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Abstract 

Mathematical modeling and the related computer experiment are now one of the main
means  of  studying  objects,  processes  and  phenomena  of  various  nature:  in  science,
engineering,  economics,  society,  etc.  A  significant  improvement  in  the  quality  of
mathematical modeling in many areas of science and engineering is possible only with
the use of fundamentally new three-dimensional models, the transition from computer
simulation of individual components and assemblies to the calculation and optimization
of the product as a whole. It  is obvious that the consideration of problems in such a
formulation  leads  to  discrete  mathematical  models  of  super-large  sizes.  Existing
supercomputers of different parallel architectures make it  possible to efficiently solve
such problems. However, the time for solving problems on parallel computers consists of
the time of the actual solution and the time of performing additional operations, that are
necessary for the exchange of information between computing devices, that is overhead
costs. This is especially true for problems of linear algebra with different structures of
sparse matrices of large volumes, that arise in the mathematical modeling of processes.
Sparse matrix compaction schemes, decomposition of data arrays between processors are
one of the main factors for the effective solution of these problems on parallel computers.
The  paper  considers  efficient  methods  for  processing  sparse  matrices  of  arbitrary
structure  for  the  purpose  of  effective  mathematical  modeling  of  structural  strength
problems on parallel computers. Various methods of regularization and decomposition of
sparse  matrices  of  arbitrary  structure,  efficient  data  storage  schemes,  technology for
studying  the  conditionality  of  a  matrix  with  approximate  data  on  a  computer  are
proposed. This way of using sparse matrices in mathematical modeling ensures more
efficient  use of  computing resources  and reliability of computer  results.  Problems of
mathematical  modeling  are  presented,  where  the  considered  methods  of  processing
sparse matrices were effectively applied.
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1. Introduction

Nowadays,  one of the main directions of scientific and technical progress is  the mathematical
modeling  of  complex  objects,  processes,  and  phenomena,  which  is  the  basis  of  modern  applied
developments in various fields of science and technology. With the advent and constant development
of supercomputers of various architectures, the problems of their effective use, the expansion of the
range of tasks that need to be solved, and the assurance of the reliability of computer results become
very relevant.  As a  practice  and literary sources  show,  mathematical  modeling of  80-85% of  all
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scientific and technical problems is reduced to solving problems of linear algebra - systems of linear
algebraic equations (SLAE) and algebraic eigenvalue problem (AEVP) for sparse matrices of various
structures. The efficiency of solving the entire problem of mathematical modeling largely depends on
the efficiency of solving these problems.

Despite the fact that there is a huge amount of software for solving linear algebra problems on
various computer architectures on the international market, new applied problems are appearing that
require new efficient algorithms. This is primarily due to the difference in the types of matrices (dense
and  sparse),  structural  properties  (band,  arbitrary  structure,  triangular  and  others),  mathematical
properties (singular and non-singular,  positive definite,  sign-definite etc.),  and ways of processing
them on different computer architectures.

2. Mathematical  modeling  of  problems  streng  structurals  and  stability  of
new composite materials

When designing objects for various purposes, it often becomes necessary to carry out calculations
of the strength of structures of the whole objects and their individual elements. Such problems arise,
in particular, in various branches of mechanical engineering (ship building, aircraft building, rocket
building, engine building, etc.), in industrial and civil engineering (calculation of individual structural
elements or structures as a whole), etc.

Increasing requirements for the quality of design solutions, the use of new constructive materials
lead to the development of refined three-dimensional  mathematical models with huge amounts of
processed information. Despite the availability of powerful supercomputers of different architectures,
there  is  a  need  to  use  efficient  methods  of  computer  data  processing,  the  volume  of  which  is
constantly growing.

2.1. Mathematical formulations of structural strength problems

Mathematical problems of calculating the strength of structures using the principle of possible
displacements are reduced to the following variational problems [1]:

It is necessary to find a vector function that  
u∈U 0 , for any possible displacement  

v∈U 0  satisfies the
integral identity 

 for a static problem
a(u ,v)=l( f , v); (1)

 for dynamic problem
a(u ,v)+b ¿ (2)

u (t0 )=u(0) ,       u ( {t} rsub {0} )= {u} ^ {(1)} (3)

 for the problem of eigen oscillations
a(u ,v )=λb(u ,v )

;
(4)

where U 0 – is the infinite-dimensional functional space of possible displacements; symmetrical bilinear forms

a(u ,v),  b ¿,  c (u ' , v) symmetrical bilinear forms are proportional in accordance with the potential, kinetic

energy of deformation and braking energy, and the linear form l( f , v) is proportional to the work of the applied

(external) forces under load. The first time derivative of the vector function  u(t , χ ) is denoted  u ', and the

second u .
Only linear problems are considered here, since it is assumed that the solution of a nonlinear

problem can be reduced to solving a sequence of linear problems.

