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Abstract
Many texts with unknown sources may contain so-called anomalous parts, which may have been artificially inserted from
another source or author, either by mistake or on purpose. The detection of these anomalies is a vital task for detecting
plagiarism, verifying authenticity, as well as cleaning texts from parts that would cause their inconsistency.

In this paper we propose a novel approach to anomaly detection in texts. The approach consists of two steps, the first step
lies in detecting the potential sentences that are considered to be the borders between the anomalous and non-anomalous
texts. In the second step, we pair up those sentences to find the anomalous parts. To obtain the semantic encoding of the
sentences, we use a pre-built 𝑊𝑜𝑟𝑑2𝑉 𝑒𝑐 model to individually encode the words that make up the sentence.

We propose four methods for aggregating words in sentence embedding. One of them is based on multiplying the
embedded elements with its Inverse Document Frequency (IDF) score, another uses a special TF-IDF metric calculated using
a Term Frequency (TF) and 𝐼𝐷𝐹 . Once the sentence embeddings are obtained, a BIdirectional Long-Short Term Memory
BI-LSTM network is used to detect sentence shifts that are on the boundaries of anomalous texts. We then use streaming
semantic comparison to filter out false positives and false negatives from the boundary sentences and match them. Our
approach was tested on a corpus originating from the competition External Plagiarism Detection in Arabic Text PAN 2015
(ExAraCorpusPAN2015), where we artificially replaced parts of the source text with semantically similar parts coming from
another text. Our methods, based on embedding sentences obtained using Part-Of-Speech tag (POS-Tag) weights, achieved
the highest F1-score value 0.95.
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1. Introduction
Anomaly detection in texts is the task of identifying parts
of texts which differ from other parts of the text from the
point of syntax or from the point of view of semantics.
The difficulty of the problem is in the fact that it is not
known in advance where to look for anomalies in the
text, how extensive the anomalous parts are and to what
extent different parts of the text should be considered
anomalies. This problem has applications in several areas,
for example in detecting plagiarism, in attempts to falsify
texts or in attempts to insert misleading information into
texts. When solving this problem, it is necessary to follow
the formal (syntax) and content (semantics) essence of
the text. It is advisable to monitor both essences at the
same time and not divide the problem into two tasks.

Anomaly detection is also known as outlier detection
or novelty detection. Various approaches are used to
solve the problem of finding anomalies in non-textual
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data, including: anomaly detection using deviations in
high dimensional data [1], unsupervised clustering meth-
ods [2, 3], rule-based systems [4], and deep learning
[5, 6, 7]. Generative Adversarial Networks (GANs) and
the adversarial training process have been recently em-
ployed to solve this problem and they yield remarkable
results [8, 9]. Although many anomaly detection meth-
ods are applicable to text documents, special approaches
can be applied to the information contained in the texts to
provide better results. Our goal was to create a sentence
embedding based on word embeddings and determine
the boundaries of anomalous parts of the text. Verify the
implemented algorithm on Arabic texts.

In the paper in Section 2, we present some of the meth-
ods that influenced our approach to the solutions In Sec-
tion 3, the proposal of the solution is elaborated, empha-
sizing the new elements. Section 4 is devoted to simulated
datasets preparation, Section 5 contains the experimental
setup, results and their evaluation. In the final Section
6, an overall evaluation of the method and a proposal
for possible improvements of the presented solution are
given.

2. Anomaly Detection in Texts
A new GAN-based text anomaly detection method is pre-
sented in [10], In the method, an adversarial regularized
autoencoder (ARAE) is used to reconstruct normal sen-
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tences and detects anomalies via a combined anomaly
score based on the building blocks of ARAE. An overview
of methods for Group Anomaly Detection can be found in
[11], but to contextual anomalies are given only general
attention here.

