
Data Stochastic Preprocessing for Sorting Algorithms

Viktor I. Shynkarenko 1, Anatoliy Y. Doroshenko 2, Olena A. Yatsenko 2,

Valentyn V. Raznosilin 1, Kostiantyn K. Halanin 1

1 Ukrainian State University of Science and Technologies, Lazaryana str. 2., Dnipro, 49010, Ukrain
2 Institute of Software Systems of National Academy of Sciences of Ukraine, Glushkov prosp. 40., Kyiv, 03187,

Ukrain

Abstract
The possibilities of improving sorting time parameters through preprocessing by stochastic

sorting were investigated. The hypothesis that preprocessing by stochastic sorting can

significantly improve the time efficiency of classical sorting algorithms has been

experimentally confirmed. Sorting with different computational complexity is accepted as

classical sorting algorithms: shaker sorting with computational complexity O(n2), insertions

O(n2), Shell O(n·(log n)2) ... O(n3/2), fast with optimization of ending sequences O(n·log n).

The greatest effect is obtained when performing comparisons using stochastic sorting in the

amount of 160 percent of the array’s size. Indicators of the exchange efficiency of two

elements and a series of comparisons with exchanges are proposed, which made it possible to

establish the greatest efficiency of data preprocessing by stochastic sorting when one element

for comparison is selected from the first part of the array, and the other from the second. For

algorithms with a computational complexity of O(n2) the improvement in time efficiency

reached 70–80 percent. However, for Shell sort and quick sort, the stochastic presort has no

positive effect, but instead increases the total sorting time, which is apparently due to the

initial high efficiency of these sorting methods. The hypothesis about increasing the time

efficiency of quick sorting combined with sorting by insertions on the final sections due to

the use of preliminary stochastic processing of such sections has not been confirmed.

However, according to the experiment, the recommended size of the array was established, at

which it is necessary to switch to insert sorting in the modified quick sort. The optimal length

of the ending sequences is between 60 and 80 elements. Given that algorithm time efficiency

is affected by computer architecture, operating system, software development and execution

environment, data types, data sizes, and their values, time efficiency indicators should be

specified in each specific case.

Keywords 1
Sorting, stochastic sorting, algorithm, time efficiency, experiment

1. Introduction

The possibility of improving the time parameters of sorting by preprocessing with stochastic

sorting was investigated.

Stochastic algorithms are very useful in solving complex optimization tasks, for example, in

finding the roots of complex equations [1]. It was interesting how useful they can be in solving non-

traditional problems such as data sorting.

Stochastic sorting consists in a cyclic comparison of randomly selected two elements of the array

and, if necessary, their permutation. The stochastic sorting method, like any method, is capable for

13th International Scientific and Practical Conference from Programming UkrPROGР’2022, October 11-12, 2022, Kyiv, Ukraine
EMAIL: shinkarenko_vi@ua.fm (A. 1); doroshenkoanatoliy2@gmail.com (A. 2); oayat@ukr.net (A. 3); valentin.raznosilin@gmail.com (A.

4); konsta.home@gmail.com A. 5)

ORCID: 0000-0001-8738-7225 (A. 1); 0000-0002-8435-1451 (A. 2); 0000-0002-4700-6704 (A. 3); 0000-0002-4463-4588 (A. 4); 0000-
0001-9296-4808 (A. 5)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:shinkarenko_vi@ua.fm
mailto:valentin.raznosilin@gmail.com
https://mbox2.i.ua/compose/1203354196/?cto=q6%2B7fz2Rvs6OYW27vLaplL55irysqFuIwY6%2Fp5G3ypeI

modifications related to the selection of elements for comparison, the distribution law of random

numbers, etc.

Combination or hybridization of sorting algorithms is a well-known approach [2-5] for increasing

the time efficiency of them. For example, combining quicksort and insertion sort on small finite areas

(to avoid frequent inefficient recursive calls on small arrays).

In most cases, sorting algorithms are used with some regularity in relatively stable conditions:

software and hardware, array size and filling, etc. So there is an opportunity to select the most

effective algorithms or their combinations.

Of course, stochastic sorting cannot be applied independently, due to the lack of a termination

condition and theoretical looping. However, a hypothesis was put forward about its effectiveness as a

preliminary preparation of the array for further sorting by one of the classic methods. Experiments

were carried out in order to confirm or refute the proposed hypothesis.