2.2. Discretization  of  problems  of  mathematical  modeling  of  structural
strength



The  theoretical  basis  of  most  software  tools  for  calculating  the  strength  of  structures,  for
example, the SP LIRA software package designed to solve problems of calculating the strength of
building  structures  [2–4],  is  the  finite  element  method  (FEM)  [5],  implemented  in  the  form  of
displacements.  The choice of this  form is explained by the simplicity of its  algorithmization and
physical interpretation, the availability of unified methods for constructing stiffness matrices and load
vectors for various types of finite elements, the possibility of taking into account arbitrary boundary
conditions and the complex geometry of the estimated structure.

To obtain a discrete problem with the help of the FEM, the area occupied by the structure is
distributed into finite elements, nodes and their degrees of freedom (displacement and rotation angles
of nodes) are assigned. The degrees of freedom correspond to the basic (coordinate, approximating)
vector-functions ϕi, of nonzeros only on elements containing a node corresponding to a given degree
of freedom. In addition, the following relations hold for the degrees of freedom and basis functions

L j(ϕi )=δ ij
, (5)

where 
δij  – is the Kronecker symbol, and the result of the operation L j(ϕi) is the value of the

component component of the vector-function  
ϕi  for the degrees of freedom L j.

Approximate  solutions  of  the  corresponding  problems  are  sought  in  the  finite-dimensional

subspace U 0
h
 of space U 0. Vector-functions from subspace 

U 0
h

 are piecewise polynomial and can be
represented  as  a  linear  combination  of  basis  vector-functions,  which  satisfies  the  main  (kinetic)
conditions for a linear combination of basis vector-functions

uh( χ)=∑
i=1

n

xiϕ i( χ),
(6)

where ϕi (i=1,2 ,... , n) – the piecewise polynomial basis mentioned above U 0
h. 

Then the discrete problems, that should be solved have the form [6]: 
 systems linear algebraic equations for a statistical problem (1)

Ax=b; (7)

 problems with initial conditions for dynamic problem (2), (3)
Bx' '( t)+Cx ' (t )+Ax (t)=b (t),   x (t0)=x(0),   x ' (t 0)=x(1); (8)

 algebraic eigenvalue problem for the problem of eigen oscillations (4)

Ax=λhBx . (9)

2.3. Mathematical formulations of structural (composite materials) stability
problems

To investigate the sustainability of composite materials, the static method of the three-dimensional
linearized theory of stability is used within the framework of the second version of the theory of small
subcritical deformations. The subcritical state is determined from the solution of the plane problem of
the linear theory of elasticity of piecewise homogeneous bodies for various boundary conditions,
which correspond to a three-layer element of periodicity in the case of a material and a three-layer
element of a structure with lateral sides free from stresses in the case of a composite sample [7].

When  using  the  static  Euler  method,  the  stability  problem  is  reduced  to  a  generalized
eigenvalue  problem  of  the  form  (9),  in  which  the  minimum  (in  general,  modulo)  eigenvalue
determines the critical load, and the corresponding function determines  uk (uk ,1 , uk ,2) – the form of
stability loss. The following are accepted as the main mathematical models: the equation of the linear
theory of elasticity of piecewise homogeneous environment to determine the subcritical stress-strain
state;  equation  of  the  three-dimensional  linearized  theory  of  stability  at  small  deformations  to
determine  the critical  parameters.  The  model  of  a  piecewise homogeneous medium is  used  as  a
mechanical model. Composite components are modeled by linearly elastic isotropic bodies [7].

Thus,  for  a  plane  deformation,  we  obtain  an  eigenvalue  problem  for  a  system  of  partial
differential  equations  with  variable  coefficients  depending  on  two  variables.  In  this  case  (the
investigation of the stability of a composite material under a compressive load), the conditions of self-



adjointness  of  the  operators  of  the  problem of  determining  the  initial  stress-strain  state  and  the
generalized eigenvalue problem are satisfied, which corresponds to the problem of three-dimensional
stability  theory.  In  addition,  the  differential  operators  of  the  problems  under  consideration  are
positive-definite under the condition that there is no rigid displacement.