Identifying the style of the author of the given docu-
ment using stylometric functions can contribute to the
detection of anomalies in the texts. The described method
in [12] contributes to the detection of plagiarism in texts
based on the formal aspect of the text. Plagiarism in Ara-
bic texts was solved in [13, 14]. In [15], it is presented
an anomaly detection method – Context Vector Data De-
scription (CVDD), which builds upon word embedding
models to learn multiple sentence representations that
capture multiple semantic contexts via the self-attention
mechanism.

The introduction of a new language representation
model called BERT, which stands for Bidirectional En-
coder Representations from Transformers [16] was a sig-
nificant step in language representations. BERT inspired
us to look for improved solutions, however, in the article
we present a solution that provides quite good results. In
[17], there were used multiple machine learning methods
such as sentence transformers, auto encoders, logistic
regression and distance calculation methods to predict
anomalies in English texts and his system gave F1-score
value 0.86 for used Cross-lingual Natural Language Infer-
ence dataset plus injected Stanford Sentiment Treebank.

The paper [18], 2008, introduces the main challenges in
Arabic text processing and describes the proposed unsu-
pervised learning model for detecting anomalous Arabic
textual information, but the problem is on classification
if text contains some anomaly. Authors used various
Arabic Web sites for text collections. Three main types
of text were used to represent anomalous segments (200
- 500 words), religious description text, social text and
novels. All 3 evaluation criteria (cosine similarity, city
block distance and Chebychev distance measure) have
achieved a significant increase in the detection rates (>
75 %) in terms of the detected anomalous segments in
the Top 10 (indicates how many times each anomalous
segment appeared in the top 10 of the ranked list).

In the paper [19], we solved problem: "To cover stylis-
tic dissimilarities among text segments of the same long
English or Arabic text." Using clustering and Convolu-
tional Neural Networks (CNN) we evaluated 40 English
and 40 Arabic text (using texts from pan-plagiarism-
corpus-2011.part1.rar, http://ksucorpus.ksu.edu.sa) and
we have got accuracy values in interval ⟨60; 74⟩% for
English texts and ⟨53; 96⟩% for Arabic text.

Our first approach to finding positions of anomalies
was using HTM networks for English and Arabic texts
[20]. We achieved better results for English texts, so we
now turned our attention to Arabic texts. Contextual se-
mantic embeddings were analyzed from point of Arabic

multitask classification in [21] but it doesn’t solve anoma-
lies. Our attention is focused on solving the problem of
finding anomalies in Arabic texts using semantics and
some stylistic features of the text.

3. Proposed Solution
In order to detect semantic anomalies from text we need
(1) to find a way to encode of semantic contents of sen-
tences, (2) to determine the position of the anomalous
part of the text and (3) to evaluate the quality of the given
solution.

3.1. Semantic content encoding
Since natural language text is difficult to interpret by
machines, our first step is to create vector embeddings
of the words and sentences that make up a given text.

To obtain the semantic content of words that make up
a sentence, we can simply make use of Aravec Word2Vec
[22]. Aravec is only capable of encoding singular words,
therefore we need a method to create an embedding
that describes the semantic content of an entire sentence.
There are multiple ways to obtain sentence embeddings.

Let 𝑆 = 𝑤1, ..., 𝑤𝑛 be a sentence consisting of 𝑛
words and 𝑉 = 𝑣1, ..., 𝑣𝑛 be their embeddings, where
𝑤𝑖 represents the 𝑖− 𝑡ℎ word and 𝑣𝑖 its corresponding
embedding. Suggested methods for sentence embedding
are: (1) averaging of words embeddings, (2) inverse doc-
ument frequency embeddings, (3) threshold of similarity
embeddings, and (4) extraction of top 𝑘 keyword.

3.1.1. Averaging of words embeddings

The simplest way to create a sentence embedding is to
average all of its word embeddings.

𝐸(𝑆) =

∑︀𝑛
𝑖=1 𝑣𝑖

𝑛
(1)

While such a method may be effective, not every word
contributes to the overall meaning of the sentence to the
same degree.

