
An Ontological Modelling of Prototype Theories
Daniele Porello

1
, Guendalina Righetti

2
, Nicolas Troquard

2
, Roberto Confalonieri

3
and

Oliver Kutz
2

1University of Genoa, via Balbi 4, 16126, Genova, Italy.
2Free University of Bozen-Bolzano, piazza Domenicani 3, 39100, Bolzano, Italy
3University of Padua, Via Trieste 63, I-35121, Padova, Italy

Abstract

Prototype theories are an important family of cognitive theories of concepts that model the classification under a concept in

terms of the proximity of an object to the prototype of the concept. While logic-based definitions of concepts are standard in

Description Logics and OWL, prototype-based definitions are not directly available, although they are very useful whenever

we need to model commonsense concepts or data dependent classifications.

We propose a strategy to define prototypes in OWL enriched with SWRL (Semantic Web Rule Language). By means of data

properties we model the weighted features of prototypes, and, by using SWRL constraints, we implement the computation of

the proximity of an instance to a prototype. We also leverage a foundational ontology to provide semantics of the features

occurring in prototype descriptions. We exemplify our treatment in Protégé.

Keywords
Prototype theories, OWL, Semantic Web Rule Language (SWRL), Foundational Ontology, DOLCE, Protégé

1. Introduction
Various cognitive theories have been proposed in the

literature to define and understand the representation

of concepts [1]. One prominent theory among these is

prototype theory, which has received significant formal

and empirical development [2, 3, 4]. As a result, it has

served as a foundational inspiration for numerous formal

systems that aim to provide improved models of human

concepts in fields such as Logic and Knowledge Repre-

sentation [5, 6, 7, 8].

Prototype theory traces its origins back to Wittgen-

stein’s concept of family resemblance [9], but its empir-

ical foundation is due to the findings of Eleanor Rosch

[2]. Her experiments showed that many concepts exhibit

typicality effects (namely, some class members are more

representative than others), and that members and non-

9th Workshop on Formal and Cognitive Reasoning,
September 26, 2023, Berlin, Germany
$ daniele.porello@unige.it (D. Porello);

Guendalina.Righetti@stud-inf.unibz.it (G. Righetti);

nicolas.troquard@unibz.it (N. Troquard);

roberto.confalonieri@unipd.it (R. Confalonieri);

oliver.kutz@unibz.it (O. Kutz)

� https://danieleporello.net (D. Porello);

https://www.unibz.it/it/faculties/engineering/academic-staff/

person/40334-guendalina-righetti (G. Righetti);

https://www.inf.unibz.it/~ntroquard/ (N. Troquard);

https://www.math.unipd.it/~confa/ (R. Confalonieri);

http://www.inf.unibz.it/~okutz/ (O. Kutz)

� 0000-0003-3655-0218 (D. Porello); 0000-0002-4027-5434

(G. Righetti); 0000-0002-5763-6080 (N. Troquard);

0000-0003-0936-2123 (R. Confalonieri); 0000-0003-1517-7354

(O. Kutz)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

members of a category form a continuum. Since then,

prototype theory is mostly understood as providing a

summary representation [1], representing the central ten-

dency of a category as a whole. Although there exist

several variants of prototype theory, their central core is

that it is possible to represent concepts as a weighted list

of the attributes most commonly found among concept

instances. The more attributes an individual satisfies, the

more similar it will be to the prototype, and the more

typical it will be for the category.

To formally capture this idea, Masolo and Porello [5]

propose a logical rendering of prototypes by introducing

weights into the language of first-order logic. The logic-

based rendering of prototypes paves the way towards

introducing semantic constraints to make the meaning

of the features or the attributes explicit. Porello et al. [6]

translate this approach into Description Logic (DL) by

introducing novel operators into the syntax of standard

DL languages. These operators take lists of concept de-

scriptions, associate a weight to each of them, and return

complex concepts which apply to the instances of the

domain that satisfy a sufficient number of the concept

descriptions. A threshold is set to decide what is deemed

to be sufficient, and a new value function is introduced to

define the semantics. This function sums up the weights

of the features an instance satisfies and returns a number

which allows expressing instances’ typicality. When the

number reaches the threshold, the instance is classified

as a member of the concept.

Threshold concepts for representing prototypes have

also been used by Baader and Ecke [7], who propose

however a different interpretation. The semantics makes

use of a prototype distance function defined over weighted

20

mailto:daniele.porello@unige.it
mailto:Guendalina.Righetti@stud-inf.unibz.it
mailto:nicolas.troquard@unibz.it
mailto:roberto.confalonieri@unipd.it
mailto:oliver.kutz@unibz.it
https://danieleporello.net
https://www.unibz.it/it/faculties/engineering/academic-staff/person/40334-guendalina-righetti
https://www.unibz.it/it/faculties/engineering/academic-staff/person/40334-guendalina-righetti
https://www.inf.unibz.it/~ntroquard/
https://www.math.unipd.it/~confa/
http://www.inf.unibz.it/~okutz/
https://orcid.org/0000-0003-3655-0218
https://orcid.org/0000-0002-4027-5434
https://orcid.org/0000-0002-5763-6080
https://orcid.org/0000-0003-0936-2123
https://orcid.org/0000-0003-1517-7354
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Daniele Porello et al. CEUR Workshop Proceedings 20–31

alternating parity tree automata, which assign to each

element of an interpretation a distance value expressing

its similarity to the prototype.

Relatedly, typicality operators [10, 11, 8] have also

been proposed in the DL literature to reason non-

monotonically about the typicality of instances. In these

cases, it is possible to identify the most typical members

of a concept by assuming a preference order over the

elements of the domain of interpretation: depending on

the system, either the individuals further down or the

ones higher up in the order are deemed as the more typ-

ical instances of a concept. Moreover, prototypes and

typicality in ontologies have also been approached in

[12, 13].

In this paper, we propose to model prototypes in

OWL 2 using SWRL rules [14].
1

The Semantic Web Rule

Language (SWRL) is an extension of OWL (Web Ontology

Language), the most widespread language for authoring

ontologies. SWRL allows for the specification of Horn-

like rules within an OWL ontology.

SWRL is particularly suitable for our purposes because

it combines OWL class and property expressions with

built-in relations, such as equality, inequality, and arith-

metic operations. These will be instrumental for the

representation of prototypes within the ontology and to

compute the similarity measure that enables classifica-

tions, cf. [15, 16].

After discussing three variants of prototype theories

with their measures of similarity, we present our pro-

posal to model prototypes by means of data properties

and SWRL constraints. To ascribe meanings to features

or attributes occurring in prototype descriptions, and to

enable reasoning with them, we introduce a background

foundational ontology (in particular, we use dolce, cf.

[17, 18]). Moreover, we exemplify our treatment by

means of Protégé, using the plug-in for SWRL found

at https://github.com/protegeproject/swrlapi/wiki.

The main novelty of our approach, in comparison to

the previously mentioned related work, lies in the com-

bination of three key ingredients: 𝑖) the use of SWRL

to implement computations of similarities, 𝑖𝑖) the use of

a foundational background ontology to provide seman-

tics of features, and 𝑖𝑖𝑖) the use of threshold concepts

to interface prototypes with ontologically crisp infor-

mation. The threshold mechanism allows for importing

prototype-based classifications without altering the se-

mantics or the reasoning services of OWL.

The remainder of this paper is organised as follows.

In Section 2, we overview prototype theories. In Sec-

tion 3, after a brief overview of the ontology dolce, we

discuss how to represent the attributes and the attribute-

values of a prototype in terms of qualities and quality

structures of dolce. Section 4 presents a general strat-

1
See also https://www.w3.org/Submission/SWRL/.

egy for representing prototypes in OWL 2 plus SWRL

and for computing similarity by means of SWRL con-

straints. Section 5 combines the SWRL rendering with

the background ontology based on dolce. Section 6 ex-

emplifies our approach. Section 7 discusses how to learn

the weights and the diagnosticity values from a data set.

Finally, Section 8 concludes and indicates future work.

2. Prototype theories
Prototype theories of concepts are models proposed to

explain human conceptualisations and classification of

objects under concepts [2, 1, 19, 4].

Accordingly, a concept is defined by a prototype, a sum-

mary, abstract representation that captures the central

tendency of a category, namely the most typical instances

or objects belonging to the class. Classification is not al-

ways deemed to be crisp: the degree of classification of

an object under a concept is instead rendered by means

of proximity, or similarity, of the object to the prototype.

