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Abstract
In this paper, we discuss the relationship between ranking-based semantics and extension-ranking semantics in the area of
abstract argumentation frameworks. In particular, we investigate approaches to transform these two semantics into each
other, i.e. going from a ranking over arguments to a ranking over sets of arguments (lifting) and from a ranking over sets of
arguments to a ranking over arguments (social ranking). Additionally, we analyse the principles and properties the resulting
semantics do satisfy.
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1. Introduction
Formal argumentation [1] has gained attention as a ration
decision-making model with a focus on the representa-
tion of arguments and their relationships. The well-know
approach of abstract argumentation frameworks (AF) [2]
uses directed graphs to reason, where arguments are the
nodes and the edges are representing attacks between
two arguments s.t. the source of the edge is attacking
the target. One way to reason with these frameworks
are the so called extension-based semantics, which are
functions allowing us to state that a set of arguments
is jointly accepted. So, these semantics can be used as
a binary classifier for sets of arguments based on their
“acceptability”, a set is either acceptable based on some
account of acceptability or not.

In recent years, this binary classification has been crit-
icised as being too limiting in real world scenarios like
online debates [3]. For any argument, we can only say if
it is part of an acceptable set or not. The extension-based
semantics do not give us any insight into the inherent
strength of each argument. For that purpose the so called
ranking-based semantics [4, 5] were proposed. These func-
tions allow us to rank arguments based on their strength
alone.

While we can use ranking-based semantics to rank
arguments base on their strength, these functions do not
allow us to state that a set is jointly acceptable. Further,
two arguments with high strength degrees may not be
allowed to be jointly acceptable, since they are in con-
flict with each other. To refine the reasoning based on
extensions, extension-ranking semantics were defined [6].

9th Workshop on Formal and Cognitive Reasoning,
September 26, 2023, Berlin, Germany
$ kenneth.skiba@fernuni-hagen.de (K. Skiba)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Using these functions we can state whether a set of argu-
ments is “better” than another set.

Both ranking-based semantics and extension-ranking
semantics in a sense are focusing on ranking argu-
ments. Both these approaches return preorders, ranking-
based semantics ranks single arguments, while extension-
ranking semantics return rankings over sets of argu-
ments. Like already shown by Skiba et al. [6] these
approaches are related and can be combined. We can
project extension-ranking semantics into ranking-based
semantics and the other way around. Similar projection
tasks between rankings of objects and rankings of sets
of objects were already discussed as part of the area of
computational social choice and in particular voting the-
ory (for an overview see [7]), where the best committee
should be constructed based on the preferences of each
voter. So, we take a set of preferences or preorders over
candidates and lift them to a preorder over potential com-
mittee setups (sets of candidates). These lifting questions
were already discussed in the context of argumentation
by Maly and Wallner [8], however they focus on a struc-
tured approach, where the preferences are part of the
input. In the AF setting, we do not have such prefer-
ence data, hence we need to generate our preferences
in another way. One possibility are the ranking-based
semantics, which we can lift to extension-ranking se-
mantics. The work by Maly and Wallner [8] represents
a starting point for a discussion about lifting in formal
argumentation and can be extended. Besides structured
approaches the problem of lifting was also discussed for
Preference-based AFs (PAFs) [9, 10, 11, 12], which are
extensions of argumentation framework with a prefer-
ences order over the set of arguments as part of the input.
Again, preference data is part of the input and needs to
be generated separately.

The other direction (going from a ranking over sets of
objects to a ranking over objects) is equally interesting.
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The social ranking problem has received considerable in-
terest in the area of computation social choice in recent
years. Here individual persons, like researchers, are eval-
uated based on their performances and their impact in
different teams. A number of social ranking solutions can
be found in the literature [13, 14, 15, 16], however a dis-
cussion in the context of argumentation is missing. Using
the idea of a social ranking solution we want to project a
ranking over sets of arguments down to a ranking over
arguments, allowing us to reason on the argument level.

In this work, we look at the relationship between
ranking-based semantics and extension-ranking seman-
tics in detail and want to establish connections between
these two reasoning formalisms in abstract argumenta-
tion. These connections allow us to bring the ranking-
based semantics closer to an extension-based approach.
We look at the social ranking and the lifting problems
between these two approaches, hence we transform
ranking-based semantics into extension-ranking seman-
tics and the other way around. For the social ranking
problem it turns out, that the resulting rankings are gen-
eralisations of the credulous acceptance problems. Ad-
ditionally, we investigate the properties of the resulting
semantics based on principles from the literature.

In Section 2, we recall preliminaries about argumenta-
tion frameworks, ranking-based semantics and extension-
ranking semantics. The social ranking problem is dis-
cussed in Section 3. Section 4 introduces the lifting prob-
lem. Section 5 concludes this paper.

2. Preliminaries

Abstract Argumentation Frameworks
An abstract argumentation framework is a directed graph
𝐹 = (𝐴,𝑅) where 𝐴 is a finite set of arguments and
𝑅 ⊆ 𝐴 × 𝐴 is an attack relation [2]. An argument
𝑎 is said to attack an argument 𝑏 if (𝑎, 𝑏) ∈ 𝑅. We
say that an argument 𝑎 is defended by a set 𝐸 ⊆ 𝐴 if
every argument 𝑏 ∈ 𝐴 that attacks 𝑎 is attacked by some
𝑐 ∈ 𝐸. For 𝑎 ∈ 𝐴 we define 𝑎−

𝐹 = {𝑏 | (𝑏, 𝑎) ∈ 𝑅}
and 𝑎+

𝐹 = {𝑏 | (𝑎, 𝑏) ∈ 𝑅}, so the sets of attackers of
𝑎 and the set of arguments attacked by 𝑎 in 𝐹 . For a
set of arguments 𝐸 ⊆ 𝐴 we extend these definitions to
𝐸−

𝐹 and 𝐸+
𝐹 via 𝐸−

𝐹 =
⋃︀

𝑎∈𝐸 𝑎−
𝐹 and 𝐸+

𝐹 =
⋃︀

𝑎∈𝐸 𝑎+
𝐹 ,

respectively. If the AF is clear in the context, we will omit
the index.

Most semantics [17] for abstract argumentation are
relying on two basic concepts: conflict-freeness and ad-
missibility.

Definition 1. Given 𝐹 = (𝐴,𝑅), a set 𝐸 ⊆ 𝐴 is

• conflict-free iff ∀𝑎, 𝑏 ∈ 𝐸, (𝑎, 𝑏) ̸∈ 𝑅;
• admissible iff it is conflict-free, and every element

of 𝐸 is defended by 𝐸.

𝑎 𝑏 𝑐 𝑑

Figure 1: Abstract argumentation framework𝐹 from Example
1.

We use 𝑐𝑓(𝐹 ) and 𝑎𝑑(𝐹 ) to denote the sets of conflict-
free and admissible sets of an AF 𝐹 . The intuition behind
these concepts is that a set of arguments may be accepted
only if it is internally consistent (conflict-freeness) and
able to defend itself against potential threats (admissibil-
ity). In order to define the remaining semantics proposed
by [2] we use the characteristic function.

Definition 2. For an AF 𝐹 = (𝐴,𝑅) the characteristic
function for a set of arguments 𝐸 ⊆ 𝐴, ℱ𝐹 (𝐸) : 2𝐴 →
2𝐴 is defined via:

ℱ𝐹 (𝐸) = {𝑎 ∈ 𝐴|𝐸 defends 𝑎}

In words, the characteristic functions returns for ev-
ery set of arguments all arguments defended by that set.
Using this function we introduce all the remaining se-
mantics defined by [2] and in addition the semi-stable
semantics [18].

Definition 3. Given 𝐹 = (𝐴,𝑅), an admissible set 𝐸 ⊆
𝐴 is

• a complete extension (𝑐𝑜) iff 𝐸 = ℱ𝐹 (𝐸);
• a preferred extension (𝑝𝑟) iff it is a ⊆-maximal

admissible extension;
• the unique grounded extension (𝑔𝑟) iff 𝐸 is the

least fixed point of ℱ𝐹 ;
• a stable extension (𝑠𝑡𝑏) iff 𝐸+

𝐹 = 𝐴 ∖ 𝐸;
• a semi-stable extension (𝑠𝑠𝑡) iff it is a complete

extension, where 𝐸 ∪ 𝐸+
𝐹 is ⊆-maximal.

The sets of extensions of an AF 𝐹 for these five seman-
tics are denoted as (respectively) 𝑐𝑜(𝐹 ), 𝑝𝑟(𝐹 ), 𝑔𝑟(𝐹 ),
𝑠𝑡𝑏(𝐹 ) and 𝑠𝑠𝑡(𝐹 ). Based on these semantics, we can
define the status of any (set of) argument(s), namely skep-
tically accepted (belonging to each 𝜎-extension), credu-
lously accepted (belonging to some 𝜎-extension) and re-
jected (belonging to no 𝜎-extension). Given an AF 𝐹 and
an extension-based semantics 𝜎, we use (respectively)
𝑠𝑘𝜎(𝐹 ), 𝑐𝑟𝑒𝑑𝜎(𝐹 ) and 𝑟𝑒𝑗𝜎(𝐹 ) to denote these sets of
arguments.

