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Abstract
Alternative Splicing (AS) is a regulation mechanism that contributes to protein diversity and is also associated to many
diseases and tumors. Alternative splicing events quantification from RNA-Seq reads is a crucial step in understanding this
complex biological mechanism. However, tools for AS events detection and quantification show inconsistent results. This
reduces their reliability in fully capturing and explaining alternative splicing. We introduce ESGq, a novel approach for the
quantification of AS events across conditions based on read alignment against Event Splicing Graphs. By comparing ESGq to
two state-of-the-art tools on real RNA-Seq data, we validate its performance and evaluate the statistical correlation of the
results. ESGq is freely available at https://github.com/AlgoLab/ESGq.
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1. Introduction
Alternative Splicing (AS) is a post-transcription regula-
tion mechanism that contributes to isoform and protein
diversity in eukaryotes. Due to AS, depending on its en-
vironment, a single gene can produce multiple isoforms,
hence complicating our understanding of the gene expres-
sion process. For instance, more than 95% of multi-exon
human genes [1, 2] and more than 60% of multi-exon
Drosophila Melanogaster genes [3] exhibit more than
one isoform. Due to its association to aging [4], can-
cer [5], and neuro-degenerative diseases [6], the analysis
of AS is of the utmost importance.

In the last decade, RNA-Sequencing has become the de-
facto standard for the analysis of alternative splicing and
a plethora of tools have been proposed in the literature.
From a very high level point of view, the approaches
for the analysis of alternative splicing available in the
literature can be divided in two groups, depending at
which level they work: transcript-based [7, 8] and event-
based approaches.

In this work, we will focus on the second category.
This kind of approaches characterizes AS at the most
fine-grained level by giving a detailed and strict descrip-
tion of what happens at the exon-exon (or splice) junction
level. Although being more rigorous in the description
of AS events, this kind of approaches resulted more ac-
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curate than the transcript-based competitors [9], thus
potentially providing a more detailed characterization of
alternative splicing. Classical AS events are grouped in 5
categories [10]: exon skipping, alternative 3’ (acceptor)
splice sites, alternative 5’ (donor) splice sites, intron re-
tention, and mutually exclusive exons. Many tools have
been developed to perform AS events detection and quan-
tification [11, 12, 13, 14, 15]. Recent works [16, 17] argue
that the classic definition of AS events is not satisfactory
and not adequate to fully capture the complexity of alter-
native splicing. To this aim, they introduce Local Splicing
Variations, a novel concept that aims to represent com-
plex AS patterns and then increase the expressive power
of the classical and more strict classification. However,
the detection and quantification of classical AS events
is an already hard - and not fully solved - problem that
does not need further complications. Indeed, tools and
methodologies show several limitations [9]. For instance,
although AS events exhibit a strict definition, tools avail-
able in literature inconsistent results, due to the different
definitions and filtering criteria adopted. Moreover, ev-
ery tool uses its own format to describe the AS events,
making any downstream analysis quite complex.

In this context, we focus on the detection and quan-
tification of non-novel AS events across conditions and
provide an extensive comparison of two state-of-the-art
tools, rMATS [11] and SUPPA2 [12]. Moreover, to validate
our findings, we introduce ESGq, a novel graph-based
methodology for the quantification of AS events across
two conditions. Inspired by the recent progress and de-
velopment in the field of pangenomic and graph algo-
rithms [18, 19], ESGq models AS events as local splicing
graphs, called event splicing graphs, and then quantify the
events by aligning reads to them. The usage of graphs in
the transcriptomic world is not new [13, 14, 20, 21, 22]
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but the use of simplified graph-based representation char-
acterizing precise loci of the genome is something that
was never investigated. This work provides a first ex-
ploratory investigation and may lay the foundations for a
new generation of approaches for the efficient and accu-
rate AS events quantification based on pantranscriptome
graphs.

Experiments on a very recent real RNA-Seq dataset se-
quenced from Drosophila Melanogaster flies at two time
points show that, by pairing simple graphs with accurate
mapping, ESGq is able to achieve comparable results to
state-of-the-art without sacrificing its efficiency. More-
over, our comparison proves once again the inconsistency
of the results obtained by different methodologies for the
detection and quantification of AS events.