Sorts of different computational complexity [6] are accepted as classical sorting: shaker, with

computational complexity 2()O n , insertions (according to [7], the fastest stable sorting of the class
2()O n), Shell 2 3/ 2(()) ... ()O n log n O n , fast with optimization of final sections ()O n log n [8].

2. Related works

For a long time [9], many different sorting algorithms have been known and used to solve various

programming tasks. In terms of theoretical analysis and algorithm design, sorting is a fundamental

problem. Sorting algorithms are an ongoing topic of study in both scientific and educational circles.

Both theoretical (for example, [10]) and experimental methods for studying algorithms [11] are used

in this case.

Since the time characteristics of algorithms are largely affected by the hardware and software

environment for their implementation and execution (multitasking, command execution pipeline, pre-

pipeline optimization of command execution, branch prediction in the pipeline, caching of commands

and data, and a number of others), the time of commands depends significantly non-linearly on

specified environments. Comparative studies of sorting efficiency in various software and hardware

environments are not the goal of this work. We have performed an experimental study on a laptop in

the Windows 10 operating system using the Delphi development environment.

Sorting algorithms are quite universal, but they have their own effective application sphere. In this

regard, the search for new sorting algorithms and improvements to existing ones continues. The

"2 mm" algorithm [2], for example, is a modification of the Min-Max Bidirectional Parallel Selection

Sort (MMBPSS) algorithm [12], which modifies the bidirectional parallel selection sort. The use of a

stack is proposed in the MMBPSS algorithm to reduce the number of comparisons, and in [2] –

memory size ()O n . New opportunities to improve well-known algorithms are being sought. For

example, proposed bidirectional insertion sort algorithm [13] improves the time characteristics of the

classical algorithm.

Separately, we note algorithm hybridization in order to improve time efficiency. An experiment

was carried out in [3] to develop a hybrid sorting program based on the method of selecting

algorithms, a machine learning system, and an algebraic-algorithmic approach to program design [4].

The hybrid algorithm chose between insertion sort and quick sort based on the length and degree of

sorting of the array. The algorithm is based on a decision tree derived from the analysis of statistical

data from array sorting. In [5] considers hybrid parallel sorting, in which sorting is done by merging

or insertion depending on the block size of the numeric data array. The system of automatic program

debugging selects the optimal value of the block size.

As is known, “efficient implementations generally use a hybrid algorithm, combining an

asymptotically efficient algorithm for the overall sort with insertion sort for small lists at the bottom

of a recursion” [8].

There is also ongoing research into the effectiveness of sorting algorithms. Additional quality

indicators are offered. Thus, in [14] the range of asymptotic behavior of known algorithms was

determined.

https://en.wikipedia.org/wiki/Hybrid_algorithm

Work is being done to automate the development of sorting algorithms, such as those based on

logic and combinatorics [15].

3. The experimental basis

Software. The experiments were carried out on the Windows 10 operating system. In the Delphi

10.3 environment, a 32-bit window program was created that implements sorting algorithms with

various variants of random permutations.

The following measures were used to stabilize the results and significantly reduce the random

factors that affect the execution time of the algorithms:

• a separate thread was used to run a series of experiments;

• the program was compiled in code optimization (release) mode;

• the program was executed outside of the development environment;

• no other windowed programs running;

• during the experiments, the network was turned off;

• the cache was cleared prior to the time measurements.

Hardware. The experiments were performed on a laptop with the technical characteristics listed in

the Table 1 and Table 2.

Table 1
Characteristics of used hardware: RAM specifications

Component Description

RAM type SK hynix HMT351S6CFR8C-PB
Unit size 4 Gb (2 ranks, 8 banks)
Unit number 2 х 4 Gb

Table 2
Characteristics of used hardware: CPU specifications

Component Description

CPU type Mobile QuadCore Intel Core i7-3610QM, 3200 МHz (32 x 100)
Cores 8
Cache L1 code 32 Kb per core
Cache L1 data 32 Kb per core
Cache L2 256 Kb per core (On-Die, ECC, Full-Speed)
Cache L3 6 Mb (On-Die, ECC, Full-Speed)
Instruction set x86, x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES

Data structures. Sorting was accomplished by preparing arrays of 4 byte integers. The sizes of the

arrays were depending on the sorting method – smaller for less efficient sortings. Memory for arrays

was allocated directly by the Windows operating system using VirtualAlloc [16]. The sorted array

was filled with numbers ix ranging from 0 to 1N − , where N is the array element count. This was

followed by shuffling, which was accomplished by repeatedly swapping two randomly selected

elements. The number of such exchanges (5)N was determined to be adequate for high-quality

mixing of the original array and obtaining a random distribution of array elements.