3.1.2. Inverse document frequency embeddings

Another method lies in calculating the Inverse Document
Frequency (IDF) value of each word from the corpus and
using it to weight each word of the embedding. IDF was
proposed by Jones [23] in 1972, and has since been ex-
tremely widely used. The IDF value penalizes words that
are common in the entire corpus by calculating in how
many documents the word is present in. It is calculated
as

𝐼𝐷𝐹 (𝑤,𝐷) = 𝑙𝑜𝑔
𝑀

|𝑑 ∈ 𝐷 : 𝑤 ∈ 𝑑| (2)



where 𝐷 is the collection of all documents from the cor-
pus, |𝐷| = 𝑀 , 𝑑 is document, and |𝑑 ∈ 𝐷 : 𝑤 ∈ 𝑑|
is the number of documents that 𝑤 appears in. In our
case we consider every sentence a different document
and calculate the IDF values across all sentences of all
documents from our text corpus. With our IDF values, we
can calculate IDF weighting based sentence embeddings

𝐸(𝑆) =

∑︀𝑛
𝑖=1 𝐼𝐷𝐹 (𝑤𝑖, 𝐷) * 𝑣𝑖

𝑛
(3)

3.1.3. Semantic similarity TF-IDF embeddings

We can also use a modified TF-IDF metrics (the TF-IDF
follows two statistics, term frequency (𝑇𝐹 ) and inverse
document frequency. TF-IDF is frequently used in a lan-
guage processing [24]. The 𝑇𝐹 is relative frequency of
word 𝑤 within document 𝑑

𝑇𝐹 (𝑤, 𝑑) =
𝑓𝑤,𝑑∑︀

𝑤′∈𝑑 𝑓𝑤′,𝑑
(4)

where 𝑓𝑤,𝑑 is the number of the word 𝑤 in the document
𝑑.

TF-IDF multiplies the 𝐼𝐷𝐹 values with the term fre-
quency metric, TF-metric

TF-IDF(𝑤, 𝑑) = 𝑇𝐹 (𝑤, 𝑑) * 𝐼𝐷𝐹 (𝑤,𝐷) (5)

𝑇𝐹 -metrics calculates the number of times a given
term appears in the given text (not necessary full docu-
ment). The 𝑇𝐹 -metric will be sampled over a window
of 𝑁 sentences, however it won´t be calculated over the
exact matches, rather, it will be calculated over words
that belong to the same context via embedding similarity.

To find the threshold of embedding similarity we can
use a dictionary of synonyms as well as an thesaurus. We
calculate the average cosine distance between the embed-
dings of every word and their corresponding synonyms
from the dictionary of synonyms. Then, we calculate
the average cosine distance between the embeddings of
every word and their corresponding definitions from the
thesaurus. Averaging these two values, we obtain the
threshold embedding distance. Using this distance, we
can calculate the 𝑇𝐹 values. This will ensure that the
TF-IDF will be the words that are most relevant to dis-
tinguishing it from its neighbors. The final embedding
metric is calculated as

𝐸(𝑆) =

∑︀𝑛
𝑖=1 TF-IDF(𝑤𝑖, 𝑆) * 𝑣𝑖

𝑛
(6)

where 𝑤𝑖 is word in sentence 𝑆.

3.1.4. POS-Tag relevance embeddings

We have also developed key phrase extraction method
that lie in part-of-speech tagging, which assigns to each

word its predicted part-of-speech tag (POS-Tag). Some
parts of speech contribute more to the meanings of a
sentence than others. Nouns, adjectives and verbs con-
tribute more to the overall meaning than pronouns and
prepositions.

We have calculated the relative weight of POS-Tags by
first calculating the cosine distance between the embed-
ding of the word with a given POS-Tag and the overall
sentence embedding gained by calculated by a simple
pooling. We have averaged and normalized these values.
We can then calculate sentence embeddings by multiply-
ing the word embedding with its POS-Tag weight, as

𝐸(𝑆) =

∑︀𝑛
𝑖=1 POS-weight(POS-Tag(𝑤𝑖)) * 𝑣𝑖

𝑛
(7)

3.2. Positions of anomalous parts
After calculating the sentence embeddings, we will use
some methods to detect anomalous positions. Since
anomalies are generated from the same semantic cluster,
simply using one-class clustering methods is inadvisable.