2. Method
We introduce ESGq, a novel graph-based method for the
differential quantification of alternative splicing events
across conditions. ESGq takes as input a reference
genome (in FASTA format), a gene annotation (in GTF
format), and a two conditions RNA-Seq dataset with op-
tional replicates (in FASTQ format), and computes the
differential expression of annotated AS events (in custom
text format). For each event ESGq provides the Percent-
Spliced In (PSI, 𝜓) with respect to each input replicate
and the ∆𝜓, summarizing the differential expression of
each event across the two conditions. Current implemen-
tation focuses on four types of alternative splicing events
(exon skipping, intron retention, alternative acceptor site,
and alternative donor site) and supports both paired-end
and single-end RNA-Seq datasets.

Differently from state-of-the-art approaches, which
rely on spliced read alignment to a reference genome or
quasi-mapping transcript quantification, ESGq relies on
read alignment against a graph-based structure repre-
senting the events that need to be quantified. Instead of
using a full splicing graph or a pantranscriptome, that
are common structures in the literature [13, 14, 19], ESGq
limits its computation to smaller and less complex graphs,
the Event Splicing Graphs. An event splicing graph is a
splicing graph which encodes only the exons and splice
junctions involved in an alternative splicing event. Dif-
ferently from splicing graphs commonly used in the liter-
ature, that represent all known transcripts of a gene, and
differently from pantranscriptomes, where entire gene
loci and intergenic regions are represented, an Event
Splicing Graph encodes only the portions of the two
transcripts involved in an event. By using this simpler
representation, ESGq is able to achieve great efficiency
without sacrificing its accuracy.
ESGq consists of three steps (also depicted in Figure 1):

1. event splicing graphs construction

2. read alignment against event splicing graphs
3. 𝜓 and ∆𝜓 computation

ESGq starts its computation by extracting the annotated
alternative splicing events from the input gene annota-
tion. To this aim, it employs a module of the SUPPA2
tool [12]. The output of this module is a list of annotated
alternative splicing events, that are events whose two
isoforms are already annotated in the input gene anno-
tation. For each event, SUPPA2 reports the type (one
among SE, RI, A3, A5) and the genomic coordinates of
the splice junctions involved in it. Starting from this list,
ESGq builds the event splicing graphs, one per event. We
note that multiple graphs can be built from the same
gene. By exploiting the genomic coordinates of an event,
ESGq retrieves the corresponding exons and adds them
as nodes in the event splicing graph. Depending on the
AS event type, ESGq adds edges between these nodes in
order to represent the two isoforms involved in the event:
the canonical isoform (that, in graph terms, is the path
denoted as 𝒫𝐶 ) and the alternative one (denoted as 𝒫𝐴).
More precisely, the four scenarios, one per event type,
contemplated by ESGq are depicted in Figure 2 and can
be formally defined as follow:

• to model an exon skipping event (SE), ESGq needs
to take into account three exons and this implies
that the corresponding event splicing graph is
composed of three nodes 𝑛1, 𝑛2, 𝑛3. In detail, 𝑛2

represents the exon that is spliced out during the
event. The canonical isoform is represented by
the path involving all three nodes (𝒫𝐶 = 𝑛1 →
𝑛2 → 𝑛3) while the alternative isoform consists
in the skip of 𝑛2 (𝒫𝐴 = 𝑛1 → 𝑛3);

• to model an alternative acceptor site event (A3),
ESGq needs to take into account three exons and
accordingly three nodes 𝑛1, 𝑛2, 𝑛3. In detail 𝑛1

represents the upstream exon, 𝑛2 the canonical
downstream exon, and 𝑛3 the downstream exon
with the alternative acceptor splice site. The
canonical isoform is represented by the path in-
volving the shared upstream exon and the canon-
ical downstream exon (𝒫𝐶 = 𝑛1 → 𝑛2) whereas
the alternative isoform changes the downstream
exon with the alternative one (𝒫𝐴 = 𝑛1 → 𝑛3);

• to model an alternative donor site event (A5),
ESGq needs to take into account three exons
and accordingly three nodes 𝑛1, 𝑛2, 𝑛3. In de-
tail, 𝑛1 represents the canonical upstream exon,
𝑛2 the canonical downstream exon, and 𝑛3 the
upstream exon with the alternative donor splicing
site. The canonical isoform is represented by the
path involving the canonical upstream exon and
the shared downstream exon (𝒫𝐶 = 𝑛1 → 𝑛2)
whereas the alternative isoform changes the up-