Example 1. Consider the AF 𝐹 = (𝐴,𝑅) depicted as a
directed graph in Figure 1, with the nodes corresponding to
arguments 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}, and the edges corresponding
to attacks 𝑅 = {(𝑎, 𝑏), (𝑏, 𝑐), (𝑐, 𝑑), (𝑑, 𝑐)}. We see that
𝐹 has three complete extensions {𝑎}, {𝑎, 𝑐} and {𝑎, 𝑑}
only the last two are preferred in addition. Also, we see
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that, 𝑎 is skeptically accepted w.r.t. complete semantics, 𝑐
and 𝑑 are credulously accepted w.r.t. complete semantics
and 𝑏 is rejected w.r.t complete semantics.

An isomorphism 𝛾 between two AFs 𝐹 = (𝐴,𝑅) and
𝐹 ′ = (𝐴′, 𝑅′) is a bijective function 𝛾 : 𝐴 → 𝐴′ such
that (𝑎, 𝑏) ∈ 𝑅 iff (𝛾(𝑎), 𝛾(𝑏)) ∈ 𝑅′ for all 𝑎, 𝑏 ∈ 𝐴.

Ranking-based Semantics
Instead of only reasoning based on the acceptance of
sets of arguments, ranking-based semantics [4] were in-
troduced to focus on the strength of a single argument
with respect to the other arguments. Note that the order
returned by a ranking-based semantics is not necessarily
total, i. e. not every pair of arguments is comparable.

Definition 4. A ranking-based semantics 𝜌 is a function,
which maps an AF 𝐹 = (𝐴,𝑅) to a preorder1 ⪰𝜌

𝐹 on 𝐴.

Intuitively, 𝑎 ⪰𝜌
𝐹 𝑏 means, that 𝑎 is at least as strong

as 𝑏 in 𝐹 . We define the usual abbreviations as follows;

• 𝑎 ≻𝜌
𝐹 𝑏 denotes strictly stronger, i. e. 𝑎 ⪰𝜌

𝐹 𝑏 and
𝑏 ̸⪰𝜌

𝐹 𝑎;
• 𝑎 ≃𝜌

𝐹 𝑏 denotes equally strong, i. e. 𝑎 ⪰𝜌
𝐹 𝑏 and

𝑏 ⪰𝜌
𝐹 𝑎;

• 𝑎 ◁▷𝜌𝐹 𝑏 denotes incomparability so neither 𝑎 ⪰𝜌
𝐹

𝑏 nor 𝑏 ⪰𝜌
𝐹 𝑎.

One example for ranking-based semantics is the h-
categoriser ranking-based semantics [19]. This ranking
considers the direct attackers of an argument to calculate
its strength value.

Definition 5 ([19]). Let 𝐹 = (𝐴,𝑅). The h-categoriser
function 𝐶𝑎𝑡 : 𝐴 → (0, 1] is defined as:

𝐶𝑎𝑡(𝑎) =

⎧⎨⎩1 if 𝑎−
𝐹 = ∅

1
1+

∑︀
𝑏∈𝑎

−
𝐹

𝐶𝑎𝑡(𝑏)
otherwise

The h-categoriser ranking-based semantics defines a rank-
ing ⪰𝐶𝑎𝑡

𝐹 on 𝐴 s.t. for 𝑎, 𝑏 ∈ 𝐴, 𝑎 ⪰𝐶𝑎𝑡
𝐹 𝑏 iff 𝐶𝑎𝑡(𝑎) ≥

𝐶𝑎𝑡(𝑏).

Pu et al. [20] have shown, that the h-categoriser
ranking-based semantics is well defined, i. e., an h-
categoriser function exists and is unique for every AF.

Example 2. Given the AF 𝐹 from Example 1. We can
calculate for each argument a strength value using the
h-categoriser function. Argument 𝑎 is unattacked, hence,
𝐶𝑎𝑡(𝑎) = 1. Based on the value of 𝑎, we can calculate the
remaining values:

𝐶𝑎𝑡(𝑏) = 0.5;

1A preorder is a (binary) relation that is reflexive and transitive.

𝐶𝑎𝑡(𝑐) = 0.46;

𝐶𝑎𝑡(𝑑) = 0.69.

These values will result in the following ranking:

𝑎 ≻𝐶𝑎𝑡
𝐹 𝑑 ≻𝐶𝑎𝑡

𝐹 𝑏 ≻𝐶𝑎𝑡
𝐹 𝑐.

So, argument 𝑎 is ranked highest, then 𝑑, and the least
ranked argument is 𝑐.

Traditionally, the development of ranking-based se-
mantics is guided by a principle-based approach. Each
principle embodies a different property for argument
rankings. We recall some of the most fundamental prin-
ciples [5] as well as newer ones, which are closer to the
extension-based reasoning process [21]. Before we start,
we need additional notations. Let 𝐹 = (𝐴,𝑅) be an
AF with arguments 𝑎, 𝑏 ∈ 𝐴. A path of length 𝑙𝑃 = 𝑛
between two arguments 𝑎, 𝑏 is a sequence of arguments
𝑃 (𝑎, 𝑏) = (𝑎, 𝑎1, ..., 𝑎𝑛−1, 𝑏) with (𝑎𝑖, 𝑎𝑖+1) ∈ 𝑅 for
all 𝑖 with 𝑎0 = 𝑎 and 𝑎𝑛 = 𝑏. The strongly con-
nected components 𝑐𝑐(𝐹 ) of an AF 𝐹 are the maximal
subgraphs 𝐹 ′ = (𝐴′, 𝑅′), where for every pair of ar-
guments 𝑎, 𝑏 ∈ 𝐴′ there exists an undirected path
𝑃𝑢(𝑎, 𝑏) = (𝑎 = 𝑎0, 𝑎1, ..., 𝑎𝑛+1, 𝑎𝑛 = 𝑏) s.t. for every
𝑖 there is either (𝑎𝑖, 𝑎𝑖+1) ∈ 𝑅 or (𝑎𝑖+1, 𝑎𝑖) ∈ 𝑅. For
an AF 𝐹 = (𝐴,𝑅) and an extension-based semantics 𝜎,
an argument 𝑎 weakly 𝜎-supports 𝑏 if 𝑏 ∈ 𝑐𝑟𝑒𝑑𝜎(𝐹 ) and
for all 𝐸 ∈ 𝜎(𝐹 ), with 𝑏 ∈ 𝐸 then 𝑎 ∈ 𝐸 and 𝑎 strongly
𝜎-supports 𝑏 if 𝑏 ∈ 𝑐𝑟𝑒𝑑𝜎(𝐹 ) and for all 𝐸 ∈ 𝜎(𝐹 ), with
𝑏 ∈ 𝐸 then there is 𝐸′ ∈ 𝜎(𝐹 ) with 𝐸′ ⊆ 𝐸, 𝑎 ∈ 𝐸′

and 𝑏 /∈ 𝐸′.

Definition 6. A ranking-based semantics 𝜌 satisfies the
respective principle iff for all AFs 𝐹 = (𝐴,𝑅) and any
𝑎, 𝑏 ∈ 𝐴:

Abstraction (Abs). Names of arguments should not be
relevant.

For a pair of AFs 𝐹 = (𝐴,𝑅) and 𝐹 ′ = (𝐴′, 𝑅′)
and every isomorphism 𝛾 : 𝐴 → 𝐴′, we have
𝑎 ⪰𝜌

𝐹 𝑏 iff 𝛾(𝑎) ⪰𝜌
𝐹 ′ 𝛾(𝑏).

Independence (In). Unconnected arguments should not
influence a ranking.

For every 𝐹 ′ = (𝐴′, 𝑅′) ∈ 𝑐𝑐(𝐹 ) and for all
𝑎, 𝑏 ∈ 𝐴′: 𝑎 ⪰𝜌

𝐹 𝑏 iff 𝑎 ⪰𝜌
𝐹 ′ 𝑏.

Void Precedence (VP). Unattacked arguments should
be ranked better then attacked ones.

If 𝑎−
𝐹 = ∅ and 𝑏−𝐹 ̸= ∅ then 𝑎 ≻𝜌

𝐹 𝑏.

Self-Contradicition (SC). Self-attacking arguments
should be ranked worse than any other argument.

If (𝑎, 𝑎) /∈ 𝑅 and (𝑏, 𝑏) ∈ 𝑅 then 𝑎 ≻𝜌
𝐹 𝑏.
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Cardinality Precedence (CP). Two arguments are
compared based on the number of attackers.

If |𝑎−
𝐹 | < |𝑏−𝐹 | then 𝑎 ≻𝜌

𝐹 𝑏.

Quality Precedence (QP). Two arguments are com-
pared based on the strength of their attackers.

If there is 𝑐 ∈ 𝑏−𝐹 s.t. for all 𝑑 ∈ 𝑎−
𝐹 it holds that

𝑐 ≻𝜌
𝐹 𝑑 then 𝑎 ≻𝜌

𝐹 𝑏.

Counter-Transitivity (CT). Two arguments are com-
pared based on the number and quality of their
attackers.