Notwithstanding this common core, there exist several

variants of prototype theories.

According to Rosch and Mervis [2], a prototype is an

(unstructured) list of the features or attributes usually

found across the instances of the concept we are consid-

ering. Each feature is assigned a weight to indicate its

importance in describing the concept. These weights are

determined based on the frequency distribution among

exemplars of the concept, where features more frequently

observed receive higher weights.

Suppose that the features or attributes that describe the

prototype are given by Q = {𝑞1, . . . , 𝑞𝑛}. The prototype

for a concept is then represented by the following set of

pairs:

{(𝑞1, 𝑤1), . . . , (𝑞𝑛, 𝑤𝑛)}

The similarity of an exemplar 𝑎 to a concept is mea-

sured through its degree of family resemblance, which can

simply be computed by using the following sum, where

the 𝑤𝑙1 , . . . , 𝑤𝑙𝑚 are the weights in {𝑤1, . . . , 𝑤𝑛} asso-

ciated to prototypical features that are also exhibited by

object 𝑎.

𝑆𝑎 =
∑︁

𝑗∈{𝑙1,...,𝑙𝑚}

𝑤𝑗 (1)

Hampton’s version of prototype theory is similar to

the one originally proposed by Rosch and Mervis, see

[4]. However, Hampton suggests a slightly more elabo-

rate way to compute the similarity between objects and

prototypes, which also takes into account the degree to

which an object exhibits a feature.

Accordingly, the similarity between objects and proto-

types is now computed by the following formula:

21

https://github.com/protegeproject/swrlapi/wiki
https://www.w3.org/Submission/SWRL/

Daniele Porello et al. CEUR Workshop Proceedings 20–31

𝑆𝑎 =

𝑛∑︁
𝑖=1

(𝑤𝑖 × 𝑣(𝑖,𝑎)) (2)

According to Hampton, 𝑤𝑖 and 𝑣(𝑖,𝑎) range as follows:

0 ≤ 𝑤𝑖 ≤ 1 and indicates the importance of the 𝑖-th
feature of the prototype for the classification, and −1 ≤
𝑣(𝑖,𝑎) ≤ 1 represents the degree to which the instance 𝑎
has 𝑞𝑖, see [4].

A more structured representation of prototypes is pro-

posed by Smith and colleagues. In [3], a prototype is

defined by three ingredients, namely:

𝑖) an attribute-value structure, that is, a set of attributes

of objects associated with values (e.g. colour-red, weight-

heavy, shape-round),

𝑖𝑖) an indication of the salience of the attribute values,

𝑖𝑖𝑖) an indication of the diagnosticity of the attributes for

the classification under the concept.

In [3], the salience value of an attribute-value (e.g.

colour-red) captures “the subjective frequency with

which the value occurs in instances of the concepts, and

the perceptibility of the value” (p. 489). Salience values

are introduced to account for attribute-values that are

closely related to the concept. E.g., people are faster at

establishing that apples are red than apples are round,

suggesting that red is more salient than round in the

prototype for apple, cf. [3].

By contrast, diagnosticity values measure how useful

the attribute is in separating instances of the concept

from instances of contrasting concepts.

In this setting, a representation of a prototype can be

given by means of a set of weighted attribute-values. Sup-

pose that the attributes of interest are A = {𝐴1, . . . , 𝐴𝑛}.

Moreover, for each attribute 𝐴𝑗 , assume that the possible

values of attribute 𝐴𝑗 are Q𝐴𝑗
= {𝑞1𝐴𝑗

, . . . , 𝑞
𝑛𝑗

𝐴𝑗
}. We in-

dicate by 𝑑𝐴𝑗 the diagnosticity of some attributes 𝐴𝑗 . By

𝑠𝑖𝐴𝑗
, we denote the salience of the 𝑖-th value of attribute

𝐴𝑗 . A prototype can then be specified by the following

set of triples, for some 𝐴𝑗 ∈ A and 𝑞𝑖1𝐴𝑗
, . . . , 𝑞

𝑖𝑙
𝐴𝑗

∈ Q𝐴𝑗

(cf. [3], Figure 1).

𝑃 = {(𝑞𝑖1𝐴𝑗
, 𝑑𝐴𝑗 , 𝑠

𝑖1
𝐴𝑗

), . . . , (𝑞
𝑖𝑙
𝐴𝑗

, 𝑑𝐴𝑗 , 𝑠
𝑖𝑙
𝐴𝑗

)} (3)

In this setting, the similarity between an object and the

prototype is computed employing Tversky’s contrast rule

(see [3]). To employ this rule, the authors also represent

objects, or instances, as descriptions in terms of sets of

weighted attribute-values. Object descriptions are sets

of pairs of attribute-values and salience values (while

diagnosticity specifically operates for prototypes). For

some 𝐴𝑗 ∈ A and 𝑞𝑖1𝐴𝑗
, . . . , 𝑞

𝑖𝑙
𝐴𝑗

∈ Q𝐴𝑗
, an instance 𝐼 is

described as follows:

𝐼 = {(𝑞𝑖1𝐴𝑗
, 𝑠𝑖𝐴𝑗

), . . . , (𝑞𝑖𝐴𝑗
, 𝑠

𝑖𝑙
𝐴𝑗

)} (4)

For example, restricting to two attributes, a

red apple is represented by the description

{(Red, 𝑠𝑎
Color

), (Round, 𝑠𝑎
Shape

)}, where 𝑠𝑎
Color

(resp.

Shape) is “the number of votes" in favour of being Red

(resp. Round), e.g. the number of instances that are

deemed to be red, which in principle could be different

from the salience established by the prototype (cf. [3]) .

To compute Tversky’s contrast rule, we define, for each

attribute 𝐴𝑗 , three sets of values (in N), cf. [3], p. 491.

For each attribute-value 𝑞𝑖𝐴𝑗
, 𝑃𝐼𝐴𝑗 lists the number of

votes about 𝑞𝑖𝐴𝑗
that are common to 𝑃 and 𝐼 ; 𝑃𝐼𝐴𝑗 lists

the number of votes that are proper to 𝑃 and not to 𝐼 ,

while 𝑃𝐼𝐴𝑗 lists the number of votes proper to 𝐼 and not

to 𝑃 .

𝑃𝐼𝐴𝑗 = {𝑠 | (𝑞𝑖𝐴𝑗
, 𝑠′) ∈ 𝑃, (𝑞𝑖𝐴𝑗

, 𝑠′′) ∈ 𝐼 and 𝑠 =

𝑚𝑖𝑛(𝑠′, 𝑠′′)}

𝑃𝐼𝐴𝑗 = {𝑠 | (𝑞𝑖𝐴𝑗
, 𝑠′) ∈ 𝑃, (𝑞𝑖𝐴𝑗

, 𝑠′′) ∈ 𝐼 and 𝑠 =

𝑠′ − 𝑠′′, if 𝑠 ∈ N, 0 otherwise}

𝑃𝐼𝐴𝑗 = {𝑠 | (𝑞𝑖𝐴𝑗
, 𝑠′) ∈ 𝑃, (𝑞𝑖𝐴𝑗

, 𝑠′′) ∈ 𝐼 and 𝑠 =

𝑠′′ − 𝑠′ if 𝑠 ∈ N, 0 otherwise}

The similarity between an instance 𝑎 and a prototype

is then computed by the Tversky rule:

𝑆𝑎 =
∑︁

𝐴𝑗∈A

{𝑑𝐴𝑗
×(

∑︁
𝑃𝐼𝐴𝑗

−
∑︁

𝑃𝐼𝐴𝑗
−
∑︁

𝑃𝐼𝐴𝑗
)} (5)

Intuitively, Tversky’s measure evaluates similarity by

taking into account commonalities and differences be-

tween the description of the prototype 𝑃 and the descrip-

tion of the instance 𝐼 .

We sketch an example discussed in [3]. We restrict

ourselves to two attributes, Color and Shape, with val-

ues of color in {Red,Brown} and values for shapes in

{Round, Squared}. A prototype for the concept Apple

includes then the following triples:

(Red, 𝑑Color, 𝑠
Red

Color
), (Brown, 𝑑Color, 𝑠

Brown

Color
)

(Round, 𝑑Shape, 𝑠
Round

Shape
), (Squared, 𝑑Shape, 𝑠

Squared

Shape
)

According to [3], the diagnosticity of the attribute

Color for classifying apples is higher than the diagnostic-

ity of the attribute Shapes, while the salience of the value

Red for apples is higher than the salience of Brown.