The experiment's organization. The execution time of sorting the same array will be random

with some variance due to the volatility of Windows operating system threads and hardware state.

The sorting time was calculated by averaging the mean and median time spent sorting the same

data array M times. The address of the array in memory did not change, the data was copied from the

original unsorted array before each measurement.

The CPU cache was cleared before performing a separate sorting (parallel measurement). The

following techniques were used to accomplish this:

• at least ten passes of sequential access to cells in a previously allocated memory area;

• sleep function call for 500 ms delay.

4. Preliminary experiments

To estimate the required number of parallel measurements (previously denoted as M) that would

give a stable mean and median sorting time, a preliminary experiment was performed. In order to do

this, quicksort was used on the same dataset 500 times.

This experiment results (Figure 1 and Figure 2) demonstrated that approximately 100 parallel

measurements for the same data set are adequate for estimating the mean and median sorting time. At

the same time, the sorting time will be overestimated rather than underestimated, with a maximum

deviation of 0.5% from the value for 500 parallel measurements. All of the data presented in this

paper were obtained for 100 parallel measurements (for each type of sorting, amount of data, etc.).

Figure 1: Spread of results at sorting

Figure 2: Average sorting time calculated on an accrual basis

5. An investigation into stochastic sorting

Before carrying out the main part of the experiments, effectiveness of the swapping of elements

was investigated for improve of the array ordering. The time indicators of the series of exchanges

were not determined at this stage.

Two methods of selecting random elements for comparison (with possible subsequent exchange)

were investigated.

In first method selected two evenly distributed numbers ranging from 0 to 1N − . A pair of

elements to be compared may be located anywhere in the array.

In the second, the first element of the pair is chosen using the uniform distribution law from 0 to

/2 1N − and the second from / 2N to 1N − . As a result, a pair of elements in the array's different

halves is formed.

For the experiment, an array of randomly mixed 510 integers ranging from 0 to 99999 was

prepared. Elements for comparison were chosen by series of 1000 pairs in one test and 200 such tests

were performed sequentially. Totally 52 10 or 2N comparisons. The following indicators were

recorded for each series of comparisons:

• the number of exchanges in the series;

• the average efficiency of exchanges in the series;

• the disorder of the array after the series of comparisons ended.

The number of permutations for the first and second methods is shown in Figure 3. The trend line

(based on the exponential law) is also depicted.

Figure 3: Comparison of the exchanges number in one series of comparisons (1000 pairs)

In a series of 1000 comparison attempts, the initial number of exchanges is around 500 (Figure 3),

after which it begins to decrease. Over a range of 200,000 comparisons, the first method reduces the

number of exchanges to 280 and the second to 100. The number of exchanges performed decreases in

both methods of element selection according to laws that are close to linear. With a large enough

number of attempts, the number of completed exchanges tends to zero. In practice, this means

determining not only the most efficient way to select elements for comparison, but also a reasonable

number of comparisons with at least 100 exchanges for every 1000 attempts.

Note that in the first method, the exchange of elements is more often performed. However, in this

case, an additional comparison is required to determine the order of the selected indices i and j

(i j , i j or i j=). For the second method of index selection, it is guaranteed that i j .

The relative change in the position of the elements before and after the permutation to their final

position (in the sorted array) is defined as the efficiency of the permutation of a pair of elements:

| | | |
(, ,) ,

max(,)

i i

i i

x i x j
e i j N

x N x

− − −
=

−

where ,i j – index of elements in array x ; N – number of elements in array. We take into account

that the array element's value is also its index in the ordered array (due to the method of forming an

unordered array proposed above).

The indicator (), ,e i j N determines how close the element at index i will become to its final

position in the ordered array x after it is moved to the position at index j .

It should be noted that this function gives the same range of values regardless of the number of

elements N in the array x . The worst possible value is (0,0,) 1e N = − at 0ix = , and the best possible

value is (0, ,) 1e N N = at ix N= .

Exchange efficiency indicator (, ,)E i j N is averages values (, ,)e i j N and (, ,)e j i N for a pair of

swapped elements:

(, ,) (, ,)
(, ,) 100%.

2

e i j N e j i N
E i j N

+
=

The exchange efficiency for each element of the pair can be both positive and negative. The worst-

case scenario is that both elements' positions worsened as a result of the exchange; the best-case

scenario is that both elements' positions improved.