If some injecitve 𝑓 : 𝑎−
𝐹 → 𝑏−𝐹 exists s.t. 𝑓(𝑥) ⪰𝜌

𝐹

𝑥 for all 𝑥 ∈ 𝑎−
𝐹 then 𝑎 ⪰𝜌

𝐹 𝑏.

Strict Counter-Transitivity (SCT). Strict version of
CT.

If some injecitve 𝑓 : 𝑎−
𝐹 → 𝑏−𝐹 exists s.t. 𝑓(𝑥) ⪰𝜌

𝐹

𝑥 for all 𝑥 ∈ 𝑎−
𝐹 and either |𝑎−

𝐹 | < |𝑏−𝐹 | or there
exists some 𝑥 ∈ 𝑎−

𝐹 with 𝑓(𝑥) ≻𝜌
𝐹 𝑥, then 𝑎 ≻𝜌

𝐹

𝑏.

Defense Precedence (DP). For two arguments with
the same number of attackers, a defended argument
is ranked better than a non-defended argument.

If |𝑎−
𝐹 | = |𝑏−𝐹 |, (𝑎

−
𝐹 )

−
𝐹 ̸= ∅ and (𝑏−𝐹 )

−
𝐹 = ∅, then

𝑎 ≻𝜌
𝐹 𝑏.

Distributed Defense precedence (DDP). Every de-
fender should attack exactly one attacker.

If |𝑎−
𝐹 | = |𝑏−𝐹 | and |(𝑎−

𝐹 )
−
𝐹 | = |(𝑏−𝐹 )

−
𝐹 |, and if

defense of 𝑎 is simple - every direct defender of
𝑎 directly attacks exactly one direct attacker of
𝑎 - and distributed - every direct attacker of 𝑎 is
attacked by at most one argument - and defense of
𝑏 is simple but not distributed, then 𝑎 ≻𝜌

𝐹 𝑏.

Non-attacked Equivalence (NaE) Two unattacked
arguments should be equally ranked.

If 𝑎−
𝐹 = 𝑏−𝐹 = ∅ then 𝑎 ≃𝜌

𝐹 𝑏.

Attack vs. Full Defense (AvsFD). Arguments without
any unattacked indirect attackers should be ranked
better than arguments only attacked by one
unattacked argument.

If 𝐹 acyclic and every path 𝑃 (𝑢, 𝑎) in 𝐹 from
unattacked 𝑢 to 𝑎 has 𝑙𝑝 = 0 mod 2 and there
exists unattacked 𝑣 ∈ 𝑏−𝐹 , then 𝑎 ≻𝜌

𝐹 𝑏.

𝜎-Compatibility (𝜎-C). Credulously accepted argu-
ments should be ranked better than rejected ar-
guments.

For an extension-based semantics 𝜎 it holds that if
𝑎 ∈ 𝑐𝑟𝑒𝑑𝜎(𝐹 ) and 𝑏 ∈ 𝑟𝑒𝑗𝜎(𝐹 ), then 𝑎 ≻𝜌

𝐹 𝑏.

weak 𝜎-Support (w𝜎-S). If an argument 𝑎 is an un-
avoidable side-effect of accepting another argument
𝑏, then 𝑎 should be at least as acceptable as 𝑏.

If 𝑎 weakly 𝜎-supports 𝑏, then 𝑎 ⪰𝜌
𝐹 𝑏.

strong 𝜎-Support (s𝜎-S). If an argument 𝑎 is a prereq-
uisite for accepting another argument 𝑏 and 𝑏 is
irrelevant for accepting 𝑎, then 𝑎 should be ranked
better then 𝑏.

If 𝑎 strongly 𝜎-supports 𝑏, then 𝑎 ≻𝜌
𝐹 𝑏.

Note that these principles are not always compatible
with each other, especially SC and CP are not compatible
[4]. h-categoriser satisfies Abs, In, VP, CT, SCT, DP, and
NaE, every other principle from Definition 6 is violated
[5, 21].

Extension-ranking Semantics
Extension-ranking semantics defined in [6] are a gener-
alisation of extension-based semantics. These semantics
are used to state that a set of arguments is not only jointly
acceptable or not, but also whether a set 𝐸 is more plau-
sible than another set 𝐸′.

Definition 7. Let 𝐹 = (𝐴,𝑅) be an AF. An extension
ranking on 𝐹 is a preorder over the powerset of arguments
2𝐴. An extension-ranking semantics 𝜏 is a function that
maps each 𝐹 to an extension ranking ⊒𝜏

𝐹 on 𝐹 .

For an AF 𝐹 = (𝐴,𝑅), an extension-ranking seman-
tics 𝜏 and two sets 𝐸,𝐸′ ⊆ 𝐴 we say 𝐸 is at least as
plausible as 𝐸′ with respect to 𝜏 in 𝐹 if 𝐸 ⊒𝜏

𝐹 𝐸′. We
define the usual abbreviations as follows:

• 𝐸 is strictly more plausible than 𝐸′ (denoted as
𝐸 ⊐𝜏

𝐹 𝐸′) if 𝐸 ⊒𝜏
𝐹 𝐸′ and not 𝐸′ ⊒𝜏

𝐹 𝐸;
• 𝐸 and 𝐸′ are equally as plausible (denoted as
𝐸 ≡𝜏

𝐹 𝐸′) if 𝐸 ⊒𝜏
𝐹 𝐸′ and 𝐸′ ⊒𝜏

𝐹 𝐸;
• 𝐸 and 𝐸′ are incomparable (denoted 𝐸 ≍𝜏

𝐹 𝐸′)
if neither 𝐸 ⊒𝜏

𝐹 𝐸′ nor 𝐸′ ⊒𝜏
𝐹 𝐸.

Skiba et al. [6] defined a family of approaches to de-
fine such extension-ranking semantics. Their semantics
are generalisations of the classical extension-based se-
mantics. Using these semantics we can state that a set is
“closer” to be admissible, than another set. Skiba et al. [6]
argued that the characteristic function does not behave
intuitive if applied to conflicting sets. Therefore a varia-
tion of the characteristic function ℱ* was introduced.

Definition 8. Let 𝐹 = (𝐴,𝑅) be an AF and 𝐸 ⊆
𝐴. The function ℱ*

𝐹 : 2𝐴 → 2𝐴 is defined as
ℱ*

𝐹 (𝐸) =
⋃︀∞

𝑖=1 ℱ
*
𝑖,𝐹 (𝐸) with

ℱ*
1,𝐹 (𝐸) = 𝐸;

ℱ*
𝑖,𝐹 (𝐸) = ℱ*

𝑖−1,𝐹 (𝐸) ∪ ℱ𝐹 (ℱ*
𝑖−1,𝐹 (𝐸)) ∖ 𝐸−

𝐹 .
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Before we define the semantics, we recall the base func-
tions, each of them generalises one aspect of extension-
based reasoning.

Definition 9 (Base Functions [6]). Let 𝐹 = (𝐴,𝑅)
be an AF and 𝐸 ⊆ 𝐴. Define the base functions 𝛼 ∈
{𝐶𝐹,𝑈𝐷,𝐷𝑁,𝑈𝐴} via

𝐶𝐹 (𝐸,𝐹 ) = {(𝑎, 𝑏) ∈ 𝑅|𝑎, 𝑏 ∈ 𝐸};
𝑈𝐷(𝐸,𝐹 ) = 𝐸 ∖ ℱ𝐹 (𝐸);

𝐷𝑁(𝐸,𝐹 ) = ℱ*
𝐹 (𝐸) ∖ 𝐸;

𝑈𝐴(𝐸,𝐹 ) = {𝑎 ∈ 𝐴 ∖ 𝐸|¬∃𝑏 ∈ 𝐸 : (𝑏, 𝑎) ∈ 𝑅};

and the corresponding 𝛼 base extension ranking ⊒𝛼
𝐹 for

𝐸,𝐸′ ∈ 𝐴 via:

𝐸 ⊒𝛼
𝐹 𝐸′ iff 𝛼(𝐸,𝐹 ) ⊆ 𝛼(𝐸′, 𝐹 )

By lexicographically combining these base functions,
we denote the extension-ranking semantics.

Definition 10. Let𝐹 = (𝐴,𝑅) be an AF and𝐸,𝐸′ ⊆ 𝐴.
We define:

• Admissible extension-ranking semantics 𝑟-𝑎𝑑 via
𝐸 ⊒𝑟-𝑎𝑑

𝐹 𝐸′ iff 𝐸 ⊐𝐶𝐹
𝐹 𝐸′ or (𝐸 ≡𝐶𝐹

𝐹 𝐸′ and
𝐸 ⊒𝑈𝐷

𝐹 𝐸′).
• Complete extension-ranking semantics 𝑟-𝑐𝑜 via
𝐸 ⊒𝑟-𝑐𝑜

𝐹 𝐸′ iff 𝐸 ⊐𝑟-𝑎𝑑
𝐹 𝐸′ or (𝐸 ≡𝑟-𝑎𝑑

𝐹 𝐸′ and
𝐸 ⊒𝐷𝑁

𝐹 𝐸′).
• Preferred extension-ranking semantics 𝑟-𝑝𝑟 via
𝐸 ⊒𝑟-𝑝𝑟

𝐹 𝐸′ iff 𝐸 ⊐𝑟-𝑎𝑑
𝐹 𝐸′ or (𝐸 ≡𝑟-𝑎𝑑

𝐹 𝐸′ and
𝐸′ ⊆ 𝐸).