The similarity measures that we have presented define

a value for the proximity of an instance to the prototype.

As such, classification under a concept is graded. To

obtain the set of entities that falls under a concept (i.e.

the extension of the concept) by means of the prototype

mechanism of classification, a threshold 𝑡 is set, cf. [4].

22

Daniele Porello et al. CEUR Workshop Proceedings 20–31

Definition 1. Given a threshold 𝑡, an object 𝑎 belongs to
the extension of the concept 𝐶 if and only if

𝑆𝑎 ≥ 𝑡. (6)

We shall use the threshold mechanism to introduce a

class of the ontology, the class of entities that are classi-

fied by the concept.

We conclude this section by noticing that a prototype

may include complex features that are not reduced to

attribute value pairs. For instance, complex properties

such as “has legs” or “you can drive it” are used by [2] in

the summary description. We shall use the word features
when we wish to emphasize general properties that may

occur in the description of a prototype.

3. Ontological representation of
prototypes

In this section, we discuss how to represent the features

and the concept defined by the prototype within an on-

tological setting. Then, in the next section, we will ap-

proach how to render prototypes in OWL 2 plus SWRL.

By embedding prototypes within a rich ontological

framework, we can provide a formal representation of

the semantics of the features involved in the description

of the prototype and this, in turn, enables reasoning about

the content of those features.

We place our discussion within the foundational ontol-

ogy dolce (Descriptive Ontology for Linguistic and Cog-
nitive Engineering), see [17, 18]. dolce is a cognitive-

oriented foundational ontology, it aims to represent the

conceptualisation of a cognitive agent, rather than the

agent-independent structure of the world. Its cogni-

tive inspiration is shown by the adoption of cognitively

founded theories as a basis for many of its distinctions,

viz. the adoption of quality structures inspired by the

Conceptual Spaces [20].

dolce partitions the elements of the domain of dis-

course (the particulars) into four main categories: En-
durants, i.e. objects, Perdurants, i.e. events, Qualities and

Abstract. The latter two classes deserve our attention

here, as we focus on the representation of individual

qualities and qualia, see [18].

Qualities are properties of objects that can be perceived

or measured. Qualities are dependent entities, in that

they are strictly attached to their objects, their bearers
(they inhere in their object). For this reason, dolce terms

them individual qualities. The color of this rose is never

the same entity as the colour of that rose, as they are

attached to different objects. To compare different in-

dividual qualities, dolce introduces qualia, i.e. values

of individual qualities at a certain time
2

. Qualia are in-

tended as positions occupied by an individual quality into

2
The use of the term quale here is technical to dolce, i.e. we do not

a quality space, which is modelled as an abstract region,

i.e. a subclass of Abstract. Qualities are also divided into

types, such as color, weight, shape, etc. qualities. The

quality spaces associated to each quality type are inspired

by Gärdenfors quality dimensions, cf. [20]. We illustrate

the mechanism of ascriptions of qualities and qualia in

dolce by means of the following example, visualised in

Figure 1.

Figure 1: Fragment of the dolce taxonomy and relations for

quality and qualia.

Given a particular apple 𝑎 (i.e. an instance of the class

POB of physical objects in dolce), the relation qt (spelled

“has quality”) associates the (color) individual quality,

say 𝑐𝑎, an element of the class of color qualities. The

relation ql (“quale of at 𝑡”) associates to 𝑐𝑎 its quale, i.e.

an element of a quality space, a color region, e.g. red.
3

Thus, in dolce, the ascription of a quale to the individual

quality of an entity is done by adding the following two

statements (facts) to the ontological theory: qt(𝑎, 𝑐𝑎)
and ql(𝑐𝑎, red, 𝑡). The time parameter of the ql relation

allows for modelling change of qualia in time.

Therefore, the attribute-values of prototype theory

can be represented in dolce by means of the objects, the

individual qualities of the object, and the qualia of the

quality, i.e. the corresponding quality regions.

The ascription of an attribute value to an entity is then

rendered via the ql and qt relations. For an axiomatisation

of these relations in dolce, we refer to [18].

commit to embracing neither a subjective nor an intersubjective

view of qualia. Notice however that in prototype theories qualia

have to be measurable and comparable.

3
In Figure 1,ql is depicted as a binary relation, to simplify. In dolce,

ql is ternary, it takes also a time argument 𝑡, which is in dolce an

element of the abstract region of time.

23

Daniele Porello et al. CEUR Workshop Proceedings 20–31

To use the representation of quality and quality struc-

tures of dolce in OWL, we shall simplify it a little.
4

We

view the ontology in OWL as providing a snapshot at

given time of the information about a domain of objects.

So, we omit the time argument in ql, which remains im-

plicit. The reason behind this choice is to avoid dealing

with ternary relations in OWL, which makes the render-

ing more complex. Thus, ql(𝑥, 𝑦) is now defined as a bi-

nary relation, it relates an individual quality𝑥 to a quale 𝑦,

while the time of the association remains implicit. We can

also introduce a defined relation hasQuale, which is the

composition of ql and qt. For instance, hasQuale(𝑎, red)
is the composition of the relations qt(𝑎, 𝑐) and ql(𝑐, red).
We shall use these relations to simplify the rendering in

OWL.

As usual in ontological modelling, dolce provides bi-

nary classifications of objects under properties and rela-

tions; as such, an entity has or has not a certain quale. By

contrast, prototype theories use graded attribute values,

those measured by the function 𝑣(𝑖,𝑎), e.g. in Equation 2.

Thus, to enable the ontology to acquire the bits of infor-

mation about the quale of an entity, we need a threshold

to state that if 𝑣(𝑖,𝑎) is “large enough” (e.g. 𝑣(𝑖,𝑎) = 1),

then the entity 𝑎 has the quale indicated by the attribute

value 𝑞𝑖. We shall see how to render this aspect in the

next section.

As we mentioned, prototypes may include general

properties, besides attribute-values. The ontological ren-

dering of such properties is a matter for a dedicated anal-

ysis. E.g. “has legs” may be represented by using the “part

of” relation, where the semantics of such a relation is

captured by a mereological theory, which is included in

dolce. We refer to [21] for the strategies for representing

ontologically the information conveyed by the features

of a prototype.

The contribution of a foundational ontology such as

dolce to our approach is intended to provide the seman-

tics to reason about qualities and qualia – and more gen-

erally about features – and to interface the classifications

provided by means of prototypes with background infor-

mation about the domain. For instance, it is by means of

the information provided by the ontology that we can

infer that an entity cannot be wholly red and brown at

the same time, or that it cannot have both a round and a

squared shape.

4. Computing similarity in SWRL
We illustrate the general mechanism for representing

in SWRL the computations required by the prototype

theories. In the next section, then, we discuss the inte-

gration with a background ontology and we exemplify

4
For OWL versions of dolce, cf. http://www.loa.istc.cnr.it/index.

php/dolce/

the strategy in Protégé on a concrete case in Section 6.

We assume that the information provided by a proto-

type is an input of our representation, that is, we assume

to have: the set of attributes or features, F = {𝐹1, . . . ,

𝐹𝑛}, their values, Q𝐹𝑗
= {𝑞1𝐹𝑗

, . . . , 𝑞
𝑛𝑗

𝐹𝑗
}, the diagnos-

ticity 𝑑𝐹𝑗 of each features 𝐹𝑗 , the salience 𝑠𝑖𝐹𝑗
of each

value, and the values 𝑣(𝑗,𝑎), the degree to which each

entity 𝑎 has feature value 𝑞𝑖𝐹𝑗
.
5

We sometimes use the labels 𝐹𝑗 , for general features,

not to restrict to attribute values, according to [4], while

we use labels 𝐴𝑗 to intend attributes as quality structures.

We remind the definition of SWRL atoms and rules, cf.

[14]. The syntax of SWRL extends the usual syntax of

OWL by adding (individual) 𝑖-variables (as we shall see,

they range over the individuals of the domain) and (data)

𝑑-variables (which range over data values).

An 𝑖-object is an individual name or an individual

variable, a 𝑑-object is a data literal or a data variable.