During the search for anomalous sentences, it is possi-
ble to use only relative relationships between sentences,
or their embeddings. Let’s assume that the neural net-
work trained on the initial sentences will predict the
following sentences and gradually the given text will be
learned. If the predicted sentence is very different from
the original sentence (we will use some metrics for com-
parison), then the original sentence does not fit into the
text and can be considered anomalous. The problem here
is in the setting of the similarity/dissimilarity threshold,
which we found experimentally. Sentences that are not
similar are marked as anomalous. In further processing,
they are used to determine anomalous sections. How-
ever, it is possible that the anomalous section will consist
of only one sentence. After that, it is still necessary to
create sections using the marked anomalous sentences.
Our proposed methods:

3.2.1. Anomaly thresholds in document

We can make use of a recurrent neural network, such as
a Bidirectional 𝐵𝐼−𝐿𝑆𝑇𝑀 network [25]. The network
uses a context window of 𝑘 previous sentences in order
to predict the embedding of the next sentence. This pre-
diction can then be compared to the original embedding
using the cosine distance metric between its embeddings,
which will give us a measurement of how well the net-
work is able to predict the given sentence. Alternatively,
the prediction success can be calculated as the prediction
error of this sentence compared to the mean prediction
error of the previous 𝑙 sentences. Such a metric takes the
predictive strength of the network into account too, as
when the data is noisy a low prediction score might be



found even in a non-anomalous part of the text, however
the prediction score is not that out of the ordinary.

How well the network is able to predict a given sen-
tence is a good indicator if an anomaly threshold is found.
An anomaly threshold can either be a non-anomalous
sentence followed by an anomalous sentence, or in a
reverse situation an anomalous sentence followed by a
non-anomalous sentence. The outputs of the BI-LSTM
network will serve as our potential anomaly thresholds.

3.2.2. Anomaly sections

Now that we have potential anomaly threshold sentences,
we still need to identify which sections lying between two
points are anomalous and which are not. If we merely
tagged them in an alternating fashion, it would lead to a
large number of errors, as a single faulty division point
could mean that we misclassify our entire dataset. We
need some way of determining the anomalous nature of
individual sections.

We can assume that most anomalous sections are rel-
atively short compared to non-anomalous sections. We
can pair up indices of division points that are located
close to one another, specifically 20 sentences from each
other. While we can create possible pairings of anoma-
lous parts that are located close to one another, there are
individual division points that cannot be paired. They
might be a false positive or they correspond to beginning
or ending that has not been found yet. For each isolated
index, we construct multiple artificial sections that are
created varying distances before or after it.

Autoencoders, described in detail in [26] are unsuper-
vised neural networks that aim to create a representation
of data that selects only the most relevant parameters,
which can be used to reconstruct the original data. Au-
toencoders consist of two main parts: the encoder, which
converts the input into an encoding (usually of lesser
dimension than the input), and a decoder that tries to
reconstruct the input from the encoding. Using simple
feed-forward neural network, the encoding ℎ be calcu-
lated as:

ℎ = 𝜔(𝑊𝑥+ 𝑏) (8)

where 𝑥 is the input, 𝜔 is an activation function, 𝑊 is a
weight matrix and 𝑏 is the bias. This encoding can then
be used to obtain 𝑥′, the reconstruction of the input. The
reconstruction is calculated as:

𝑥′ = 𝜔′(𝑊 ′ℎ+ 𝑏′) (9)

where 𝜔′, 𝑊 ′, 𝑏′ might be different from 𝜔, 𝑊 and 𝑏.
We use the sentence embedding methods described

in section 3.1 to encode every sentence of the text. We
trained an deep autoencoder model on the sentences of
the text. Autoencoders generalize the data they encode,
and as such they can be used to detect how common

certain sentence embeddings are. The idea behind this
method is the following: the non-anomalous parts that
make up the majority of the text come from the same
source and have the same semantic makeup. Therefore
an autoencoder trained on such data will be able to recon-
struct them with less error than the anomalous parts that
come from different sources and possess a different se-
mantic makeup. By calculating the cosine distance of the
reconstruction, we then calculate the average distance
between two potential anomalous sections.