• Grounded extension-ranking semantics 𝑟-𝑔𝑟 via
𝐸 ⊒𝑟-𝑔𝑟

𝐹 𝐸′ iff 𝐸 ⊐𝑟-𝑐𝑜
𝐹 𝐸′ or (𝐸 ≡𝑟-𝑐𝑜

𝐹 𝐸′ and
𝐸 ⊆ 𝐸′).

• Semi-stable extension-ranking semantics 𝑟-𝑠𝑠𝑡
via 𝐸 ⊒𝑟-𝑠𝑠𝑡

𝐹 𝐸′ iff 𝐸 ⊐𝑟-𝑐𝑜
𝐹 𝐸′ or (𝐸 ≡𝑟-𝑐𝑜

𝐹 𝐸′

and 𝐸 ⊒𝑈𝐴
𝐹 𝐸′).

In words, one set 𝐸 is at least as plausible as 𝐸′ with
respect to the admissible ranking, if 𝐸 has fewer conflicts
than 𝐸′ or if 𝐸 and 𝐸′ have the same conflicts, then
we compare the undefended arguments. For complete
we first look at the admissible ranking and in case of
equality we look at the 𝐷𝑁 ranking. Note that since AFs
without a stable extension exists it is impossible to define
a generalisation of the stable semantics, hence we define
a generalisation of the semi-stable semantics instead.

Example 3. Continuing Example 1. Comparing sets𝐸1 =
{𝑐, 𝑑} and 𝐸2 = {𝑎, 𝑐, 𝑑} with the admissible ranking,
we see 𝐸 and 𝐸′ have the same conflicts (𝑐, 𝑑) and (𝑑, 𝑐),
however𝐸2 defends argument 𝑐 from 𝑏, therefore𝐸2 ⊐𝑟-𝑎𝑑

𝐹

𝐸1, so 𝐸2 is closer to be admissible, then 𝐸1.

Extension-ranking semantics also follows a principle-
based approach. Before we recall the principles defined
in [6], we need to introduce the notion of most plausible
sets i.e. sets for which we can not find any other sets
ranked strictly better.

Definition 11 (Most plausible sets). Let 𝐹 = (𝐴,𝑅)
be an AF, 𝐸,𝐸′ ⊆ 𝐴 two sets of arguments and 𝜏 an
extension-ranking semantics. We denote by 𝑚𝑖𝑛𝜏 (𝐹 ) the
minimal (or most plausible) elements of the extension rank-
ing ⊒𝜏

𝐹 , i.e.,

𝑚𝑖𝑛𝜏 (𝐹 ) = {𝐸 ⊆ 𝐴 | ∄𝐸′ ⊆ 𝐴 with 𝐸′ ⊐𝜏
𝐹 𝐸}.

The principle 𝜎-generalisation states, that most plausi-
ble sets should coincide with the 𝜎-extensions.

Definition 12 (𝜎-Gen). Let 𝜎 be an extension-based se-
mantics and 𝜏 an extension-ranking semantics. 𝜏 satisfies

• 𝜎-soundness iff for all 𝐹 = (𝐴,𝑅):
𝑚𝑖𝑛𝜏 (𝐹 ) ⊆ 𝜎(𝐹 ).

• 𝜎-completeness iff for all 𝐹 = (𝐴,𝑅):
𝑚𝑖𝑛𝜏 (𝐹 ) ⊇ 𝜎(𝐹 ).

• 𝜎-generalisation iff 𝜏 satisfies both 𝜎-soundness
and 𝜎-completeness.

The next two properties (composition and decomposi-
tion) state that unconnected arguments should not influ-
ence the ranking.

Definition 13 ((De)Comp). Let 𝜏 be an extension-
ranking semantics. 𝜏 satisfies composition if for every
𝐹 s.t. 𝐹 = 𝐹1 ∪ 𝐹2 = (𝐴1, 𝑅1) ∪ (𝐴2, 𝑅2) with
𝐴1 ∩ 𝐴2 = ∅ and 𝐸,𝐸′ ⊆ 𝐴1 ∪ 𝐴2 it holds that

if
{︂

𝐸 ∩𝐴1 ⊒𝜏
𝐹1

𝐸′ ∩𝐴1

𝐸 ∩𝐴2 ⊒𝜏
𝐹2

𝐸′ ∩𝐴2

}︂
then 𝐸 ⊒𝜏

𝐹 𝐸′.

𝜏 satisfies decomposition if for every 𝐹 s.t. 𝐹 =
𝐹1 ∪ 𝐹2 = (𝐴1, 𝑅1) ∪ (𝐴2, 𝑅2) with 𝐴1 ∩
𝐴2 = ∅ and 𝐸,𝐸′ ⊆ 𝐴1 ∪ 𝐴2 it holds that

if 𝐸 ⊒𝜏
𝐹 𝐸′ then

{︂
𝐸 ∩𝐴1 ⊒𝜏

𝐹1
𝐸′ ∩𝐴1

𝐸 ∩𝐴2 ⊒𝜏
𝐹2

𝐸′ ∩𝐴2

}︂
.

The reinstatement principles are used to establish that
the addition of defended arguments, which do not create
new conflicts, is preferred.

Definition 14 (RI ). Let 𝜏 be an extension-ranking se-
mantics. 𝜏 satisfies weak reinstatement iff for all 𝐹 =
(𝐴,𝑅) with 𝐸 ⊆ 𝐴 holds 𝑎 ∈ ℱ𝐹 (𝐸), 𝑎 /∈ 𝐸 and
𝑎 /∈ (𝐸−

𝐹 ∪ 𝐸+
𝐹 ) implies 𝐸 ∪ {𝑎} ⊒𝜏

𝐹 𝐸.
𝜏 satisfies strong reinstatement iff for all 𝐹 = (𝐴,𝑅)

with 𝐸 ⊆ 𝐴 holds 𝑎 ∈ ℱ𝐹 (𝐸), 𝑎 /∈ 𝐸 and 𝑎 /∈ (𝐸−
𝐹 ∪

𝐸+
𝐹 ) implies 𝐸 ∪ {𝑎} ⊐𝜏

𝐹 𝐸.

Names of arguments should not influence the ranking
as stated by syntax independence.
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Definition 15 (SI ). An extension-ranking semantics 𝜏
satisfies syntax independence if for every pair of AFs 𝐹 =
(𝐴,𝑅), 𝐹 ′ = (𝐴′, 𝑅′) and for every isomorphism 𝛾 :
𝐴 → 𝐴′, for all 𝐸,𝐸′ ⊆ 𝐴, we have 𝐸 ⊒𝜏

𝐹 𝐸′ iff
𝛾(𝐸) ⊒𝜏

𝐹 ′ 𝛾(𝐸′).

The extension-ranking semantics based on seman-
tics 𝜎 ∈ {𝑎𝑑, 𝑐𝑜, 𝑝𝑟, 𝑔𝑟, 𝑠𝑠𝑡} do satisfy their cor-
responding 𝜎-Gen, Comp, DeComp, SI and wRI.
{𝑟-𝑐𝑜, 𝑟-𝑝𝑟, 𝑟-𝑔𝑟, 𝑟-𝑠𝑠𝑡} also satisfies sRI [6].

3. Social Ranking Problem
Like shown by Skiba et al. [6] extension-ranking se-
mantics and ranking-based semantics are related to each
other. We use extension-ranking semantics and their re-
sulting preorders to construct a ranking over arguments,
where arguments are ranked based on the strength of the
corresponding sets.

Definition 16 ([6]). Let 𝐹 = (𝐴,𝑅) be an AF, 𝑎, 𝑏 ∈ 𝐴,
and 𝜏 be an extension-ranking semantics. We define an
ranking-based semantics ⪰𝜏

𝐹 via 𝑎 ⪰𝜏
𝐹 𝑏 iff there is a set

𝐸 with 𝑎 ∈ 𝐸 s.t. for all sets 𝐸′ with 𝑏 ∈ 𝐸′ we have
𝐸 ⊒𝜏

𝐹 𝐸′.

In words, an argument 𝑎 is at least as plausible as 𝑏 if
𝑎 is contained in a set 𝐸, which is ranking better than
any set 𝐸′ containing 𝑏.

Example 4. Continuing with Example 1. Using 𝑟-𝑎𝑑 as
the underlying extension-ranking semantics, we see that
{𝑎, 𝑐} and {𝑎, 𝑑} are admissible sets. Since 𝑟-𝑎𝑑 satisfies
𝑎𝑑-Gen, we know that there can not be any set ranked
better than these two sets and especially no set containing
𝑏 is ranked better. This observation result in the ranking:

𝑎 ≃𝑟-𝑎𝑑
𝐹 𝑐 ≃𝑟-𝑎𝑑

𝐹 𝑑 ≻𝑟-𝑎𝑑
𝐹 𝑏.