Atoms are then: 𝑖) applications of concept description to

𝑖-objects, 𝑖𝑖) applications of an object property to a pair

of 𝑖-objects, 𝑖𝑖𝑖) the application of a data property to a

pair consisting of an 𝑖-object and a 𝑑-object. Variables

are denoted by ?x. SWRL rules consist of an implica-

tion between an antecedent (the body) and a consequent

(the head). The antecedent and the consequent contain

sets of atoms, interpreted conjunctively. The antecedent

provides the conditions that need to be satisfied for the

rule to be applicable. The consequent specifies the log-

ical consequences that must hold when the antecedent

is satisfied. For an exhaustive overview of SWRL syntax

and semantics, we refer to [14]. A SWRL rule has the

following form, where a1, ..., an and b1, ..., bn are atoms,

a1, ..., an is the antecedent (the body), and b1, .., bn is

the consequent (the head):

a1 ^ ... ^ an -> b1 ^ ... ^ bn

To import the information required by the prototype

theory, we shall introduce number of data properties. To

make the domain of such properties semantically mean-

ingful, we shall leverage a background ontology, however

we postpone this discussion to Section 5. For now, we

implicitly assume that they associate numbers to objects

of the ontology.

4.1. Tversky similarity
We start by representing the Tversky formula, cf. Equa-

tion 5, which is the most involving case. To do that,

we assume that the prototype is reified, i.e. that there

is an individual name 𝑝 to which we can ascribe cer-

tain attribute-values. In this setting, as we discussed in

5
These numbers come from experimental data and statistical infer-

ence in prototype theories. We discuss how to retrieve them by

means of learning algorithms in Section 7.

24

http://www.loa.istc.cnr.it/index.php/dolce/
http://www.loa.istc.cnr.it/index.php/dolce/

Daniele Porello et al. CEUR Workshop Proceedings 20–31

Section 2, a prototype is described by salience numbers

for attribute-values and by diagnosticity numbers of at-

tributes. This information can be rendered by means of

the following instantiated data properties (intended as

facts of the ontology), for each attribute 𝐴𝑗 , attribute-

value 𝑞𝑖𝐴𝑗
, salience 𝑠𝑖𝐴𝑗

, of the prototype 𝑝.

{hasAJQISal(p,sij), hasAJDia(p,dj)}

hasAJDia associates to objects the number 𝑑𝑗 (the

diagnosticity of the attribute 𝐴𝑗), while hasAJQISal
associates the salience value 𝑠𝑖𝐴𝑗

(the salience of the 𝑖-th
value of attribute 𝑗).

In this setting, an instance 𝑎 is also represented by a set

of data properties, which associate the salience values.

{hasAJQISal(a,sij)}

To represent Equation (5) in SWRL, we need to com-

pute the values of

∑︀
𝑃𝐼𝐴𝑗 ,

∑︀
𝑃𝐼𝐴𝑗 , and

∑︀
𝑃𝐼𝐴𝑗 .

To do that, we introduce the following new data prop-

erties.

hasPI-AJQI associates the salience for common at-

tribute values 𝑞𝑖𝐴𝑗
in 𝑃𝐼𝐴𝑗

hasPI-AJ associates the value of

∑︀
𝑃𝐼𝐴𝑗 .

hasPI’-AJQI associates the values for 𝑞𝑖𝐴𝑗
in 𝑃𝐼𝐴𝑗 .

hasPI’-AJ associates the value of

∑︀
𝑃𝐼𝐴𝑗 .

hasP’I-AJQI associates the values for 𝑞𝑖𝐴𝑗
in 𝑃𝐼𝐴𝑗 .

hasP’I-AJ associates the value of

∑︀
𝑃𝐼𝐴𝑗 .

To compute the values of those data properties, we

introduce the following SWRL constraints.

hasAJQISal(a,?s’) ^ hasAJQISal(p,?s’’)
^ minimum(?s,?s’,?s’’)
-> hasPI-AJQI(a,?s)

hasPI-AJQ1(a,?s1) ^...^ hasPI-AJQM(a,?sm)
^ swrl:add(?s,?s1,...,?sm) -> hasPI-AJ(a,?s)

hasAJQISal(a,?s’) ^ hasAJQISal(p,?s’’)
^ swrl:subtract(?s,?s’,?s’’)
^ swrl:greaterThanOrEqual(?s,0)
-> hasP’I-AJQI(a,?s)

hasAJQISal(a,?s’) ^ hasAJQISal(p,?s’’)
^ swrl:subtract(?s,?s’,?s’’)
^ swrl:lessThan(?s,0)
-> hasP’I-AJQI(a,0)

hasP’I-AJQ1(a,?s1) ^...^ hasP’I-AJQM(a,?sm)
^ swrl:add(?s,?s1,...,?sm) -> hasP’I-AJ(a,?s)

Analogous rules are set for hasPI’-AJ. The con-

struct minimum is true when 𝑠 is the minimum of 𝑠′

and 𝑠′′.6 Analogously, swrl:subtract, swrl:add,

6
See documentation here https://protegewiki.stanford.edu/images/

5/57/SWRL-IQ_manual.pdf

swrl:greaterThanOrEqual, swrl:equal imple-

ment subtraction, addition, ≥ and = (respectively).

Given the values of hasPI-AJ(a,?s),

hasP’I-AJ(a,?s), and hasPI’-AJ(a,?s), we

can compute the full value of salience of an attribute by

hasAJSal, as follows.

hasPI-AJ(a,?s1) ^ hasP’I-AJ(a,?s2)
^ hasPI’-AJ(a,?s2)
^ swrl:add(?s,?s1,-?s2,-?s3) -> hasAJSal(a, ?s)

To simplify the presentation, we are using -?si to

indicate the inverse of the value of ?si, instead of adding

a further rule.

Then, we multiply the value of hasAJSal by the di-

agnosticity of 𝐴𝑗 , to obtain hasAJVal.

hasAJDia(a,?d) ^ hasAJSal(a,?s)
^ swrl:multiply(?v,?d,?s) -> hasAJVal(a,?v)

Finally, the Tversky similarity, represented by the data

property hasTVal, is computed by the following rule:

hasA1Val(a,?v1) ^ ... ^ hasAMVal(a,?vm)
^ swrl:add(?t,?v1,...?vm) -> hasTVal(a,?t)

4.2. Hampton’s similarity
We discuss now how to implement Hampton’s mea-

sure, cf. Equation (2). We introduce the data proper-

ties hasQJWei to introduce the weights of each feature

value and hasQJDeg to set, for each instance 𝑎, the value

𝑣(𝑗,𝑎). The data property hasQJVal serves to compute

the products of weights and degrees, by means of the

following rule.

hasQJDeg(?x,?d) ^ hasQJWei(?x,?w)
^ swrlb:multiply(?v,?d,?w)
-> hasQJVal(?x,?v)

To compute the similarity to the prototype according

to Equation (2), we introduce the data property hasHVal
which associates Hampton’s proximity value of an in-

stances to the prototype.

Then, we compute its value by means of the following

SWRL constraint:

hasQ1Val(?x,?v1) ^ ... ^ hasQMVal(?x,?vm)
^ swrlb:add(?v,?v1,...,?vm)
-> hasHVal(?x,?v)

Notice that the case of 𝑣(𝑗,𝑎) ∈ {0, 1} corresponds

quite closely to the threshold operators defined in [6, 22].

25

https://protegewiki.stanford.edu/images/5/57/SWRL-IQ_manual.pdf
https://protegewiki.stanford.edu/images/5/57/SWRL-IQ_manual.pdf

Daniele Porello et al. CEUR Workshop Proceedings 20–31

5. Ontological background for
prototypes

In the previous section, we introduced a number of data

properties to associate the values required by the compu-

tations of similarities. Those data properties are simply

devices to implement by SWRL the prototype-based clas-

sifications. That is, at that level, they are not attached to

any ontological, or semantic, information.

To link the features and attributes occurring in proto-

type descriptions to their ontological understanding, we

proceed as follows. We present the approach for features

that are construed as attribute-values, which can be rep-

resented ontologically in terms of qualities and qualia.

Each type of feature, e.g. parthood, would in principle

require a dedicated ontological analysis, see [21].