Figure 1: ESGq method. (a) From the reference genome and the gene annotation, ESGq builds the Event Splicing Graphs
(ESGs in the figure). (b) RNA-Seq reads from the two conditions (𝐶1 and 𝐶2) are aligned to the Event Splicing Graphs. (c)
Graph alignments are used to weight junction edges and the weights are used to compute the 𝜓 values (one per condition)
and the Δ𝜓 value (one per dataset).

stream exon with the alternative one (𝒫𝐴 =
𝑛3 → 𝑛2);

• to model an intron retention event (RI), ESGq
needs to take into account three exons. However,
this case is harder than the previous ones: the
three nodes 𝑛1, 𝑛2, 𝑛3 of the graph do not closely
correspond to three exons, but one of them (𝑛3)
correspond to a portion of it. In detail, 𝑛1 and
𝑛2 represent the two upstream and downstream
exons whereas 𝑛3 represents the retained intron
(i.e., the internal portion of the exon linking the
upstream and downstream canonical exons). The
canonical isoform is then represented by the path
involving the upstream exon and the downstream
exon (𝒫𝐶 = 𝑛1 → 𝑛2) whereas the alternative
isoform includes the retained intron in the path
(𝒫𝐴 = 𝑛1 → 𝑛3 → 𝑛2).

We note that, from a conceptual point of view, each event
contributes to an event splicing graph, but, from a more
practical point of view, ESGq builds a single graph with
multiple connected components, one per event.

In the second step, ESGq indexes the graph constructed
in the previous step. Since the goal is to align the input
RNA-Seq reads to the graph using the Giraffe aligner [23],
ESGq employs the VG toolkit [24] to build the gBWT
(graph Burrows–Wheeler Transform) index [25]. Each
input replicate is then independently aligned to the graph
using Giraffe. We note that, since by default vg breaks
each node longer than 32bp into smaller nodes (of length
≤ 32), in order to keep the association between the nodes
in the input graph (that is the one built by ESGq) and
the nodes in the indexed version, ESGq directly breaks

the nodes while building the event splicing graphs and
links them accordingly to maintain the same two paths,
i.e., isoforms. Due to this, in an event splicing graph
we can observe two kind of edges: edges linking the
smaller (≤ 32𝑏𝑝) nodes internal to an exon and edges that
represent the real splice junction of interest for the AS
event. Although ESGq differentiates between these two
kinds of edge, conceptually only the edges representing
a splice junction are used by ESGq. For this reason, we
decided to omit these edges from Figure 2.

In the third and last step, ESGq computes the𝜓 value of
the events w.r.t. each replicate and then summarize these
values by comparing the two conditions and computing a
∆𝜓 value per event. This value represent the differential
expression of each event across the two input conditions.

To do so, ESGq analyses the graph alignments com-
puted in the previous step and assign a weight to each
edge that represents a splice junction. Since each read is
aligned to a path of the graph, computing this weight is
straightforward as increasing a counter per edge. Indeed,
a read can be aligned to a single node of the graph, hence
without using any edge, or to a sequence of nodes, hence
using one or more edges. In such a case, ESGq checks
every edge used by the alignment and, if an edge is a junc-
tion edge, it increases its weight by 1. In other words,
since each junction edge represent a splice junction, its
weight represents the number of reads that have been
spliced aligned over it.

Finally, ESGq uses these weights to compute the 𝜓
value of each AS event following its classical formula-
tion, i.e., the proportion of reads supporting the standard
isoform over the reads supporting both isoforms [26].



W1

W3

1 3W22

E1 E3E2I1 I2

G

TC
E1 E3I3TA

W1

W2

1 2

W3

3

E1 E2

G

I1

SE RI

W1

W2

1 2

3

E1 E3

G

I2

E1 E2

A3

I1

W1

W2

1 2

3

E3 E2

G

I2

E1 E2I1

A5

E

TC

TA

TC

TA

TC

TA

Figure 2: Event splicing graphs computed by ESGq. For each AS event type (exon skipping, SE, alternative acceptor site, A3,
alternative donor site, A5, and intron retention, RI), we report the event splicing graph 𝐺 and the two annotated isoforms
involved in the event: the canonical transcript 𝑇𝐶 (represented in 𝐺 by blue edges) and the alternative transcript 𝑇𝐴
(represented in 𝐺 by dotted green edges). In 𝑇𝐶 and 𝑇𝐴, 𝐸 blocks represent exons and 𝐼 blocks represent introns. The edge
labels 𝑊 represent the weights computed by ESGq after the read alignment step.