After we set the threshold for anomaly detection, we
can label some sentences as anomalous and others as
non-anomalous. If we find a non-anomalous sentence be-
tween two potential anomalous sections, we can use the
created embeddings to compare the two anomalous sen-
tence embeddings and if the match passes a given thresh-
old, flag the given non-anomalous sentence as anomalous.
We also look at the borders of anomalous sections.

Let 𝐿 = 𝑙1, ..., 𝑙𝑛 be the labelling for the source text
𝑇 = 𝑡1, ...., 𝑡𝑛 where 𝑙𝑖 has two possible values, 𝑜 – origi-
nal and 𝑎 – anomalous. After the labelling 𝐿 has been cre-
ated, we localize the starting point of each anomalous sec-
tion (𝑜𝑖−1, 𝑎𝑖), and we compare the embedding similarity
(via cosine distance) of the pair 𝑜𝑖−2, 𝑜𝑖−1 and the pair
𝑜𝑖−1, 𝑎𝑖. If the similarity between 𝑜𝑖−1, 𝑎𝑖 was greater,
we change our labelling of 𝑙𝑖−1 from 𝑜𝑖−1 to 𝑎𝑖−1, since
otherwise the labelling remains unchanged. We also
examine the relative similarities of pairs 𝑜𝑖−1, 𝑎𝑖 and
𝑎𝑖, 𝑎𝑖+1 and if we find that the similarity was greater in
case of 𝑜𝑖−1, 𝑎𝑖, we change our labelling for 𝑙𝑖 from 𝑎𝑖−1

to 𝑜𝑖−1. We perform this operation until we are certain
of the true anomaly border. We perform an analogous
steps at the end of each anomalous section (𝑜𝑗−1, 𝑎𝑗).

3.3. Evaluation criteria
Given that we know the positions of the anomalous parts
in the texts of a prepared dataset, it is possible to use
the classical evaluation of the achieved results, namely
accuracy, precision, recall and F1-Score.

4. Dataset preparation
An evaluation of our anomaly detection method was done
on dataset created from a 1000 documents from various
sources written in the Arabic language. The documents
range from file sizes of 5 kB containing 20 sentences to
those being as long as 12728 sentences and having a file
size of 3736 kB. The average sentence number of used
texts is 62 sentences with an average file size of 96.3 kB.

Dataset 1: The insertion of anomalies will be an artifi-
cial process, where we will substitute small parts of texts
(several sentences) from a different text of the dataset in
order to create artificial anomalies. For each text, we first



decide whether the given text should be anomalous and if
it is we generate a random number of anomalies, ranging
from 1 to 10. Therefore, the number of anomalies in each
text would range from 0 (non-anomalous, some texts are
not modified) to 10 (most anomalies).

When generating an anomaly in a text, we create a sen-
tence offset, which will mark where the anomaly should
start. We then randomly choose another text from the
dataset, that is different from the original one, from where
we will substitute sentences. We also decide on a sen-
tence offset in the other text, starting from which, we will
substitute a randomly generated number of sentences,
ranging from 2 to 20 into the original text. This substitu-
tion is only one sided, so that the sentences in the original
from the given offset and a given length will be substi-
tuted by the sentences from the other text, but the other
text will remain unchanged. We repeat this process for
every anomaly in a given text, meaning that a given text
can have substituted parts from multiple sources. After
we have performed all substitutions, we save our newly
anomalous text, as well as create another document for
each text in which we will save the number of anomalies,
and for each anomaly their starting offset and the length
of that anomaly calculated in number of sentences.
Dataset 2: We have also created a modified dataset