We define the background ontology to be an excerpt

of dolce, see Section 3. Accordingly, we partition the

class PhysicalRegion into the types of attributes that

we are considering (e.g. ColorRegion, ShapeRegion,

etc.). The elements of those classes are ontologically

qualia, corresponding to the attribute-values listed in

the prototype description. Thus, given attribute types

A = {𝐴1, . . . , 𝐴𝑛}, PhysicalRegion is partitioned

into 𝑛 disjoint classes of attribute-values.

In usual ontological modelling, classifications are bi-

nary, an entity has or has not a certain attribute-value

(an entity is red or it is not). To embed soft information

into the discrete world of ontologies, we can again ex-

ploit a thresholding mechanism. We introduce the binary

relations (i.e. the object properties) hasAJQuale, one for

each attribute type, which relate entities to qualia of the

specific type, see Section 3.
7

More specifically, the domain of hasAJQuale is POB
(physical objects) and the range is the 𝑗-th element of the

partition of PhysicalRegion 𝐴𝑗 . The hasAJQuale
relations are set as functional, an object has only one

value for each attribute type (at a time).

When we allow for degrees of ascriptions of attribute-

values, we have to decide a threshold for inferring that

an entity has a quale 𝑞𝑗 , whenever the entity has it up

to a certain degree. A very cautious way of setting this

threshold is expressed by the following SWRL constraint:

hasQJDeg(?x,1) -> hasAJQuale(?x,qj)

By means of this constraint, we can populate the object

property hasAJQuale of all those pairs (of entities and

qualia) for which 𝑣(𝑖,𝑎) = 1. Then, we can exploit the

7
We have introduced the object properties hasAJQuale, instead of a

single hasQuale relation, to facilitate the statement that an object

has exactly one quale of each type. In OWL, we could also define

hasQuale in terms of ql and qt by means of property chains, to be

closer to the treatment dolce. The use of hasAJQuale simplifies

the presentation.

axioms of the ontology to reason about attribute-values

ascriptions. For instance, the reasoner shall exclude that

objects might have two qualia of the same type.

In Smith and Osherson [3], statements

hasAJQuale(?x,qij) are bivalent, therefore the

inputs of the prototype mechanism can be retrieved

by means of qualia ascriptions. Once hasAJQuale is

instantiated for certain 𝑎 in POB and its quale 𝑞, the

following rules populate the data properties by ascribing

to 𝑎 the pertinent data about salience and diagnosticity.

hasAJQuale(?x,qij) -> hasQIJSal(?x,sij)

hasAJQuale(?x,qij) -> hasAJDiag(?x,dj)

In Hampton’s view, we may not have discrete in-

formation about hasAJQuale(?x,?y), we rely on

hasQJDeg(?x,?y) as inputs of the mechanism.

By means of SWRL constraints, as we have seen in

Section 4, we can compute the proximity to the prototype

(according to Tversky or Hampton), using the relevant

data that are stored by the instantiated data properties.

To integrate SWRL computations within the OWL rea-

soner – and in doing so, enable reasoning by using the

information provided by the background ontology – we

add to the ontology the class C, corresponding to the

set of entities that are classified under C by means of its

prototype. To obtain the extension of the concept, we

have to set a threshold 𝑡. We may do that by adding the

following SWRL constraints:

hasHVal(?x,?y)
^swrlb:greaterThanOrEqual(?y,t) -> C(?x) (H)

hasTVal(?x,?y)
^swrlb:greaterThanOrEqual(?y,t) -> C(?x) (T)

By means of those constraints, the class C of the ontol-

ogy can be populated with all the instances that meet the

threshold, according to the similarity equations, either

(2) or (5), and to the equivalence (6). The class C is in

general placed as a subclass of POB in dolce taxonomy.

The reason is that C contains entities that have physi-

cal qualities, which must be ascribed to physical objects

according to dolce. However, if we know that we are

classifying more specific types of entities, a more refined

placement within dolce hierarchy can be decided.

E.g., if we know that we are classifying animals, C can

be placed as a subclass of AgentivePhysicalObject,

which refines POB and enables more inferences, cf. [18].

This information is independent of the prototype mech-

anism and allows for feeding background information

into prototypes.

The previous rules (H) and (T) establish “sufficient”

conditions for membership to C, i.e. if an instance reaches

a certain C-value, then it is a C. Setting a necessary con-

dition for membership to C is not straightforward. We

26

Daniele Porello et al. CEUR Workshop Proceedings 20–31

cannot write a rule that states that “if C(?x), then ?x
must have a value ?y that is greater than the threshold

t” because, in SWRL, all the variables in the consequent

must appear in the antecedent. We leave this point for

future work. However, here we content ourselves with

sufficient conditions, also to enable the ontology to infer

that something is a C, without explicitly knowing its H-

or T-values.

Once the class C is populated by means of the SWRL

rules, then we can treat it as a usual class of the ontology,

and use any reasoner to obtain the properties of C-entities

that are entailed wrt. the background ontology.

Note that, to execute any SWRL rules, each variable

occurring in the antecedent has to be instantiated. Since

hasQJDeg range in [−1, 1], according to Hampton, in-

stances that are deemed not have the 𝑗-th attribute value,

might be set to -1. In the case of binary (yes/no) ascription

of attribute values, hasQJDeg ranges in {0, 1}. Stating

that an entity does not have feature 𝑗 amounts to setting

the value of hasQJDeg to 0, which entails not weighing

the 𝑤𝑗 in the computation of proximity.

5.1. Semantic observations
We have proposed a theory based on OWL and SWRL

to enable reasoning about the attributes and attribute-

values occurring in prototype theories. As usual in ap-

plied ontology, ontological theories are used to specify

meanings of concepts, mainly by excluding unintended

models, see [23]. For this reasons, it is interesting to have

a look at the models of the theory.

An (abstract) interpretation of OWL, cf. [14], is given

by:

ℐ = (𝑅,𝐸𝐶,𝐸𝑅,𝐿, 𝑆, 𝐿𝑉)

where 𝑅 is a non-empty set of resources (the domain

of ℐ), 𝐿𝑉 ⊆ 𝑅 is a set of typed literals (for datatypes),

𝐸𝐶 is a mapping from classes and datatypes to 𝑅 and

𝐿𝑉 (respectively), 𝐸𝑅 is a mapping from (object and

data) properties to relations on 𝑅, 𝐿 is a mapping from

typed literals to elements of 𝐿𝑉 , and 𝑆 is a mapping

from individual names to 𝐸𝐶(owl: Thing) ⊆ 𝑅.

We refer to [24] and [25] for the usual semantics of

OWL. An interpretation satisfies an ontology iff it satis-

fies all axioms and facts in it. We rephrase how to extend

the interpretation to SWRL constraints, cf. [14].

To interpret SWRL atoms, the interpretation ℐ is

extended to ℐ′
, assigning an interpretation also to

𝑖-variables and 𝑑-variables, as follows: 𝑖) 𝑆(𝑥) ∈
𝐸𝐶(owl: Thing), for any 𝑖-variable 𝑥; 𝑖𝑖) 𝐿(𝑦) ∈ 𝐿𝑉 ,

for any 𝑑-variable 𝑦. The conditions of satisfaction of

SWRL atoms, given ℐ′
, are the following ones, for con-

cept description 𝐶 , object property 𝑅, and data property

𝑄:

𝐶(𝑥) 𝑆(𝑥) ∈ 𝐸𝐶(𝐶)
𝑅(𝑥, 𝑦) (𝑆(𝑥), 𝑆(𝑦)) ∈ 𝐸𝑅(𝑅)
𝑄(𝑥, 𝑦) (𝑆(𝑥), 𝐿(𝑦)) ∈ 𝐸𝑅(𝑄)

ℐ′
satisfies an antecedent a1, ..., an of a rule iff it is

empty (𝑛 = 0) or ℐ′
satisfies every atom ai. ℐ′

satisfies

a consequent b1, ..., bn iff it is empty or ℐ′
satisfies every

atom bi.

A rule is satisfied by an interpretation ℐ iff, for every

extension ℐ′
of ℐ , if ℐ′

satisfies the antecedent, then ℐ′

satisfies the consequent.

An interpretation satisfies an ontology containing

(SWRL) rules iff it satisfies every axioms and facts of

the ontology and every rules.

Let 𝐶 be a concept name populated by means of (e.g.)

Hampton’s similarity and by means of the thresholding

constraint, cf. rule (H) with threshold 𝑡, where 𝑡 ∈ 𝐿𝑉 .