Since {𝑎, 𝑐} and {𝑎, 𝑑} are also complete, preferred and
semi-stable sets, we see that 𝑟-𝑐𝑜, 𝑟-𝑝𝑟, and 𝑟-𝑠𝑠𝑡 do in-
duce the same ranking. Only for 𝑟-𝑔𝑟 the induced ranking
differs:

𝑎 ≻𝑟-𝑔𝑟
𝐹 𝑐 ≃𝑟-𝑔𝑟

𝐹 𝑑 ≻𝑟-𝑔𝑟
𝐹 𝑏.

In the example above we see that the credulously ac-
cepted arguments w.r.t. admissible semantics are the best
ranked arguments. This holds for every AF, if the most
plausible sets coincide with the admissible sets, hence
there is at least one set that contains a credulously ac-
cepted argument and is ranked most plausibly. Similar
observations can be done for the complete, grounded, pre-
ferred, and semi-stable semantics and their correspond-
ing extension-ranking semantics. By comparing the re-
sulting rankings from Example 2 and Example 4, we see
that these two rankings are quite different. They have
in common that 𝑎 is one of the best ranked arguments,

however these two semantics disagree on the strength
of argument 𝑏 quite strongly. In the ranking induced
by 𝑟-𝑎𝑑, 𝑏 is the weakest argument, while in the rank-
ing based on h-categoriser, 𝑐 is the weakest argument.
Hence, the discussion about counter-intuitive behaviour
of ranking-based semantics from Blümel and Thimm [21]
can be recalled. Blümel and Thimm argued that credu-
lously accepted arguments with respect to an extension-
based semantics should be ranked better, than rejected
arguments. Hence, 𝑐 should be ranked better than 𝑏.

Next, we investigate the principles the ranking induced
by an extension-ranking semantics does satisfy. Skiba
et al. [6] have discussed Abs, In and SC and have stated
that ⪰𝜏 for 𝜏 ∈ {𝑟-𝑎𝑑, 𝑟-𝑐𝑜, 𝑟-𝑔𝑟, 𝑟-𝑝𝑟, 𝑟-𝑠𝑠𝑡} satisfies
these principles.

Starting with Abs, we see that the induced ranking
is not influenced by the names of the arguments if the
underlying extension-ranking semantics is also not influ-
enced by the names.

Proposition 1. If extension-ranking semantics 𝜏 satisfies
SI, then ⪰𝜏 satisfies Abs.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF, 𝐸,𝐸′ ⊆ 𝐴 and 𝜏 an
extension-ranking semantics. Assume 𝜏 satisfies syntax
independence, then we know that for every isomorphism
𝛾 we have 𝐸 ⊐𝜏

𝐹 𝐸′ it also hold that 𝛾(𝐸) ⊐𝜏
𝛾(𝐹 ) 𝛾(𝐸

′).
Hence, if a set 𝐸 exists s.t. for all 𝐸′ we have 𝐸 ⊐𝜏

𝐹 𝐸′

the same behaviour also happens in the isomorphic AF.
So, for all pairs of arguments 𝑎, 𝑏 ∈ 𝐴 with 𝑎 ⪰𝜏

𝐹 𝑏 it
holds that 𝛾(𝑎) ⪰𝜏

𝛾(𝐹 ) 𝛾(𝑏).

The connection between In, Comp and DeComp is ap-
parent. In stats that unconnected arguments should not
influence each others, while DeComp stats that by split-
ting a disjoint AF into two AFs, the resulting ranking
should stay the same.

Proposition 2. If extension-ranking semantics 𝜏 satisfies
Comp and DeComp, then ⪰𝜏 satisfies In.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF, 𝐸,𝐸′ ⊆ 𝐴 and 𝜏 an
extension-ranking semantics. Assume 𝜏 satisfies compo-
sition and decomposition, then for any AF, which can
be partitioned into two disjoint AFs, we know that the
relationship between 𝐸 and 𝐸′ is still the same in the
subAFs. So, if we split an AF into its connected compo-
nents, we see that for every pair of sets of arguments the
relationship is still the same. Hence, the induced ranking
is also the same.

The main motivation of extension-ranking semantics
was to generalise the extension-based reasoning process
and the first step of this reasoning process is always the
conflict-freeness check. A set can only be accepted, if
it is conflict-free otherwise this set will be rejected by
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any extension-based semantics. Similar for the extension-
ranking semantics the first step is to compare two sets
of arguments based on their conflicts. A conflict-free set
is always ranked better than a conflicting set. Since the
addition of a self-attacking argument into a set always
coincides with a conflicting set, we see that any self-
attacking argument will be ranked worse, than any non
self-attacking argument.

Proposition 3. If extension-ranking semantics 𝜏 satisfies
𝑐𝑓 -soundness, then ⪰𝜏 satisfies SC.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF, 𝐸,𝐸′ ⊆ 𝐴 and 𝜏
an extension-ranking semantics. Assume 𝜏 satisfies 𝑐𝑓 -
soundness, then for any non self-attacking argument 𝑎
and for any self-attacking argument 𝑏, we have {𝑎} ⊐𝜏

𝐹

𝐸′ for any 𝐸′ with 𝑏 ∈ 𝐸′, since 𝐶𝐹 ({𝑎}, 𝐹 ) = ∅
and 𝐶𝐹 (𝐸′, 𝐹 ) ̸= ∅. So, the induced ranking will be
𝑎 ⪰𝜏

𝐹 𝑏.

Based on the satisfaction of SC, we know that ⪰𝜏 vio-
lates CP, CT and SCT [4].

Proposition 4. If extension-ranking semantics 𝜏 satisfies
𝑐𝑓 -soundness, then ⪰𝜏 violates CP, CT and SCT.

Since two credulously accepted arguments are always
ranked equally in the induced ranking, we can not iden-
tify whether one argument is attacked or not. Hence, VP
is violated.

Example 5. Let

𝐹 = ({𝑎, 𝑏, 𝑐}, {(𝑎, 𝑏), (𝑏, 𝑐)}

be an AF and 𝜏 any extension-ranking semantics satisfy-
ing 𝑎𝑑-soundness. We know that {𝑎, 𝑐} is an admissible
extension and therefore we have

𝑎 ≃𝜏
𝐹 𝑐 ≻𝜏

𝐹 𝑏.

However, 𝑎−
𝐹 = ∅ and 𝑐−𝐹 = {𝑏} and this violates VP.

Thimm and Kern-Isberner [22], proposed a weak ver-
sion of VP, where equivalence is enough. We see that ⪰𝜏

satisfies the weak version.

Similar to the example for showing the violation of
VP, we can show that two arguments are ranked equally
despite their attackers not being equally strong, which
violates QP.

Example 6. Let

𝐹 = ({𝑎, 𝑏, 𝑐, 𝑑, 𝑒}, {(𝑒, 𝑑), (𝑑, 𝑑), (𝑑, 𝑎), (𝑐, 𝑏), (𝑏, 𝑐)})

depicted in Figure 2 and 𝜏 any extension-ranking seman-
tics satisfying 𝑐𝑓 -soundness, then since 𝑑 is self-attacking,
we know that 𝑐 ≻𝜏

𝐹 𝑑. So, the attacker of 𝑏 is stronger
than the attacker of 𝑎, therefore QP would imply 𝑎 ≻𝜏

𝐹 𝑏.
However, 𝑎, 𝑏 ∈ 𝑐𝑟𝑒𝑑𝑎𝑑(𝐹 ) and therefore 𝑎 ≃𝜏

𝐹 𝑏. This is
a contradiction to QP.

𝑎 𝑏 𝑐𝑑𝑒

Figure 2: Counterexample for QP from Example 6.

𝑎

𝑏

𝑐

𝑑

𝑒𝑓

Figure 3: Counterexample for DP from Example 7.

𝑎

𝑎1𝑎2𝑎3

𝑎4𝑎5 𝑏

𝑏1

𝑏2

𝑏3

𝑏4

Figure 4: Counterexample for DDP from Example 8.

Two arguments, which are rejected and not self-
attacking, can be ranked equally. This fact entails the vi-
olation of DP. Even-though one argument has a defender
while the other one has none, both these arguments can
be rejected.

Example 7. Let

𝐹 = ({𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓}, {(𝑐, 𝑎), (𝑒, 𝑐), (𝑓, 𝑒), (𝑑, 𝑏)}

depicted in Figure 3 and

𝜏 ∈ {𝑟-𝑐𝑓, 𝑟-𝑎𝑑, 𝑟-𝑐𝑜, 𝑟-𝑝𝑟, 𝑟-𝑔𝑟, 𝑟-𝑠𝑠𝑡}.

Then |𝑎−
𝐹 | = |𝑏−𝐹 | = 1, while 𝑎 has one defender 𝑒 and

𝑏 has no defender. DP would entail 𝑎 ≻𝜏
𝐹 𝑏, however the

induced ranking entails 𝑎 ≃𝑟-𝑐𝑓
𝐹 𝑏 respectively 𝑎 ◁▷𝜏𝐹 𝑏 for

the remaining semantics.

The idea of DDP is that every attacker should be de-
feated by exactly one defender. This behaviour can not
be depicted, while using extension-ranking semantics,
since the number of defenders is not relevant for the
acceptance of an argument. An argument is credulous
accepted w.r.t. admissible semantics if we find at least
one set of defenders for this argument, it is not important
that these defenders are simple or distributed. Hence,
DDP is violated.

