphs besides the two
studied in this work.
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