Given an interpretation ℐ , the extension of 𝐶 in ℐ can be

computed by means of 𝐸𝐶ℐ′ and it shall include the set

of entities that satisfy the rule (H), for every extension

ℐ′
.

𝐸𝐶ℐ′(𝐶) ⊇ {𝑟 ∈ 𝐸𝐶ℐ′(owl: Thing) |
there exists 𝑙 ∈ 𝐿𝑉 , (𝑟, 𝑙) ∈ 𝐸𝑅ℐ′(hasHVal)

and (𝑙, 𝑡) ∈ 𝐸𝑅ℐ′(swrlb:greaterThanOrEqual)}

This definition is standard for SWRL and the interpreta-

tion of the concept 𝐶 is termed knowledge-independent in

[22], as the extension of C simply depends on ℐ′
and not

on the knowledge expressed by the background ontology.

Our interpretations of interest are those that satisfy the

background ontology dolce as well as the instantiated

data properties. We denote by 𝐷 the ontology obtained

by joining dolce with the required facts about the in-

stantiated data properties. Let ℐ𝐷 any interpretation that

satisfies 𝐷. The rules that we have introduced are in-

tended to be interpreted wrt. interpretations that satisfy

𝐷, i.e ℐ′
𝐷 . However, deciding a single particular interpre-

tation is too demanding. For instance, ℐ′
𝐷 may associate

values of 𝐸𝑅ℐ′(hasHVal) for non-named individuals.

What we wish is to allow for any interpretation that

satisfies 𝐷 and that applies the prototype classifications

explicitly to those individuals for which we have actually

instantiated the data properties.

This view of the interpretation of C is termed

knowledge-dependent in [22]. We can define the set of

individual names that are included in C, wrt. any inter-

pretation that satisfies 𝐷, by leveraging on the logical

consequences (|=) of 𝐷:
8

𝐷 |= 𝐶𝑎 if exists l s. t. 𝐷 |= hasHVal(a,l)

and 𝐷 |= swrl:greaterThanOrEqual(l,t)}
8
Cf. Definition 4 in [22].

27

Daniele Porello et al. CEUR Workshop Proceedings 20–31

In this case, l and t are individual names, which are

interpreted as data literals. There is a more standard

way to present the definition of a knowledge-dependent

interpretation of 𝐶 in terms of interpretations, cf. [22],

Definition 5. We leave the detailed discussion of this

point to future work.

6. Example: “Elephant”
We render the prototype-based concept Elephant in

OWL plus SWRL, discussing, for reasons of space, only

the variants proposed by Hampton and Rosch, while we

leave Tversky’s rule for future applications, cf. Section

2.
9

In this case, a prototype is a list of features associated

with weights, expressing their importance. Simplifying,

suppose that the prototype description of Elephant is:

Elephant = {(hasTrunk, 3), (Large, 2), (Grey, 2)}

The description mentions two features that we can

interpret as two attributes (Size and Color) with

attribute-values (large and grey). Our background

ontology includes the taxonomy of dolce and it par-

titions the class PhysicalRegion into two subclasses

Size and Color, containing as elements (individual

names) large and grey (respectively). We also have

a feature hasTrunk, which can be interpreted ontologi-

cally in terms of parthood, rather than as a quality struc-

ture. The feature hasTrunk is interpreted by the de-

fined class ∃hasPart.Trunk, where Trunk is a sub-

class of POB and hasPart is the mereological relation

of dolce. Moreover, we introduce the class Elephant
and we may assume that it is placed under the class

AgentivePhysicalObject of dolce, cf. [18], to lever-

age the inferences that are enabled by this classification.

To render prototypical classifications of Elephant by

means of SWRL, we introduce the following (functional)

data properties:

hasTrunkWei, hasLargeWei, and hasGreyWei
hasTrunkDeg, hasLargeDeg, and hasGreyDeg
hasTrunkVal, hasLargeVal, and hasGreyVal

The values of entities on each feature are then com-

puted by means of the following three SWRL constraints:

hasTrunkDeg(?x,?d) ^ hasTrunkWei(?x,?w)
^ swrlb:multiply(?v,?d,?w)
-> hasTrunkVal(?x,?v)

9
The ontology implementing this toy example can be found

at https://github.com/diporello/OntologyForPrototypesSWRL/blob/

main/TestPrototypeTheoryOntologySWRL.owx. The documenta-

tion for the SWRL plug-in can be found at https://github.com/

protegeproject/swrltab-plugin.

hasLargeDeg(?x,?d) ^ hasLargeWei(?x,?w)
^ swrlb:multiply(?v,?d,?w)
-> hasLargeVal(?x,?v)

hasGreyDeg(?x,?d) ^ hasGreyWei(?x,?w)
^ swrlb:multiply(?v,?d,?w)
-> hasGreyVal(?x,?v)

Notice that this data allow us to represent both Hamp-

ton’s and Rosch’s similarity measures. The difference

in the two measures is in the range of the data proper-

ties establishing degrees: while in the case of Hampton,

the value ranges in the interval [−1,+1], in the case of

Rosch it is in {0,1} (1, if the instance has the feature, 0 if

it doesn’t).

To link data properties with object properties, we may

add the following rules:

hasGreyDeg(?x,1) -> hasColorQuale(?x,grey)
hasLargeDeg(?x,1) -> hasSizeQuale(?x,large)
hasTrunkDeg(?x,1) -> hasPartSomeTrunk(?x)

Where hasPartSomeTrunk is a defined class, charac-

terised by ∃hasPart.Trunk.
10

Then, the data property hasElephantVal is intro-

duced to compute the Hampton similarity of instances

with the prototype.

The values associated with this data property are com-

puted by the SWRL constraint:

hasTrunkVal(?x,?v1) ^ hasLargeVal(?x,?v2)
^ hasGreyVal(?x,?v3) ^
swrlb:add(?v,?v1,?v2,?v3)
-> hasElephantVal(?x,?v)

Suppose we are given a threshold t for the member-

ship to the class defined by the prototype. We can then

populate the class Elephant by means of the following

SWRL constraint:

swrlb:greaterThanOrEqual(?y,t)
^ hasValueElephant(?x,?y) -> Elephant(?x)

Let us suppose we have an instance (an indi-

vidual name) for Dumbo, “dumbo”. We might

get different descriptions of dumbo depending

on the Prototype theory version we are consid-

ering. In the case of Rosch, we might have that:

hasTrunkDeg(dumbo,1), hasLargeDeg(dumbo,0)
and hasGreyDeg(dumbo,1).

In this case, we get:

hasTrunkValue(dumbo,3),

hasLargeValue(dumbo,0),

hasGreyValue(dumbo,2)

10
This definition is required to run the SWRL plug-in for Protégé.

28

https://github.com/diporello/OntologyForPrototypesSWRL/blob/main/TestPrototypeTheoryOntologySWRL.owx
https://github.com/diporello/OntologyForPrototypesSWRL/blob/main/TestPrototypeTheoryOntologySWRL.owx
https://github.com/protegeproject/swrltab-plugin
https://github.com/protegeproject/swrltab-plugin

Daniele Porello et al. CEUR Workshop Proceedings 20–31

Regarding Hampton’s similarity measure, we might

have, e.g.:

hasTrunkDeg(dumbo,1),

hasLargeDeg(dumbo,0.3),

hasGreyDeg(dumbo,0.9).

In this case, we obtain:

hasTrunkVal(dumbo,3),

hasLargeVal(dumbo,0.6),

hasGreyVal(dumbo,1.8)

If the threshold 𝑡 is set to 4 (𝐿(𝑡) = 4), then the SWRL

engine can infer that the threshold is met and that Dumbo

is thus included (in both cases) as an instance of the class

Elephant. That is, the class Elephant is populated by

the instance dumbo, which then inherits the ontological

description coming from the axioms of the background

ontology. For crisp ascriptions of degrees, the ontology

will also populate the following object properties:

hasTrunkDeg(dumbo,1) -> hasPartSomeTrunk(dumbo)

hasGreyDeg(dumbo,1) -> hasColorQuale(dumbo,grey)

7. Discussion: Learning Weights
In the above examples, it was assumed that the weights

associated with the prototype concepts (modelled accord-

ing to the different variants) were given. We depict a

scenario where we can learn a prototype concept from

data. If the prototype concept to be learned is treated

as a linear classification model, then it is possible to use

standard linear classification algorithms (such as the per-

ceptron algorithm, logistic regression, or linear SVM) to

learn its weights and its threshold, given a set of asser-

tions or facts about individuals.