2.4. Discretization  of  problems  of  mathematical  modeling  of  structural
(composite materials) stability

For the numerical solution of the problem of the three-dimensional linearized theory of stability
and the problem of the linear theory of elasticity, a discrete model is used, which is constructed by the
variational-difference  method  (finite  differences)  using  the  concept  of  basic  schemes.  In  the
computational domain, with the help of straight lines, a difference grid nonuniform in each direction
is introduced so that the material is homogeneous within one grid cell. Thus, the discrete problem of
determining the subcritical stress-strain state (the problem of the linear theory of elasticity) is written
in the form of an SLAE of the form (7) with a sparse symmetric positive definite matrix. The discrete
problem for the stability problem is written in the form of a generalized AEVP of the form (9) of
sparse symmetric positive definite matrices [7].

2.5. Increasing the efficiency of mathematical modeling on a computer

In order to provide an effective computer solution of problems (7)–(9), it is necessary to take
into account the following features [4, 7, 8]:

 matrices of discrete problems – stiffness  A, mass  B, damping  С are symmetrical, positive
definite or positive semidefinite, and have a sparse structure (band, profile, block, etc.; a matrix is
called sparse if the number of its non-zero elements is much less than their total number n2, where
n is the order of the matrix) [1, 6].
 the order of the matrices of the discrete problems to be solved is  O(105

)−O (1 08
), in the

near future the era of exascale computing is coming [8, 9];
 elements of matrices and vectors that  occur in the process of mathematical  modeling are
calculated with errors caused by errors in the original data, discretization errors, and errors in
calculating the values of these data on the computer [8].

Therefore,  for  the  effective  use  of  computing  resources  of  modern  supercomputers  in  the
mathematical  modeling  of  structural  strength  problems  with  approximate  data  and  ensuring  the
reliability of the obtained computer results, it is necessary:

 identify the original structure of the sparse matrix; 
 determine the need for structural regularization and choose the most efficient (for a given
computer architecture) regular structure of matrix;
 carry out structural regularization of sparse matrices - reducing an arbitrary initial structure of
matrix to a regular block-sparse one (block-tape, block-profile, block-skyscraper, block-diagonal
with bordering, etc.); 
 choose or develop the most efficient (for a given computer architecture, taking into account
the regularized structure of matrices) parallel algorithm for solving the problem;
 choose,  in  accordance  with  the  algorithm,  a  decomposition  of  matrices  scheme  (the
distribution between processor devices of a parallel computer);
 choose, in accordance with the algorithm, the scheme for storage of matrix elements in a
computer;
 investigate of the correspondence the mathematical properties of the matrix, entered into the
computer,  with  approximate  data  and the  functional  purpose  of  the  algorithm for  solving  the
problem. 
Such a  scheme for  researching and solving SLAE and AEVP for  sparse  matrices  of  various

structures  is  implemented  in  the  created  parallel  algorithms  for  modern  computers  with  parallel



organization of computing, namely for MIMD-architecture computers with multi-core processors and
hybrid architecture [4, 7, 8].

3. Ways for structural regularization, decomposition and storage of sparse
matrices for efficient modeling of structural strength

The structure  of  non-zero elements  (the  structure  of  a  sparse  matrix)  is  determined by the
numbering of unknown problems and can be either regular (for example, band, profile, block-diagonal
with framing, etc.), or irregular (arbitrary). The structures of factorization matrices can be obtained by
performing the so-called symbol factorization of the initial  matrix. In most software tools,  before
forming the matrices of calculation problems, the unknowns are renumbered (i.e., the sparse structure
is  reorganized)  in  order  to  reduce  the  total  number  of  floating-point  arithmetic  operations  when
solving calculation problems. Figure 1 shows the structures of matrices (actually factorized matrices)
of calculation problems that arise when modeling the stress-strain state of structures.