Differently from other approaches, which rely on both
spliced and not spliced reads, ESGq 𝜓 computation is
based only on spliced reads counts, hence the support of
an isoform is approximated using only these values and
does not take into account its full coverage. We believe
that this is a good approximation of the correct 𝜓 value
and this is also confirmed by our experimental evalua-
tion. 𝜓 calculation can be summarized as follows (we
also refer the reader to Figure 2):

• 𝜓𝑆𝐸 =
𝑤1+𝑤2

2
𝑤1+𝑤2

2
+𝑤3

considers the mean of the

weights 𝑤1, 𝑤2 of the canonical isoform and the
weight 𝑤3 of the alternative isoform (in a similar
fashion to [27]);

• 𝜓𝐴3 = 𝑤1
𝑤1+𝑤2

and 𝜓𝐴5 = 𝑤1
𝑤1+𝑤2

consider
the weight 𝑤1 of the canonical isoform and the
weight 𝑤2 of the alternative isoform

• 𝜓𝑅𝐼 = 𝑤1

𝑤1+
𝑤2+𝑤3

2

considers the weight 𝑤1

of the canonical isoform and the mean of the
weights 𝑤2, 𝑤3 of the alternative isoform

Starting from these 𝜓 values (one per event per replicate),
which summarize the event quantification for each input
replicate, ESGq computes the differential quantification
across the two input conditions (∆𝜓) as the difference be-
tween the absolute value of the𝜓 means in the two condi-
tions. Differently from other approaches, ESGq does not
assign a p value to the ∆𝜓. This is mainly a consequence
of the simplified AS events quantification based only on
spliced reads counts. Future works will be devoted to
improve the statistical validation of ESGq results.

3. Experimental evaluation
We implemented the ESGq pipeline in
Python and the code is freely available at
https://github.com/AlgoLab/ESGq. We note that
the most computationally intensive steps of the pipeline
(i.e., graph indexing and read-to-graph alignment) rely
on the VG toolkit [24], that is implemented in C++. We
assessed ESGq efficacy and efficiency on a real dataset
of RNA-Seq reads (SRA BioProject ID: PRJNA718442)
that comes from a recent study [28] on the correlation
between ageing and differential gene expression in
Drosophila Melonogaster. More precisely, the study
conducted a genome-wide differential expression
analysis at two different time points: day 1 and day 60
flyes. The dataset consists of three replicates for two
conditions (the two time points), for a total of 6 Illumina
Hiseq samples. All samples are paired-end and consist of
151bp-long reads (see Table 1 for more details).

Differently from the aforementioned study, where the
focus was the analysis of differential gene expression, in
this work, we analyze the same dataset from the perspec-
tive of differential quantification of alternative splicing
events. To do so, we applied ESGq and two other state-
of-the-art approaches for the differential quantification
of alternative splicing events across multiple conditions:
rMATS [11] (version 4.1.2) and SUPPA2 [12] (version 2.3).
The former performs differential quantification starting
from read alignment to the reference genome whereas
the latter starts from the quasi-mapping transcript quan-
tification of Salmon [29]. In this way, we have been able

https://github.com/AlgoLab/ESGq


(a) ESGq vs rMATS (b) ESGq vs SUPPA2 (c) rMATS vs SUPPA2

Figure 3: Correlation plots between the Δ𝜓 values computed by ESGq, rMATS, and SUPPA2. These results refer to our analysis
of 151𝑏𝑝 paired-end sample and 𝑘 = 31 (for Salmon and SUPPA2).

Condition Replicate n.Pairs Size (GB)

Day 1
SRR14101759 26 658 610 19.2
SRR14101760 25 474 257 18.4
SRR14101761 28 339 185 22

Day 60
SRR14101762 24 985 317 18
SRR14101763 25 569 084 18.6
SRR14101764 24 605 265 17.8

Table 1
Real dataset used in our experimental evaluation (SRA Bio-
Project ID: PRJNA718442). Table reports the number of reads
and the size in GigaByte of each paired-end replicate.

to compare three methodologies based on completely
different frameworks: graph-based alignment, reference-
based alignment, and transcript-based quasi-mapping.
rMATS was run starting from the alignments produced
by STAR aligner [30] (version 2.7.10b) whereas SUPPA2
was run starting from Salmon transcript quantification
(version 1.10.1). All tools were run using their default
parameters and 16 threads (when possible). In our analy-
ses, we considered the reference, gene annotation, and
transcripts provided by FlyBase [31], release 6.52.