that replaces parts of texts from other semantically re-
lated texts. First, we use TF-IDF to extract the top 10 key-
words of each texts and then use the K-means algorithm
to cluster texts into semantic clusters. We use an identi-
cal process to create an anomaly text with one difference.
When we create a new anomalous text, we’re swapping
another text from the same cluster. This ensures that
two texts and by extension the swapped sentences are
semantically similar, making our anomaly detection task
more difficult but more relevant for real world usage.

5. Experiments

5.1. Experimental Setup
We have created 500 anomalous texts in the Arabic lan-
guage to use in our prediction algorithm using methods
described in the Dataset preparation section. We have
implemented 4 methods of semantic sentence embed-
dings using Aravec Skip-Gram embeddings trained on
data from Wikipedia, with a vector size of 300.

To find the given threshold of embedding similarity
we have used an Arabic dictionary of synonyms as well
as an Arabic thesaurus [27].

The most simple method involved simply average pool-
ing all the non-stop word embeddings of a sentence to cre-
ate our sentence embeddings. This method is described in
subsection 3.1.1. and will henceforth be referred to as Av-
erage pooling. The second method we have implemented

multiplies the word embeddings with their POS-Tag rel-
evance score, before averaging them. This method is
described in subsection 3.1.4. and will henceforth be re-
ferred to as POS-Tag pooling. The third method we have
implemented multiplies the word embeddings with the
IDF score of the given word before averaging them. This
method is described in subsection 3.1.2. and will hence-
forth be referred to as IDF pooling. The final method we
have implemented multiplies the word embeddings with
a specialized TF-IDF score where the term frequency is
calculated based on semantic similarity before averaging
them. This method is described in subsection 3.1.3. and
will henceforth be referred to as TF-IDF pooling.

We have used these sentence embeddings in conjunc-
tion with a recurrent neural network with the task of
predicting the embedding of the next sentence.

The networks consists of two BI-LSTM layers with
a 𝑡𝑎𝑛ℎ activation function connected to a dense feed-
forward layer with a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation function. The
input of the network consists of 5 previous sentence
embeddings, 𝑘 = 5, and the task of the network is to
predict the embedding of the next sentence. We chose the
given value of 𝑘 based on our previous experience with
Arabic texts (the sentences in the texts are quite long), but
we will analyze this context length in future experiments.
By comparing the prediction with the ground truth we
obtained anomaly scores used to mark where a given
anomaly section potentially ends or begins.

The software was created in Python using available
libraries for working with texts and neural networks,
such as gensim, NLTK, keras and tensorflow.

5.2. Results
Sentence embeddings is the most important part of au-
tomatic semantic and syntactic analysis, therefore we
evaluated several methods, four of which we describe in
the article and compare their application on two simu-
lated datasets. The simulation of the datasets consisted
in inserting part of the texts from other texts, while the
insertion positions are random but known for evalua-
tion purposes. A non-trivial step is also merging anoma-
lous sentences into continuous parts of anomalous texts
(anomalous sections).

The achieved results of these four methods on two
datasets can be found in Tables 1 and 2. The obtained
results show that the most suitable method is the TF-IDF
pooling for both datasets. The TF-IDF evaluates two statis-
tics, term frequency and inverse document frequency.
This means that it records more information about the
sentences in the text.