Figure 1: Examples of Sparse Matrix Structures

3.1. Reduction of sparse matrices of arbitrary structure to a regular form

Problems of solving linear algebra problems with sparse matrices and ways to solve them are
considered in [10–13]. There are a number of methods that allows to control the filling of the matrix
when solving problems on computers. Both methods of general purpose [10, 11] and those oriented to
matrices of a specific type [12, 13] have been developed. Depending on the task and features of the
matrix, it is possible to optimize its portrait by changing the width of the tape, reducing the profile of
the matrix, adjusting the total amount of filling, and bringing the structure to a certain form [10, 11]. 

Among these methods, the following should be mentioned:
 • the Cuthill-McKee method and the factor tree method – the use of these methods ensures the
concentration of non-zero elements as close as possible to the main diagonal, which, as a rule,
makes it possible to represent the matrix in a band or in profile form;
 • method of parallel sections – the use of this method makes it possible to represent the matrix
as a block-diagonal (with large diagonal blocks) with a border (the order of the diagonal frame
block should be much less than the orders of the main diagonal of blocks) [10, 11];
 •  minimum  degree  method  –  when  using  this  method,  as  a  rule,  a  reordered  matrix  is
obtained, for the development of which fewer arithmetic operations are required;  the resulting
structure  is  called  "skyscraper"  [2–4]  because  this  structure  resembles  the  skyscrapers  of
Manhattan (figure 2). 



Figure 2: Portrait of the upper triangle of the “skyscraper” matrix 

Discrete problems with matrices of this type arise in the problems of calculating the stability of
structures.  For  effective  implementation  in  algorithms,  for  example,  matrix-matrix  operations  of
sparse matrices, it is advisable to first reorder (or immediately form) them so that the vast majority of
nonzero elements are located in the most dense matrix blocks: i.e, determine zero blocks (all elements
are identically equal to 0 ) and non-zero (have at least one non-zero element). It is also desirable that
non-zero  blocks  are  filled  as  much  as  possible.  The  block  sizes  are  determined  based  on  the
architecture of the computer.

If in the future it is supposed to use the decomposition of the sparse matrix into the product of
triangular matrices (e.g., LU , L LT , etc.), then it is necessary to determine the block-sparse structure
of the decomposition matrices using the symbolic decomposition of the original matrix. After that, it
is necessary to optimize the block-sparse structure of the original matrix or decomposition matrices,
using one of the above algorithms and replacing the matrix elements in the algorithms with blocks. In
many cases, it is expedient to combine adjacent (in a row or column) non-zero off-diagonal blocks of
the optimized matrix structure into one rectangular block (tile), which will be further processed as a
whole. In some cases, it is advisable to optimize the structure of diagonal blocks to reduce the number
of arithmetic operations with individual blocks of the resulting block-sparse matrix.

Consider another type of sparse matrix – a bordered block-diagonal matrix (figure 3). 

Figure 3: Block-Diagonal Bordered Matrix (p = 4)

Discrete problems with matrices of this type appear, for example, when solving boundary value
problems by the finite element method or the finite difference method, if the domain is divided into
subregions and discretization is carried out, and the unknowns of the discrete problem are numbered
in the following order. First, the unknowns that belong to only one subregions, sequentially through
the subregions. Then, in the same order, the unknowns belonging to two subregions, then three, and so
on - these unknowns form a border. For efficient parallelization, it is necessary that the dimensions of
the diagonal blocks corresponding to the unknowns of one subregions exceed the dimensions of the
border of the diagonal block by an order of magnitude or more.



3.2. Decomposition (distribution schemes) of sparse matrices

Many methods for solving linear algebra problems, that is used in modeling structural strength
problems, are based on algorithms for decomposing a matrix into a product of matrices of standard
types,  for  example,  lower  and upper  triangular  matrices.  Such algorithms are  characterized by a
gradual decrease from step to step in the size of the processed part of the matrix. Therefore, it is
important to ensure approximately the same amount of calculations, exchanges and synchronizations
performed by each process or thread on a parallel computing model, that is, to exclude the influence
of the Haydn effect [8, 14, 15].

As research has shown, parallel  versions of these algorithms,  in  which the so-called cyclic
distribution schemes and processing matrices are created (see, for example, [8, 14, 15]), provide a
sufficiently good load balance of processes (flows).

Quite  often,  one-dimensional  block-cyclic  schemes  are  used:  rows  or  columns  of  non-zero
blocks of the matrix are distributed cyclically between processes or threads of the upper level of
parallelism, for example,  if  the  q-th process is distributed elements of matrix rows with numbers
sr+1 , ... , sr+r, then (q+1) -th process will have rows with numbers i-th process will have rows with
numbers s(r+1)+1 , ... , s(r+1)+s, where s  is the number of rows in the block (we can talk about
the r-th and (r + 1)-th rows of square matrix blocks of order s).