We compared the ∆𝜓 values reported by the three
considered tools. ESGq reported 3 276, rMATS reported
3 699, and SUPPA2 reported 1 619 AS events correctly
quantified. We note that both ESGq and SUPPA2 start
from a list of events and quantify them: each time an
event can not be correctly quantified (due to, for instance,
no coverage support), they assign ∆𝜓 = 𝑁𝑎𝑁 to that
event. In that case, the event is not considered as cor-
rectly quantified, thus excluded from the analysis. The
huge difference in the number of reported events proves
the complexity of detecting AS events from RNA-Seq
reads and highlights the inconsistency between different

methodologies based on different filtering criteria [9].
In our analysis we included all those events correctly
quantified by all three tools and considered statistically
significant by both rMATS and SUPPA2, i.e., events with
p value ≤ 0.05. A total of 933 events resulted from this
filter: 374 exon skipping (40%), 190 alternative 3’ (20%),
154 alternative 5’ (17%), and 215 intron retention (23%).
We note that we also tried to include Whippet [15] in
our evaluation but, due to a different AS event representa-
tion that cannot be easily compared to the representation
given by the other tools, we ended up omitting it from
the analysis.

Figure 3 and Table 3 report the results of our anal-
ysis. All tools achieved comparable results. Remark-
ably, ESGq and rMATS achieved a very good correlation,
with a Pearson correlation coefficient equal to 0.918 (Fig-
ure 3a). Although both approaches are based on read
alignment, they show two main methodological differ-
ences that slightly affect their results. Firstly, rMATS uses
read counts coming from read alignment to a reference
genome whereas ESGq uses (spliced) read counts com-
ing from alignment to event splicing graphs, that are
a reduced representation. Secondly, the quantification
step implemented in ESGq is quite simplistic and not
elaborate as the probabilistic framework implemented in
rMATS. However, none of these two differences (that are
a wanted restriction and a current - undesired - limita-
tion) seems to affect the results of ESGq. On the other
hand, SUPPA2 resulted less correlated to the two other
approaches, showing a Pearson correlation coefficient
ranging from 0.766 to 0.813 (Figure 3b and 3c). This
was somewhat expected since it is based on transcript
quantification, and not on spliced read alignment. As
proven in the literature, such a difference is expected
since current transcript annotation models may result
inaccurate [15].



Event type Tool1 Tool2 Pearson

SE
ESGq rMATS 0.952
ESGq SUPPA2 0.808
rMATS SUPPA2 0.836

A3
ESGq rMATS 0.868
ESGq SUPPA2 0.786
rMATS SUPPA2 0.862

A5
ESGq rMATS 0.920
ESGq SUPPA2 0.666
rMATS SUPPA2 0.708

RI
ESGq rMATS 0.859
ESGq SUPPA2 0.677
rMATS SUPPA2 0.760

Table 2
Pearson correlation coefficients between ESGq, rMATS, and
SUPPA2 (over the transcript quantification of Salmon ran with
𝑘 = 31) broken down by event type on the 151bp paired-end
dataset.

Table 2 reports the correlation between the three con-
sidered tools broken down by event type. Surprisingly
there is no clear trend that can be observed. ESGq and
rMATS exhibit the highest correlation on exon skipping
events and the lowest on intron retentions. ESGq and
SUPPA2, instead, show higher correlation on exon skip-
pings and lower correlation on alternative donor events.
Finally, rMATS and SUPPA2 exhibit higher correlation
on alternative acceptor site and lower correlation on
alternative donor events. These results are somewhat
unexpected and require a further investigation.
ESGq also resulted very computationally efficient, com-

pleting the analysis in half an hour requiring 1GB of RAM.
Similarly, SUPPA2 ran in less than 10 minutes and used
1.5GB of RAM. On the contrary, rMATS resulted the most
expensive approach, requiring more than 5 hours and
8GB of RAM. The most expensive step is read alignment
with STAR, that required from half an hour to two hours
per sample. By pairing simple and precise graph repre-
sentation of well localized loci of the genome (i.e., the
event splicing graphs) with fast and accurate read align-
ment, ESGq is able to achieve results comparable to the
other alignment-based approach, while being 10x faster.