Example 8. Let 𝐹 be the AF depicted in Figure 4 and

𝜏 ∈ {𝑟-𝑐𝑓, 𝑟-𝑎𝑑, 𝑟-𝑐𝑜, 𝑟-𝑝𝑟, 𝑟-𝑔𝑟, 𝑟-𝑠𝑠𝑡}.
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For 𝑎, 𝑏 it holds that the number of attackers and defenders
are the same. However, the defense of 𝑎 is distributed and
simple, while the defense of 𝑏 is only simple. So, if DDP is
satisfied it has to hold that 𝑎 ⪰𝜏

𝐹 𝑏. For 𝜏 = 𝑟-𝑐𝑓 , we have
that both {𝑎} and {𝑏} are conflict-free, hence both these
sets are most plausible sets and therefore we have 𝑎 ≃𝜏

𝐹 𝑏,
which violates DDP.

Let 𝜏 = 𝑟-𝑎𝑑, we know that

𝑆 = {𝑎1, 𝑎3, 𝑎4, 𝑏1, 𝑏2, 𝑏4}

and its subsets are the admissible extensions and there-
fore also the most plausible sets. In particular, 𝑎, 𝑏 ∈
𝑟𝑒𝑗𝑎𝑑(𝐹 ). For set {𝑎} we have 𝐶𝐹 ({𝑎}, 𝐹 ) = ∅ and
𝑈𝐷({𝑎}, 𝐹 ) = {𝑎} and for {𝑏} we have 𝐶𝐹 ({𝑏}, 𝐹 ) =
∅ and𝑈𝐷({𝑏}, 𝐹 ) = {𝑏}, so there can not be a set𝐸 ̸⊆ 𝑆
with 𝐸 ≻𝑟-𝑎𝑑

𝐹 {𝑎}, otherwise this entails 𝐶𝐹 (𝐸) = ∅
and 𝑈𝐷(𝐸) ⊂ 𝑈𝐷({𝑎}), which means 𝑈𝐷(𝐸) = ∅.
However, Skiba et al. [6] have shown that this entails
𝐸 ∈ 𝑎𝑑(𝐹 ) meaning 𝐸 ⊆ 𝑆. Similar can be reason
for {𝑏}. Hence, {𝑎} and {𝑏} are on the second level, but
these two sets are incomparable, which entails 𝑎 ◁▷𝜏𝐹 𝑏 and
DDP is violated.

For the remaining extension-ranking semantics 𝜏 ∈
{𝑟-𝑐𝑜, 𝑟-𝑝𝑟, 𝑟-𝑔𝑟, 𝑟-𝑠𝑠𝑡}, 𝑎 and 𝑏 are incomparable, since
all these semantics are based on the admissible one. Hence,
DDP is violated.

AvsFD can be interpreted as an admissible credulously
accepted argument should be ranked better than any
rejected argument. So, the induced argument ranking
satisfies this principle.

Proposition 5. If extension-ranking semantics 𝜏 satisfies
𝑎𝑑-soundness, then ⪰𝜏 satisfies AvsFD.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF and 𝜏 an extension-
ranking semantics. Assume 𝜏 satisfies 𝑎𝑑-soundness,
then for any argument 𝑎 without an unattacked indirect
attacker, we know that 𝑎 has to be admissible credulous
accepted and an argument 𝑏 with an unattacked attacker
is admissible rejected. So, there exists 𝐸 ∈ 𝑚𝑖𝑛𝑎𝑑(𝐹 )
with 𝑎 ∈ 𝐸 such that for every 𝐸′ ⊆ 𝐴 with 𝑏 ∈ 𝐸′ we
have 𝐸 ⊐𝜏

𝐹 𝐸′, this implies 𝑎 ≻𝜏
𝐹 𝑏.

For an ranking-based semantics to satisfy NaE, two
unattacked argument should be handled equally. To re-
cap, unattacked arguments are always admissible credu-
lously accepted, and therefore this principle is satisfied by
ranking-based semantics defined based on Definition 16.

Proposition 6. If extension-ranking semantics 𝜏 satisfies
𝑎𝑑-soundness, then ⪰𝜏 satisfies NaE.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF and 𝜏 an extension-
ranking semantics. Assume 𝜏 satisfies 𝑎𝑑-soundness
and 𝑎, 𝑏 are unattacked arguments. Since 𝑎 and 𝑏 are

unattacked, we know that they are admissible credu-
lous accepted and there are sets 𝐸 ∈ 𝑚𝑖𝑛𝑎𝑑(𝐹 ) and
𝐸′ ∈ 𝑚𝑖𝑛𝑎𝑑(𝐹 ) with 𝑎 ∈ 𝐸 and 𝑏 ∈ 𝐸′, this implies
𝑎 ≃𝜏

𝐹 𝑏.

The main motivation of extension-ranking semantics
was to generalise the extension-based reasoning. The
goal was to keep 𝜎-extensions intact and compare the
remaining sets. For every credulously accepted argument,
we can find one 𝜎-extension containing that argument.
Hence, ⪰𝜏 satisfies 𝜎-C.

Proposition 7. If extension-ranking semantics 𝜏 satisfies
𝜎-Gen, then ⪰𝜏 satisfies 𝜎-C.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF and 𝜏 an extension-
ranking semantics. Assume 𝜏 satisfies 𝜎-generalisation,
then for any argument 𝑎 ∈ 𝐴 that is 𝜎 credulously ac-
cepted, there is a set 𝐸 ∈ 𝑚𝑖𝑛𝜎(𝐹 ) with 𝑎 ∈ 𝐸 and
for every 𝜎 rejected argument 𝑏 there is no set 𝐸′ s.t.
𝐸′ ∈ 𝑚𝑖𝑛𝜎(𝐹 ) and 𝑏 ∈ 𝐸′. This implies that 𝐸 ⊐𝜏

𝐹 𝐸′

and therefore 𝑎 ≻𝜏
𝐹 𝑏.

If the acceptance of an argument is the unavoidable
side effect of accepting another argument, then both these
arguments are credulously accepted and ranked equally.
Hence, w𝜎-S is satisfied.

Proposition 8. If extension-ranking semantics 𝜏 satisfies
𝜎-Gen, then ⪰𝜏 satisfies w𝜎-S.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF and 𝜏 an extension-
ranking semantics. Assume 𝜏 satisfies 𝜎-generalisation,
if 𝑏 is credulously accepted wrt. 𝜎 and for all 𝐸 ∈ 𝜎(𝐹 )
with 𝑏 ∈ 𝐸 we have 𝑎 ∈ 𝐸, then 𝑎 has to be credulously
accepted as well. This implies that there exists a set
𝐸 ∈ 𝑚𝑖𝑛𝜎(𝐹 ) with 𝑎, 𝑏 ∈ 𝐸 and therefore we can
entail that 𝑎 ≃𝜏

𝐹 𝑏.

As shown in the proof for Proposition 8 we know that
two credulously accepted arguments are ranked equally
strong with respect to ⪰𝜏 and therefore s𝜎-S is violated.

Since a number of principles are violated a discussion
about Definition 16 is evident. One obvious change of
this definition is to change the quantifiers used. So, for
an AF 𝐹 = (𝐴,𝑅), a extension-ranking semantics 𝜏 and
𝑎, 𝑏 ⊆ 𝐴 instead of searching for one set 𝐸 with 𝑎 ∈ 𝐸
it has to hold for all sets 𝐸 with 𝑎 ∈ 𝐸 that there is a
set 𝐸′ with 𝑏 ∈ 𝐸′ such that 𝐸 ⊐𝜏

𝐹 𝐸′. The problem
with this definition is that the resulting ranking is flat,
i.e. it has only one level, since the set 𝐸′ = 𝐴 is always
ranked at least as bad as any other set. Hence, this change
results in an even worse ranking. Besides Definition 16
a number of different social ranking approaches can be
found in the literature like in [13, 14, 15, 16]. A detailed
analysis of the resulting ranking-based semantics will be
done in future work.
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Another interesting observation is that the induced
ranking based on an extension-ranking semantics are in
a sense a generalisation of credulous acceptance. Every
credulously accepted argument is ranked best, however
we can say even more. If we look at the ranking induced
by the grounded extension-ranking semantics in Example
4, we see that argument 𝑎 ∈ 𝑐𝑟𝑒𝑑𝑔𝑟(𝐹 ), while 𝑏, 𝑐, 𝑑 /∈
𝑐𝑟𝑒𝑑𝑔𝑟(𝐹 ). However, we can still compare 𝑐 and 𝑑 with 𝑏
and can state that 𝑐 and 𝑑 are stronger arguments than 𝑏.
Such a statement is not possible with classical credulously
acceptance.

4. Lifting to Extension-ranking
Semantics

A number of approaches to lift a ranking over objects
into a ranking over sets of objects were already discussed
in the area of computation social choice [23] and applied
to structured argumentation [8] or preference-based ar-
gumentation frameworks [9, 10, 11, 12]. For both these
frameworks, the preference data is part of the input and
not based on the structure of the argumentation frame-
work. The goal of this section is to discuss an approach
to define lifting operators without the need of additional
information like preference data.