The worst results were obtained for Average pooling,
which uses the simplest approach, averaging word em-
beddings in a sentence. However, it is surprising that
even the more complicated Dataset 2 reaches a value of



Table 1
Results of pooling methods applied on Dataset 1

Dataset 1 Accu- Preci-
racy sion Recall F1 Score

Average pooling 96.13 0.72 0.75 0.74
POS-Tag pooling 96.94 0.77 0.81 0.79
IDF pooling 97.74 0.84 0.85 0.84
TF-IDF pooling 99.23 0.96 0.93 0.95

Table 2
Results of pooling methods applied on Dataset 2

Dataset 2 Accu- Preci-
racy sion Recall F1 Score

Average pooling 93.06 0.54 0.68 0.60
POS-Tag pooling 94.68 0.61 0.74 0.67
IDF pooling 96.48 0.74 0.80 0.77
TF-IDF pooling 98.14 0.87 0.87 0.87

0.54 in the precision parameter. This means that the
averaging of word embeddings contributes significantly
to important information in sentence embeddings too.

Another interesting thing of note is the trade-off re-
lationship between the precision and recall values. The
Average pooling and POS-Tag pooling methods have a
lot lower precision than recall. Meaning the algorithm
tagged more sections than necessary. But the methods
using IDF pooling and TF-IDF pooling suddenly start to
change the trade-off relationship, where the precision val-
ues are approaching or even surpassing the recall values.
We believe the reason for it might be the inherent ability
of the IDF metric that takes into account the semantic
content of other sentences. Therefore the semantic em-
beddings it produces are more unique.

Table 3
Sensitivity of k in regards to F1 score results on Dataset 2

Dataset 2 k=3 k=5 k=7 k=9
Average pooling 0.61 0.60 0.57 0.49
POS-Tag pooling 0.69 0.67 0.64 0.58
IDF pooling 0.75 0.77 0.77 0.76
TF-IDF pooling 0.86 0.87 0.86 0.84

We have also opted to explore the sensitivity of 𝐹1-
score for the parameter 𝑘 (the number of previous sen-
tences) for our various pooling algorithms on Dataset 2
using the 𝐹1 score metric and summarized the results in
Table 3. We have determined 𝑘 = 5 as the optimal choice
for our best performing pooling methods IDF pooling and
TF-IDF pooling. These two methods aren’t all that sensi-
tive to change in the window size and we believe that a
context window of 5 sentences is the optimal trade-off
between providing just enough past information while
also being capable of dealing with smaller anomalies.

We observe a different trend in the embeddings created
by the Average pooling and POS-Tag pooling methods, as
their efficiency seems to decrease with a larger context
window as they do not capture the relative uniqueness
of the sentences due to lacking and IDF metric.

Jafari (2022) [17] showed that the outlier detector
which uses a transformer based model adds more context
values into anomaly detection models. The developed
model was tested on Cross-lingual Natural Language
Inference (XNLI) corpus which is the extension of the
Multi-Genre NLI. The Stanford Sentiment Treebank (SST)
is a corpus with fully labeled parse trees was used as aux-
iliary dataset which samples from it to be injected to
XLNI dataset. A sample of 1000 English text taken from
SST set injected to XNLI set to create a dataset in which
XNLI sample text are normal and the SST samples are
outliers. The results in the Table 4 show precision 92 %.

Table 4
Outlier Detection Results for XNLI+SST Dataset

Dataset Valid Preci-
XNLI+SST Sample sion Recall F1 Score
Jafari [17] 3490 0.92 0.828 0.86

6. Conclusion
In the article, we described four sentence embedding
methods, which can be used to represent the seman-
tic content of sentences. These alongside a recurrent
neural network were used to determine the offsets of
anomalous sentences. We then used the reconstruction
distances of sentence embeddings from an autoencoder
model trained on the entire text to determine the anoma-
lous sections. These methods achieved good results on
simulated datasets. The presented methods can provide
warnings about positions of sections that could be anoma-
lous in unknown texts.

Our next goal is to use transformers in sentence embed-
dings and to improve the algorithm for creating anoma-
lous sections. Our further research will be oriented to
the use of range-based performance metrics instead of
point-based metrics in sentence embeddings, because a
sentence is a sequence of words in a text and in point-
based metrics these words are taken as a set and could
occur in different permutations. Word order is important
in the sentence.
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