Since SUPPA2 is based on the 𝑘-mer based quasi-
mapping of Salmon, we also analyzed how 𝑘-mer size
affects its results. For this reason, we ran Salmon (and,
consequently, SUPPA2) two additional times with 𝑘 ∈
{13, 21} (we note that 31 is the default value used in
the previous results). As shown in Table 3, the results
of SUPPA2 seems to be unaffected by the choice of the
𝑘 parameter. Indeed, the correlation between SUPPA2
(ran with different 𝑘 value) and other tools changes
marginally.

Moreover, to evaluate if the results of the considered

methodologies are affected by read length, starting from
the 151-bp paired-end dataset, we manually trimmed the
input reads to 51bp and 101bp using seqtk and created
two additional datasets. Table 3 reports the results of this
analysis. Even with very short reads (i.e., 51bp reads), the
three tools achieved the same correlation (with a very
marginal difference of < 0.015).

Finally, to evaluate how much paired-end information
may improve the accuracy of the tools, we merged the
two pairs of each replicate into a single sample, in order to
simulate a single-end dataset. Surprisingly, there is small
to none difference between the results on paired-end and
single-end dataset, highlighting the robustness of the
considered approaches. For instance, the Pearson cor-
relation coefficient between ESGq and rMATS decreased
by a very marginal 0.009 whereas correlation between
SUPPA2 and the other approaches decreased by 0.041
(w.r.t. ESGq) and 0.027 (w.r.t. rMATS).

The experimental evaluation has been implemented
as a Snakemake workflow [32], thus it is fully repro-
ducible and easily replicable. Scripts and instructions are
available at https://github.com/AlgoLab/ESGq. All the
experiments were performed on a 64bit Linux (Kernel
5.15.0) system equipped with two 16-core AMD EPYC
7301 2.2GHz processors and 128GB of RAM.

4. Conclusions
In this paper we introduced ESGq, a novel graph-based
approach for the AS event quantification across two con-
ditions. Differently from state-of-the-art tools, ESGq is
based on read alignment against local graph structures,
introduced here as event splicing graphs, that represent
AS events precisely represented in a given gene annota-
tion. An extensive exploratory analysis on real RNA-Seq
dataset showed that ESGq is able to achieve comparable
results with respect to other approaches based on the
alignment of reads to the reference genome, while being
10x faster.

Future works will be devoted to improving the statisti-
cal framework behind the 𝜓 and ∆𝜓 computation and to
extending the experimental evaluation by assessing the
actual accuracy of ESGq (e.g., by computing performance
metrics on simulated and RT-PCR validated events). An
interesting future direction consists in extending the no-
tion of event splicing graphs to include information on
known genetic variations (SNPs and indels) in order to
improve the quality of read alignment, as proven in a
recent work on pantrascriptomes [19]. Moreover, the
detection and quantification of novel AS events from
pantrancriptomes remain another interesting open prob-
lem.

https://github.com/AlgoLab/ESGq


Dataset Reads Tool1 Tool2 Pearson

PE

51

ESGq

rMATS 0.907

SUPPA2 (k13) 0.764
SUPPA2 (k21) 0.766
SUPPA2 (k31) 0.764

rMATS
SUPPA2 (k13) 0.807
SUPPA2 (k21) 0.809
SUPPA2 (k31) 0.808

101

ESGq

rMATS 0.921

SUPPA2 (k13) 0.763
SUPPA2 (k21) 0.763
SUPPA2 (k31) 0.761

rMATS
SUPPA2 (k13) 0.797
SUPPA2 (k21) 0.796
SUPPA2 (k31) 0.797

151

ESGq

rMATS 0.918

SUPPA2 (k13) 0.766
SUPPA2 (k21) 0.766
SUPPA2 (k31) 0.766

rMATS
SUPPA2 (k13) 0.811
SUPPA2 (k21) 0.812
SUPPA2 (k31) 0.813

SE 151

ESGq

rMATS 0.909

SUPPA2 (k13) 0.728
SUPPA2 (k21) 0.724
SUPPA2 (k31) 0.725

rMATS
SUPPA2 (k13) 0.789
SUPPA2 (k21) 0.785
SUPPA2 (k31) 0.786

Table 3
Pearson correlation coefficients between any combination
of tools, i.e., ESGq, rMATS, and SUPPA2 (over the transcript
quantification of Salmon ran with different 𝑘 values) and
experimental settings, i.e., different read lengths (51, 101, and
151bp) and paired/single-end dataset (PE/SE).
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