In the case of a regular sparse matrix structure, parallel algorithms that use one-dimensional
block-cyclic schemes for allocating matrix elements can provide an approximately equal amount of
computations and exchanges performed by each parallel process or thread at each instant of time (see,
for example, [8, 14, 15]).

Such  a  regular  structure  is  primarily  the  band  structure  of  the  matrix  under  the  obvious
condition that the half-width of the matrix band m exceeds the product s× p , where p  is the number
of processes or threads. In the case of a regular profile structure of the system matrix, by varying the
value of s  and p , one can practically balance the load of parallel processes at each moment of time

if 
ce /n>sp , where 

ce  is the total number of subdiagonal elements in the matrix profile.
For block-diagonal bordered matrices, cyclic distribution schemes do not allow balancing the

load  of  processes,  and  it  is  advisable  to  use  block  distribution  schemes  between  computational
elements. That means that each diagonal block, together with the corresponding off-diagonal border
block, is distributed to a separate process (or thread). A diagonal border block can also be allocated in
a separate process (or thread). 

There are various storage schemes for sparse matrices, that differ in the way zero elements
usage. In some cases, it is allowed to store a portion of zeros in exchange for simplifying the storage
scheme; in others, all zeros of the matrix are used; thirdly, zeros are not used at all. The choice of
storage format, of course, affects memory requests, and therefore significantly affects the efficiency
of  software  implementations  of  algorithms  for  processing  sparse  matrices  (for  example,
decomposition of matrices into a product of triangular matrices).

In the algorithms created for solving SLAE and AEVP, different formats for storing elements of
sparse matrices are used: coordinate format, sparse row or column format, ELLPACK format, hybrid
format, etc. [4, 8].

3.3. Investigation of the mathematical properties of matrices entered into
the computer

Mathematical models describing applied problems always contain errors in the initial data [8].
That  is,  a  characteristic  feature  of  mathematical  models  with  approximate  data  is  that  their
mathematical properties are a priori unknown. Within a given level of error, problems can be both
compatible and incompatible, both correctly and incorrectly stated, both poorly and well conditioned.
Due  to  the  rounding  error,  a  nonsingular  matrix  can  become  degenerate  in  a  computer,  and  a
degenerate matrix can become nonsingular. There is a problem of choosing the necessary algorithm
for solving the computer model of the problem with the reliability of the results obtained.



An error in the solution of a mathematical problem, which is caused by an error in the initial
data set, is called a hereditary error. If the hereditary error of the solution of a mathematical problem
is large, then the obtained mathematical solution may not have a physical meaning, that is, such a
solution will not contain the solution of a physical problem. Therefore, it is necessary to determine the
scope of the mathematical model, because the hereditary error cannot be corrected by mathematical
methods of solving the problem. To reduce the hereditary error, you can either increase the accuracy
of the input data or reformulate the problem with respect to other parameters [8].

The investigation of  the  correctness  of  the  problem statement  in  a  computer  is  reduced to
checking two relations:

1.0+γ≠1.0,       (‖ΔA‖‖A‖)h ( A )<1; (10)

where  h(A ) – is  the condition number of  the system matrix,  γ=h−1
(A ).  The first  condition, fulfilled in

floating-point arithmetic, means that the matrix is non-singular within the limits of machine accuracy (machine
non-singular), and the second one means that it is non-singular within the limits of the accuracy of the input data
[8, 16]. 

Thus, when conditions (10) are met, the solution of the computer problem with approximate
data exists, is unified and stable. Such a computer task should be considered as correctly posed within
the accuracy of the initial data input. Otherwise, the matrix of the system may turn out to be a matrix
of  incomplete  rank,  and  the  computer  problem  should  be  considered  as  incorrectly  posed.  The
fulfillment of condition (10) at an increased computer bit rate in accordance with the value of the
condition number of the matrix indicates that the original problem is poorly conditioned relative to the
previous bit rate and it is possible to obtain a single solution at an increased bit rate.

So, the computer problem, which should to be solved in the end, always has approximate data
relative to the original problem (due to the hereditary error in the initial data, due to the discretization
errors, due to the errors in obtaining numerical data in the computer).