This setting was introduced in [22], where the proce-

dure for learning a prototype concept of an ‘Elephant’

was described as follows. Assume we have a knowledge

base 𝒦, a target concept 𝑃𝑇 , and a finite number of con-

cept features 𝐶1, . . . , 𝐶𝑛 (e.g., has a trunk, has a tusk, is

of size large, is of color grey, etc.) representing the vari-

ous concepts that may appear in a prototypical definition

of ‘Elephant’, which is denoted by 𝑃𝑇 . Concepts 𝐶𝑖 may

be defined, that is they may represent attribute-values as-

criptions such as hasAJQuale(?x,q) or more general

features such as hasPartSomeTrunk(?x).

Then, each individual 𝑎 in the knowledge base 𝒦 in-

duces a pair ⟨�⃗�(𝑎), 𝑦(𝑎)⟩ where �⃗�(𝑎) ∈ {0, 1}𝑛 is such

that its 𝑖-th element �⃗�(𝑎)𝑖 = 1 if 𝒦 |= 𝐶𝑖(𝑎), and it

is 0 otherwise; likewise, 𝑦(𝑎) = 1 if 𝒦 |= 𝑃𝑇 (𝑎), and

𝑦(𝑎) = 0 otherwise. This setting applies to the case

where classifications under features or attribute-values

are binary.

Based on this encoding, a data set can be defined con-

taining positive and negative examples about the con-

cepts that may appear or not as the concepts required by

the description of an ‘Elephant’
11

.

Then, the task will be to learn a linear classification

model of the sort 𝑦(𝑎) = 1, if

∑︀
𝑖 𝑥(𝑎)𝑖𝑤𝑖 + 𝑐 ≥ 0,

𝑦(𝑎) = 0, otherwise, that will approximate 𝑃𝑇 on the

basis of 𝐶1, . . . , 𝐶𝑛. Once the weights 𝑤1, . . . , 𝑤𝑛 and

the constant term 𝑐 are learned, these can be used to de-

fine the prototype concept as {(𝐶1, 𝑤1), . . . , (𝐶𝑛, 𝑤𝑛)}
where 𝑡 = −𝑐 is set as the threshold for the membership

to the class defined by 𝑃𝑇 .

For the case of the Tversky measure, that requires to

differentiate the contribution of salience and diagnos-

ticity, we could assume that the salience of a feature is

‘learned’ from domain experts, e.g. by asking them what

attribute-values make the difference in classifying a cer-

tain concept, or obtained from the numbers of instances

that are present in the data. The diagnosticity could be

treated, instead, as the weight of a feature. In this way

the previous learning scenario could be applied.

A different setting was illustrated in [27] where the

authors proposed to learn Tversky’s similarity (and a

weighted variant of it) of two images based on the con-

cept features contained in the images. In their setting, the

learning data are represented by pairs of sets of features

which inform about the semantic similarity or dissimilar-

ity between objects. Then, the problem of learning the

semantic similarity between two objects is modelled as

an optimization problem using a contrastive loss func-

tion. This approach could be generalised to the case in

which we learn a similarity metric from a given set of

instances of a prototype. The similarity measure could

then be used as a threshold classifier to decide for the

membership of an instance to the class defined by a given

prototype concept 𝑃𝑇 .

A recent related work is dedicated to study the com-

pilation problem of linear classifiers into Ordered Bi-

nary Decision Diagram (OBDD), [28]. Training of single

neurons with integers weights and thresholds has also

been studied from the motivation of explainability [28],

namely looking at the knowledge compilation problem

to determine under which conditions a neuron can be

efficiently trained and then compactly represented as

OBDD. A comparison between the learnability of OBDD

and threshold concepts is an interesting line of future

work.

11
The paper [26] proposes a method for learning the weights in a

way that such requirements can be captured.

29

Daniele Porello et al. CEUR Workshop Proceedings 20–31

8. Conclusion and future work
We presented an environment based on OWL 2 and SWRL

to implement the main aspects of prototype theories. We

used data properties to store information about weights,

degrees, and salience, and we used rules and the built-

in SWRL operators to compute the similarity between

instances. As we have demonstrated, the SWRL setting

is sufficient to implement the main aspects of prototype

theories. SWRL constraints allow also for populating the

ontology (its classes and object properties) with infor-

mation that is deemed sufficiently crisp. By adopting a

background ontology, we enabled a certain level of formal

description of the attributes, the attribute-values, and the

general features occurring in the prototype descriptions.

Also, we introduced the means to integrate prototypi-

cal classifications with ontological, feature-independent

information.

Future work is planned in three directions. Firstly, we

are interested in exploring the learning algorithms for

weights, salience, and diagnosticity values. Secondly, we

plan to approach threshold and typicality operators, cf.

[7, 11, 8, 6], to implement them, or approximate them,

by means of SWRL, and to extend our approach to more

expressive threshold operators, e.g. including counting

capabilities [29]. Finally, we are interested in exploring

the SWRL capacity to provide an ontological rendering

of the exemplar view of concepts, cf. [30].

Acknowledgments
This research is partially supported by Italian National

Research Project PRIN2020 2020SSKZ7R: BRIO – Bias,

Risk and Opacity in AI, https://sites.unimi.it/brio/

References
[1] G. Murphy, The big book of concepts, MIT press,

2004.

[2] E. Rosch, C. B. Mervis, Family resemblances: Stud-

ies in the internal structure of categories, Cognitive

psychology 7 (1975) 573–605.

[3] E. E. Smith, D. N. Osherson, L. J. Rips, M. Keane,

Combining prototypes: A selective modification

model, Cognitive science 12 (1988) 485–527.

[4] J. A. Hampton, Testing the prototype theory of

concepts, Journal of Memory and Language 34

(1995) 686–708.

[5] C. Masolo, D. Porello, Representing concepts by

weighted formulas, in: Formal Ontology in Infor-

mation Systems, IOS Press, 2018, pp. 55–68.

[6] D. Porello, O. Kutz, G. Righetti, N. Troquard, P. Gal-

liani, C. Masolo, A toothful of concepts: Towards

a theory of weighted concept combination, in:

M. Simkus, G. E. Weddell (Eds.), Proceedings of the

32nd International Workshop on Description Log-

ics, Oslo, Norway, June 18-21, 2019, volume 2373 of

CEUR Workshop Proceedings, CEUR-WS.org, 2019.

[7] F. Baader, A. Ecke, Reasoning with Prototypes in

the Description Logic 𝒜ℒ𝒞 Using Weighted Tree

Automata, in: Language and Automata Theory and

Applications: 10th International Conference, LATA

2016, Prague, Czech Republic, March 14-18, 2016,

Proceedings 10, Springer, 2016, pp. 63–75.

[8] A. Lieto, G. L. Pozzato, A description logic frame-

work for commonsense conceptual combination

integrating typicality, probabilities and cognitive

heuristics, Journal of Experimental & Theoretical

Artificial Intelligence 32 (2020) 769–804.

[9] L. Wittgenstein, Philosophical Investigations, Ox-

ford: Blackwell, 1953.

[10] K. Britz, J. Heidema, T. Meyer, Modelling object typ-

icality in description logics, in: AI 2009: Advances

in Artificial Intelligence: 22nd Australasian Joint

Conference, Melbourne, Australia, December 1-4,

2009. Proceedings 22, Springer, 2009, pp. 506–516.

[11] L. Giordano, V. Gliozzi, N. Olivetti, G. L. Pozzato,

A non-monotonic description logic for reasoning

about typicality, Artificial Intelligence 195 (2013)

165–202.

[12] C. A. Yeung, H. Leung, Ontology with likeliness

and typicality of objects in concepts, in: D. W.

Embley, A. Olivé, S. Ram (Eds.), Conceptual Mod-

eling - ER 2006, 25th International Conference on

Conceptual Modeling, Tucson, AZ, USA, Novem-

ber 6-9, 2006, Proceedings, volume 4215 of Lec-
ture Notes in Computer Science, Springer, 2006, pp.

98–111. URL: https://doi.org/10.1007/11901181_9.

doi:10.1007/11901181_9.