Definition 17 (Lifting Operator). For an AF 𝐹 = (𝐴,𝑅)
an lifting operator 𝜄 takes as input a set of arguments
𝐸 ⊆ 𝐴 and a ranking-based semantics 𝜌 on 𝐸 and outputs
an extension-ranking semantics ⊒𝜌

𝐹 on the powerset of 𝐸.

Lifting operators were already discussed in the context
of structured argumentation and in particular for the
ASPIC+ framework [24]. Maly and Wallner [8] have
shown that the elitist lifting operator satisfies a number
of interesting principles in the structured case. The elitist
lifting operator states that for a set 𝐸 to be preferred
over another set 𝐸′, there has to be an argument 𝑎 in 𝐸
which is ranked better than any argument in 𝐸′ wrt. a
ranking-based semantics 𝜌.

Definition 18. Let 𝐹 = (𝐴,𝑅) be an AF, 𝜌 and ranking-
based semantics and 𝐸,𝐸′ ⊆ 𝐴. We define an extension-
ranking semantics ⊒𝜌-𝑒𝑙𝑖 by: 𝐸 ⊒𝜌-𝑒𝑙𝑖

𝐹 𝐸′ iff there is an
argument 𝑎 ∈ 𝐸 s.t. for all arguments 𝑏 ∈ 𝐸′ we have
𝑎 ⪰𝜌

𝐹 𝑏.

In a sense, the elitist operator focuses on the best ar-
gument of each set.

Example 9. Let us continue with Example 1. The h-
categoriser function returns

𝑎 ≻𝐶𝑎𝑡
𝐹 𝑑 ≻𝐶𝑎𝑡

𝐹 𝑏 ≻𝐶𝑎𝑡
𝐹 𝑐,

hence applying ⊒𝐶𝑎𝑡-𝑒𝑙𝑖
𝐹 will return an extension-ranking

for 𝐹 . Looking at the sets {𝑑} and {𝑎, 𝑏}, we see that
{𝑎, 𝑏} ⊐𝐶𝑎𝑡-𝑒𝑙𝑖

𝐹 {𝑑}, since 𝑎 ≻𝐶𝑎𝑡
𝐹 𝑑.

The example shows a few shortcomings. Since
{𝑎, 𝑏} ⊐𝐶𝑎𝑡-𝑒𝑙𝑖

𝐹 {𝑑}, we know that 𝑐𝑓 -soundness is vi-
olated. If we focus on extensions alone, then conflict-
freeness is the most basic propriety for the acceptance of
a set. In addition to the violation of 𝑐𝑓 -soundness, we see
that the set containing all arguments 𝐴 is ranked highly,
despite being the most conflicting set. If we follow the
justification of Skiba et al. [6], we argue that this is a
disadvantage of this approach. However, the goal of the
work of Skiba et al. was to generalise the extension-based
reasoning process. Blümel and Thimm [21] have dis-
cussed the counter-intuitive behaviour of ranking-based
semantics from the viewpoint of extension-based reason-
ing. The majority of the ranking-based semantics used in
the literature do not satisfy 𝜎-C, hence it is not surprising,
that ⊒𝐶𝑎𝑡-𝑒𝑙𝑖 is not a generalisation of extension-based
reasoning.

Next, we discuss the principles ⊒𝐶𝑎𝑡-𝑒𝑙𝑖
𝐹 does satisfy.

For SI we see easily, that ⊒𝐶𝑎𝑡-𝑒𝑙𝑖
𝐹 satisfies this principle,

since the names of the arguments are not important. We
show a more general statement.

Proposition 9. If the underlying ranking-based semantics
𝜌 satisfies Abs, then ⊒𝜌-𝑒𝑙𝑖

𝐹 satisfies SI.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF, 𝜌 a ranking-based se-
mantics, which satisfies abstraction, and two arguments
𝑎, 𝑏 ∈ 𝐴, then for any isomorphism 𝛾(𝐹 ) it holds that
if 𝑎 ⪰𝜌

𝐹 𝑏, then 𝛾(𝑎) ⪰𝜌
𝛾(𝐹 ) 𝛾(𝑏). Hence, for two sets

𝐸,𝐸′ ⊆ 𝐴 we have if 𝐸 ⊒𝜌-𝑒𝑙𝑖
𝐹 𝐸′, then there is an

argument 𝑎 ∈ 𝐸 s.t. 𝑎 ⪰𝜌
𝐹 𝑏 and this argument 𝑎 also

exists in 𝛾(𝐹 ) therefore 𝛾(𝐸) ⊒𝜌-𝑒𝑙𝑖
𝛾(𝐹 ) 𝛾(𝐸

′).

In Example 9, we have seen that ⊒𝐶𝑎𝑡-𝑒𝑙𝑖
𝐹 does not

satisfies 𝑐𝑓 -soundness and therefore this semantics can
not satisfy 𝜎-Gen for 𝜎 ∈ {𝑎𝑑, 𝑐𝑜, 𝑔𝑟, 𝑝𝑟, 𝑠𝑠𝑡}. In order
to show that one set of arguments is ranked better than
another one, we only have to find one argument in the
first set which is better than any argument in the sec-
ond set. This observation yield to conflicting sets being
ranked highly, if these sets contain one highly ranked
argument, especially the set containing all arguments 𝐴
will be ranked as a most plausible set. This shows that
for no ranking-based semantics 𝜌 the induced extension-
ranking semantics ⊒𝜌-𝑒𝑙𝑖

𝐹 satisfies 𝑐𝑓 -soundness.
For every set 𝐸, ⊒𝐶𝑎𝑡-𝑒𝑙𝑖

𝐹 focuses only on the best
ranked element, hence this best ranked argument domi-
nates the whole set. This domination of one argument
also holds in disjoint AFs. Hence, we can show that
⊒𝐶𝑎𝑡-𝑒𝑙𝑖

𝐹 satisfies Comp. We can show an even stronger
proposition.

Proposition 10. If the underlying ranking-based seman-
tics 𝜌 satisfies In, then ⊒𝜌-𝑒𝑙𝑖

𝐹 satisfies Comp.
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Proof. Let 𝐹 be an AF s.t. 𝐹 = 𝐹1 ∪ 𝐹2 = (𝐴1, 𝑅1) ∪
(𝐴2, 𝑅2) with 𝐴1 ∩ 𝐴2 = ∅, 𝐸,𝐸′ ⊆ 𝐴1 ∪ 𝐴2 and
𝜌 an ranking-based semantics satisfying independence.
Assume 𝐸 ⊒𝜌-𝑒𝑙𝑖

𝐹1
𝐸′ and 𝐸 ⊒𝜌-𝑒𝑙𝑖

𝐹2
𝐸′, so there is an

argument 𝑎 ∈ 𝐸 ∩ 𝐴1 s.t. 𝑎 ⪰𝜌
𝐹1

𝑏 for all 𝑏 ∈ 𝐸′ ∩ 𝐴1

and there is an argument 𝑐 ∈ 𝐸 ∩ 𝐴2 s.t. 𝑐 ⪰𝜌
𝐹2

𝑑 for
all 𝑑 ∈ 𝐸′ ∩ 𝐴2. So {𝑎, 𝑐} ⊆ 𝐸, assume 𝐸′ ⊐𝜌-𝑒𝑙𝑖

𝐹 𝐸,
then there has to be an argument 𝑒 ∈ 𝐸′ s.t. 𝑒 ≻𝜌

𝐹 𝑎
and 𝑒 ≻𝜌

𝐹 𝑐, since 𝜌 satisfies independence, we know
that if 𝑒 ≻𝜌

𝐹 𝑎 then 𝑒 ≻𝜌
𝐹1

𝑎, same holds for 𝑐. That
means there is an argument 𝑒, which is ranked better
than 𝑎 in 𝐹1, hence 𝑎 can not be ranked better than
every argument in 𝐸′ and therefore 𝐸 ̸⊒𝜌-𝑒𝑙𝑖

𝐹1
𝐸′, which

is a contradiction to our assumption and proofing that
composition is satisfied.

While one dominating argument is helpful for satisfy-
ing Comp, this behaviour violates DeComp.

Example 10. Let 𝐹 = ({𝑎, 𝑏, 𝑐, 𝑑}, {(𝑎, 𝑏), (𝑐, 𝑑)}) and
the resulting ranking for every ranking-based semantics 𝜌,
which satisfies VP like h-categoriser is:

𝑎 ≃𝜌
𝐹 𝑐 ≻𝜌

𝐹 𝑏 ≃𝜌
𝐹 𝑑.

Let us look at the two sets 𝐸 = {𝑎, 𝑑} and 𝐸′ = {𝑏, 𝑐},
then these two sets are equally ranked in 𝐹 wrt. ⊒𝜌-𝑒𝑙𝑖

𝐹 .
However, if we split this AF into its connected components
𝐹1 = ({𝑎, 𝑏}, {(𝑎, 𝑏)}) and 𝐹2 = ({𝑐, 𝑑}, {(𝑐, 𝑑)}),
then we see that 𝐸 ⊐𝜌-𝑒𝑙𝑖

𝐹1
𝐸′ and 𝐸′ ⊐𝜌-𝑒𝑙𝑖

𝐹2
𝐸 and there-

fore DeComp is violated.