In the created parallel algorithms for solving SLAE and AEVP for sparse matrices of various
structures on modern high-performance computing systems with parallel organization of calculations,
a research is provided in a computer environment of the mathematical properties of matrices using
various computer bit rate (the technology is described in the work [16]).

4. Using  effective  ways  of  structuring  sparse  matrices  in  some  practical
problems of mathematical modeling of structural strength

Let’s consider some practical problems of mathematical modeling of structural strength, which
are reduced to solving linear algebra problems with sparse matrices. 

To analyze the strength of building structures on single-processor computers, Software package
Lira-Sapr  is  widely  used  –  a  multi-threaded  version  of  PC Lira  [17].  The  developed  parallel
algorithms for solving SLAE with sparse matrices of various structures were used as a processor
component of the parallel version of PC Lira – the software package Lira-cluster [2–4, 18]. 

Consider the problem of analyzing the strength of a 27-storey building (figure 4). The sparse symmetric
matrix obtained as a result of discretization by the finite element method (FEM-mesh) has an order of 661590
and  a  band  half-width  of  34242,  density  (the  matrix  tape  is  filled  with  non-zero  elements  by  5%).  After
optimizing the matrix structure by the minimum degree method, a skyscraper structure matrix was obtained
(order – 661590, ribbon width – 541257, density <1%). The time for solving the problem using Lira-Sapr on a
personal computer is 3254 sec, using Lira-cluster on the hybrid architecture of the SKIT-4 supercomputer is 57
sec. Thus, an acceleration of 23 times was achieved. 



Figure 4: FEM-model of a 27-storey building 

Supercomputer  SKIT-4  of  the  V.M.   Glushkov  Institute  of  Cybernetics  National  Academy  of
Sciences of Ukraine has the following specifications: CPU – Intel(R) Xeon(R) CPU E5-26700, clock speed 2.60
GHz, speed 8 GT/s, cache memory – 20 MB, per node: 2 CPUs with 8 cores + Hyperthrefding =32 cores, Max
Memory Size – 384 GB; GPU – Nvidia Tesla M2050, 3 GB memory, peak performance – 515 Gflops [19].

4.1. Numerical investigation of the stability of composite materials

The created parallel algorithms for solving SLAE and AEVP for sparse matrices of various
structures were used in mathematical modeling of the problem of structural stability - the problem of
stability of a layered two-component composite material with a regular structure (Fig. 5, left) under a
uniform single-axis load on computers of various architectures. Since the stability problem is solved
for the computational domain of finite dimensions (Fig. 5, right) and the influence of the boundary
conditions on the lateral  sides of the computational  domain on the critical  stability parameters is
studied, we distinguish between the loss of stability in a composite material and a composite sample
corresponding to this material [7, 20, 21]. 



Figure 5: Schematic representation of the stability problem

The problem of mathematical modeling of the stability of composite materials was solved on a parallel
computer of hybrid architecture SKIT-4. 

Comparative results of solving the obtained partial generalized eigenvalue problem Ax=λBx  in
the problem of mathematical modeling of the stability of new composite materials are given for band
symmetric positive definite matrices (the order of matrices A  and B  is 12282, the half-width band of
matrix A  is  6212, the half-width  tape of the matrix B  is 71).

Compared to  the sequential  version of  the algorithm, the  case of  solving the AEVP of band
symmetric  matrices,  a  7-fold  acceleration  was  obtained  by  the  parallel  algorithm on  the  MIMD
architecture;  on  a  hybrid  architecture  -  18  and 33  times,  using  one  and two GPUs  respectively
compared.  In the case of the AEVP solution for sparse matrices reduced to the block-diagonal form
with border, an acceleration of 43 times was obtained on the hybrid architecture using two GPUs
compared to the sequential version of the algorithm [21].

5. Conclusions

Methods for regularization,  decomposition and storage of sparse matrices are proposed,  which
allow  to  significantly  increase  the  efficiency  of  solving  problems  of  mathematical  modeling  of
structural  strength.  New  methods  and  computer  block-cyclic  and  block  algorithms  for  high-
performance computing created on their basis for solving linear algebra problems (systems of linear
algebraic  equations,  algebraic  eigenvalue  problem)  with  approximate  data  can  be  used  for
mathematical modeling of different processes on modern supercomputers.
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