[13] Y. Cai, H. Leung, A. W. Fu, Multi-prototype con-

cept and object typicality in ontology, in: D. Wil-

son, H. C. Lane (Eds.), Proceedings of the Twenty-

First International Florida Artificial Intelligence

Research Society Conference, May 15-17, 2008,

Coconut Grove, Florida, USA, AAAI Press, 2008,

pp. 470–475. URL: http://www.aaai.org/Library/

FLAIRS/2008/flairs08-111.php.

[14] I. Horrocks, P. F. Patel-Schneider, S. Bechhofer,

D. Tsarkov, OWL rules: A proposal and prototype

implementation, J. Web Semant. 3 (2005) 23–40.

URL: https://doi.org/10.1016/j.websem.2005.05.003.

doi:10.1016/j.websem.2005.05.003.

30

https://sites.unimi.it/brio/
https://doi.org/10.1007/11901181_9
http://dx.doi.org/10.1007/11901181_9
http://www.aaai.org/Library/FLAIRS/2008/flairs08-111.php
http://www.aaai.org/Library/FLAIRS/2008/flairs08-111.php
https://doi.org/10.1016/j.websem.2005.05.003
http://dx.doi.org/10.1016/j.websem.2005.05.003

Daniele Porello et al. CEUR Workshop Proceedings 20–31

[15] M. J. O’Connor, R. D. Shankar, M. A. Musen, A. K.

Das, C. Nyulas, The SWRLAPI: A development

environment for working with SWRL rules, in:

C. Dolbear, A. Ruttenberg, U. Sattler (Eds.), Pro-

ceedings of the Fifth OWLED Workshop on OWL:

Experiences and Directions, collocated with the

7th International Semantic Web Conference (ISWC-

2008), Karlsruhe, Germany, October 26-27, 2008,

volume 432 of CEUR Workshop Proceedings, CEUR-

WS.org, 2008. URL: https://ceur-ws.org/Vol-432/

owled2008eu_submission_41.pdf.

[16] M. J. O’Connor, H. Knublauch, S. W. Tu, B. N.

Grosof, M. Dean, W. E. Grosso, M. A. Musen,

Supporting rule system interoperability on the se-

mantic web with SWRL, in: Y. Gil, E. Motta,

V. R. Benjamins, M. A. Musen (Eds.), The Semantic

Web - ISWC 2005, 4th International Semantic Web

Conference, ISWC 2005, Galway, Ireland, Novem-

ber 6-10, 2005, Proceedings, volume 3729 of Lec-
ture Notes in Computer Science, Springer, 2005, pp.

974–986. URL: https://doi.org/10.1007/11574620_69.

doi:10.1007/11574620_69.

[17] C. Masolo, S. Borgo, A. Gangemi, N. Guarino,

A. Oltramari, WonderWeb Deliverable D18, Techni-

cal Report, CNR, 2003.

[18] S. Borgo, R. Ferrario, A. Gangemi, N. Guarino,

C. Masolo, D. Porello, E. M. Sanfilippo, L. Vieu,

DOLCE: A descriptive ontology for linguistic and

cognitive engineering, Applied ontology 17 (2022)

45–69.

[19] D. N. Osherson, E. E. Smith, On the adequacy of

prototype theory as a theory of concepts, Cognition

9 (1981) 35–58.

[20] P. Gärdenfors, Conceptual spaces - The geometry

of thought, MIT Press, 2000.

[21] G. Righetti, O. Kutz, D. Porello, N. Troquard,

A Game of Essence and Serendipity: Superb

Owls vs. Cooking-Woodpeckers, in: M. M. Hed-

blom, A. A. Kantosalo, R. Confalonieri, O. Kutz,

T. Veale (Eds.), Proceedings of the 13th Interna-

tional Conference on Computational Creativity,

Bozen-Bolzano, Italy, June 27 - July 1, 2022, Associ-

ation for Computational Creativity (ACC), 2022, pp.

300–309. URL: http://computationalcreativity.net/

iccc22/papers/ICCC-2022_paper_88.pdf.

[22] P. Galliani, O. Kutz, D. Porello, G. Righetti, N. Tro-

quard, On knowledge dependence in weighted de-

scription logic, in: D. Calvanese, L. Iocchi (Eds.),

GCAI 2019. Proceedings of the 5th Global Confer-

ence on Artificial Intelligence, Bozen/Bolzano, Italy,

17-19 September 2019, volume 65 of EPiC Series in
Computing, EasyChair, 2019, pp. 68–80. URL: https:

//doi.org/10.29007/hjt1. doi:10.29007/hjt1.

[23] N. Guarino, M. Carrara, P. Giaretta, Formalizing on-

tological commitment, in: B. Hayes-Roth, R. E. Korf

(Eds.), Proceedings of the 12th National Conference

on Artificial Intelligence, Seattle, WA, USA, July 31

- August 4, 1994, Volume 1, AAAI Press / The MIT

Press, 1994, pp. 560–567. URL: http://www.aaai.org/

Library/AAAI/1994/aaai94-085.php.

[24] F. Baader, I. Horrocks, C. Lutz, U. Sattler, Intro-

duction to description logic, Cambridge University

Press, 2017.

[25] P. Patel-Schneider, OWL web ontology lan-

guage semantics and abstract syntax W3C rec-

ommendation 10 february 2004, http://www. w3.

org/TR/2004/REC-owl-semantics-20040210/ (2007).

[26] G. Righetti, P. Galliani, C. Masolo, Concept Com-

bination in Weighted DL, in: S. A. Gaggl, M. V.

Martinez, M. Ortiz (Eds.), Logics in Artificial Intel-

ligence - 18th European Conference, JELIA 2023,

Dresden, September 20-22, 2023, Proceedings, vol-

ume 14281 of Lecture Notes in Computer Science,

Springer, 2023.

[27] J. Rahnama, E. Hüllermeier, Learning tversky sim-

ilarity, in: M.-J. Lesot, S. Vieira, M. Z. Reformat,

J. P. Carvalho, A. Wilbik, B. Bouchon-Meunier, R. R.

Yager (Eds.), Information Processing and Manage-

ment of Uncertainty in Knowledge-Based Systems,

Springer International Publishing, Cham, 2020, pp.

269–280.

[28] L. Kennedy, I. Kindo, A. Choi, On Training Neu-

rons with Bounded Compilations, in: Proceedings

of the 20th International Conference on Principles

of Knowledge Representation and Reasoning (KR

2023), 2023, pp. 395–405. URL: https://doi.org/10.

24963/kr.2023/39. doi:10.24963/kr.2023/39.

[29] P. Galliani, O. Kutz, N. Troquard, Succinctness and

Complexity of 𝒜ℒ𝒞 with Counting Perceptrons, in:

Proceedings of the 20th International Conference

on Principles of Knowledge Representation and

Reasoning (KR 2023), Rhodes, Greece, September

2–8, 2023. URL: https://doi.org/10.24963/kr.2023/29.

doi:10.24963/kr.2023/29.

[30] D. L. Medin, M. M. Schaffer, Context theory of

classification learning., Psychological review 85

(1978) 207.

31

https://ceur-ws.org/Vol-432/owled2008eu_submission_41.pdf
https://ceur-ws.org/Vol-432/owled2008eu_submission_41.pdf
https://doi.org/10.1007/11574620_69
http://dx.doi.org/10.1007/11574620_69
http://computationalcreativity.net/iccc22/papers/ICCC-2022_paper_88.pdf
http://computationalcreativity.net/iccc22/papers/ICCC-2022_paper_88.pdf
https://doi.org/10.29007/hjt1
https://doi.org/10.29007/hjt1
http://dx.doi.org/10.29007/hjt1
http://www.aaai.org/Library/AAAI/1994/aaai94-085.php
http://www.aaai.org/Library/AAAI/1994/aaai94-085.php
https://doi.org/10.24963/kr.2023/39
https://doi.org/10.24963/kr.2023/39
http://dx.doi.org/10.24963/kr.2023/39
https://doi.org/10.24963/kr.2023/29
http://dx.doi.org/10.24963/kr.2023/29

	1 Introduction
	2 Prototype theories
	3 Ontological representation of prototypes
	4 Computing similarity in SWRL
	4.1 Tversky similarity
	4.2 Hampton's similarity

	5 Ontological background for prototypes
	5.1 Semantic observations

	6 Example: ``Elephant''
	7 Discussion: Learning Weights
	8 Conclusion and future work