Before we discuss the reinstatement principles, we
have to discuss the empty set. The elitist lifting operator
is not applicable for the empty set. Hence, the empty set
has to be handled differently. Modgil and Prakken [24]
argued that the empty set should not be ranked better
than any non-empty set and any non-empty set should
be ranked better than the empty set. In the context of
extension-based reasoning we can argue that this should
not be the case, since the empty set is always an admissi-
ble extension and if 𝑎𝑑-Gen should be satisfied, then the
empty set should be among the best ranked sets. How-
ever, in Example 9 we have seen that ⊒𝐶𝑎𝑡-𝑒𝑙𝑖

𝐹 does not
satisfies 𝑐𝑓 -soundness and therefore will not satisfy any
version of 𝜎-Gen. Investigating ⊒𝜌-𝑒𝑙𝑖

𝐹 further, we see
that for every non-empty set 𝐸 every superset of 𝐸 is at
least as plausible as 𝐸. Following this observation, then
we should agree with Modgil and Prakken and rank the
empty set as the least preferred set. In the remainder of
this section, we will discuss both approaches to handle
the empty set.

Using the fact that for every non-empty set 𝐸 their
supersets are ranked at least as good as 𝐸, we see that
adding any argument 𝑎 into 𝐸 the ranking of 𝐸 will not
get worse and this implies that wRI is satisfied.

Proposition 11. If 𝜌 satisfies VP and NaE, then ⊒𝜌-𝑒𝑙𝑖
𝐹

satisfies wRI.

Proof. Let 𝐹 = (𝐴,𝑅) be an AF, 𝜌 any ranking-based
semantics and 𝐸 ⊆ 𝐴. We know that for every superset
𝐸′ of 𝐸 it holds that 𝐸′ ⊒𝜌-𝑒𝑙𝑖

𝐹 𝐸, since every argument
in 𝐸 is also in 𝐸′, therefore if an argument 𝑎 from 𝐸 is
ranked better any argument inside another set 𝐸′′ and
we can follow that 𝐸 ⊒𝜌-𝑒𝑙𝑖

𝐹 𝐸′′, we know that 𝑎 ∈ 𝐸′

and therefore also 𝐸′ ⊒𝜌-𝑒𝑙𝑖
𝐹 𝐸′′. Since 𝐸 ∪ {𝑎} for

𝑎 ∈ ℱ𝐹 (𝐸), 𝑎 /∈ 𝐸 and 𝑎 /∈ (𝐸−
𝐹 ∪𝐸+

𝐹 ) is a superset of
𝐸, we know that weak reinstatement is satisfied.

Next, we discuss the two variations of handling ∅, the
empty set is either among the best ranked sets or the
worst ranked set. If 𝐸 = ∅ and 𝐸′ ⊐𝜌-𝑒𝑙𝑖

𝐹 𝐸 for ev-
ery non-empty set 𝐸′ ⊆ 𝐴, then weak reinstatement is
satisfied, since every set is ranked better then ∅. Es-
pecially the set {𝑎}, with 𝑎 ∈ ℱ𝐹 (𝐸), 𝑎 /∈ 𝐸 and
𝑎 /∈ (𝐸−

𝐹 ∪𝐸+
𝐹 ). If 𝐸 = ∅ and 𝐸 ⊒𝜌-𝑒𝑙𝑖

𝐹 𝐸′ for every 𝐸′,
then for 𝑎 ∈ ℱ𝐹 (𝐸), 𝑎 /∈ 𝐸 and 𝑎 /∈ (𝐸−

𝐹 ∪ 𝐸+
𝐹 ), we

know that 𝑎−
𝐹 = ∅ otherwise 𝑎 /∈ ℱ𝐹 (𝐸). If 𝜌 satisfies

void-precedence and non-attack equivalence, then there
is no 𝑏 ∈ 𝐴 s.t. 𝑏 ≻𝜌

𝐹 𝑎 this implies that for every set
𝐸′ containing 𝑎, we know that 𝐸′ ⊒𝜌-𝑒𝑙𝑖

𝐹 𝐸′′ for any set
𝐸′′ ⊆ 𝐴 and especially 𝐸′′ = ∅. This implies that weak
reinstatement is satisfied.

While ⊒𝐶𝑎𝑡-𝑒𝑙𝑖
𝐹 satisfies wRI, we can easily see that sRI

is violated.

Example 11. Let 𝐹 = ({𝑎, 𝑏, 𝑐}, {(𝑎, 𝑏), (𝑏, 𝑐)} be an
AF and the resulting ranking based on h-categoriser is
𝑎 ≻𝐶𝑎𝑡

𝐹 𝑐 ≻𝐶𝑎𝑡
𝐹 𝑏 and this results in {𝑎} ≡𝐶𝑎𝑡-𝑒𝑙𝑖

𝐹 {𝑎, 𝑐},
despite the fact that 𝑐 is defended by {𝑎} and does not
attack 𝑎. Hence, sRI is violated.

Looking back at the proofs, we see that there is no
difference between ranking the empty set as the best
or the worst set w.r.t. the satisfied principles. Hence,
the position of the empty set should be based on the
application. If admissible sets should be ranked highly,
then the empty set should be ranked highly.

5. Discussion
In this work, we discussed the connection between
ranking-based semantics and extension-ranking seman-
tics. We proposed approaches to transform extension-
ranking semantics into ranking-based semantics (social
ranking) and the other way around, from ranking-based
semantics to extension-ranking semantics (liftings). Ad-
ditionally, we analysed the properties of the resulting se-
mantics based on principles out of literature for ranking-
based and extension-ranking semantics.

Combining ranking-based semantics and extension-
based reasoning was already discussed in [25]. One of
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𝑎

𝑏

𝑐

𝑑

𝑒

Figure 5: AF for Example 12, where arguments 𝑑 and 𝑒 are
added later.

the goals of the authors was to refine the extension-based
reasoning process with the help of ranking-based seman-
tics. The strength of a set is the aggregated strength of
each argument contained inside that set. One way to es-
tablish the strength of each argument are ranking-based
semantics and the resulting rankings over arguments.
Based on the number of arguments ranked better than an
argument, the strength of that argument is established.

Example 12. Let

𝐹 = ({𝑎, 𝑏, 𝑐}, {(𝑎, 𝑏), (𝑏, 𝑎), (𝑎, 𝑐), (𝑏, 𝑐), (𝑐, 𝑏), (𝑐, 𝑐)})

as depicted in Figure 5 be an AF. The corresponding ranking
based on h-categoriser is 𝑎 ≻𝐶𝑎𝑡

𝐹 𝑏 ≻𝐶𝑎𝑡
𝐹 𝑐. Argument 𝑎

receives a score of 0, 𝑏 a score of 1 and 𝑐 a score of 2. If
we sum up the strength values of each argument inside set
we can establish the strength of each set. For example, set
𝐸 = {𝑎, 𝑏} has the value of 1 while set 𝐸′ = {𝑐} has the
value of 2, meaning 𝐸 should be ranked better than 𝐸′. If
we add two arguments 𝑑, 𝑒, which are independent from
any other argument i.e. they do not attack 𝑎, 𝑏 or 𝑐 nor are
attacked by these arguments, the resulting ranking is:

𝑑 ≃𝐶𝑎𝑡
𝐹 𝑒 ≻𝐶𝑎𝑡

𝐹 𝑎 ≻𝐶𝑎𝑡
𝐹 𝑏 ≻𝐶𝑎𝑡

𝐹 𝑐.

However, for the two sets 𝐸 and 𝐸′ we see that 𝐸 has the
aggregate strength value of 2 + 3 = 5 and for 𝐸′ the
score is 4, meaning that 𝐸′ should be ranked better than
𝐸. Hence, this ranking is influenced by unconnected and
independent elements, which can be seen as a big disadvan-
tage. This example shows that aggregation of the strength
values of each argument inside a set is possible, however
the resulting ranking has undesired properties. Hence, a
discussion about the used ranking-based semantics and
aggregation functions is needed.

Finding the “best” extensions is one of the focal points
for discussing preference-based argumentation frame-
works (short PAF ) [26], which are extensions of AFs,
where in addition to sets of arguments and attacks, a
preorder ≥ over the set of arguments is given. Using
these preorders the “best” extensions can be found with
the help of operators similar to Definition 18 [9, 10, 11, 12].
The difference between PAFs and our work is that PAF

receive the rankings as a fixed input. This ranking is not
based on the behaviour of the arguments or the struc-
ture of the underlying AFs. Additionally, PAFs are only
focused on 𝜎-extensions, while our work focuses on the
powerset of arguments.

The semantics proposed in this work have some unde-
sirable behaviour. For the social ranking case, we receive
a generalisation of credulous acceptance, however a num-
ber of desirable principles are violated. For the lifting
case, the most conflicting set is ranked among the best
sets. Additionally, applying these two semantics one after
another result in a flat ranking, i.e. every argument resp.
set of arguments are ranked equally. These behaviours
can be used as a motivation to define new social rank-
ing solutions and lifting operators specifically tailored to
abstract argumentation.
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