Figure 4 depicts the average exchange efficiency for the first and second methods of selecting

elements for comparison. The trend line (according to the exponential law) is also shown.

Figure 4: Comparison of the exchanges efficiency in one series of comparisons (1000 pairs)

The indicator of the average efficiency of exchanges is closly to linear for both methods of

choosing elements. At the same time, the second method of exchange demonstrates a much larger

spread of values (instability). Despite this, over the entire comparison interval, even the minimum

values obtained for the second method of selecting elements remain higher than the values obtained

for the second method.

In terms of exchange efficiency, the second method outperforms the first by about 1.5 times.

The last indicator of permutation efficiency determines the array's disorder after the completion of

the series of comparisons:

 0

0

| |1
100%.

max(,)

N
i

i

x i
U

N i N i=

 −
=

−

The average disorder of array elements for both methods is shown in Figure 5.

The second method is better on exchange efficiency if the number of previous comparisons

exceeds 160% of the total number of array elements.

The results of experiments using the second method of exchange, in which the index values are

chosen from the first and second halves of the sorted array, are shown below. This method is the most

useful in practice because, even with a large number of comparisons (2 3N N), it has lower

overhead due to a smaller number of conditional transition operators.

Figure 5: Comparison of the array disorder after the series of comparisons (1000 pairs)

6. Classical sorting with preprocessing by stochastic sorting

A series of experiments were carried out to test the hypothesis regarding the efficacy of stochastic

sorting as array preprocessing prior to the application of the classic sorting algorithm. First, sorting

with computational complexity 2()O n was considered: insertion sort and shaker sort.

The size of sorted array was of 310 , 410 , and 510 elements alternately. The sorting time was

averaged by 100 parallel measurements were taken. In stochastic sorting, the number of comparisons

varied from 0,5N to 5N with a step of 0,5N .

The results of the experiments are shown in Figure 6 and Figure 7. Efficiency was calculated as

2

1 100%.клас

стох клас

t
Ef

t t

= −

+

where класt is the time of classical sorting without preprocessing; стохt – stochastic sorting time; 2класt

is the same classic sorting, but after stochastic.

Figure 6: Efficiency for shaker sorting

https://en.wikipedia.org/wiki/Computational_complexity_theory

Figure 7: Efficiency for insertion sorting

The proposed method demonstrated high efficiency for sorting with an computational complexity
2()O n , the greater the larger of the sorted array size.

If the volume of the array is greater than 410 elements, the number of pairs for stochastic ordering

should be in the range 3 4N N . The time spent sorting can be reduced by 70-80% using the methods

considered.

The maximum efficiency for small size arrays (less than 410 element) is approximately 25-40%

and is achieved after stochastic ordering of approximately 2 2,5N N pair. The efficiency then

reaches a plateau (shaker sorting) or starts to decline (insert sorting).

A similar series of experiments was conducted for Shell sorting with a computational complexity

of 2 3/ 2(()) ... ()O n log n O n and quick sorting – ()O n log n . However, for these sortings the pre-

ordering of randomly selected pairs of elements no longer have a positive efficiency. On the contrary

increases the total sorting time, which is obviously explained by the initial high efficiency of these

sorting methods.

7. Bicomponent sorting: quicksort and insertion

In subsequent experiments, the quicksort implementation assumes that end sections of a certain

length will be sorted by insertion sort. This type of sorting outperforms fast sorting with small

amounts of data [17]. We did not investigate other modifications of the quick sorting algorithm, such

as those with two reference points [18], SMS algorithms [19], hybrid algorithms [20], and others [21].

The efficiency of applying preprocessing by stochastic sorting of the final parts of the array before

using insertion sorting is of interest.

A series of experiments were carried out to determine the optimal value at which the transition

from recursive calls to insertion sorting should occur. Quicksort was used to sort an array of
62 10

elements without end-section optimization and an array of 16 to 160 elements with a step of two. In

each case, 100 parallel measurements were taken, and the results were averaged. The average time on

sorting was compared. Without optimization, the quicksort time was 212.3 ms. Figure 8 depicts the

time on sorting with optimization at various sizes of the final section. The optimal length of the final

section is between 60 and 80 elements. This quicksort parameter was assumed to be 70 in subsequent

experiments. Quicksorting with two components and inserts reduces quicksort time by about 20%.

In subsequent experiments, an attempt was made to improve the efficiency of quick sort by

performing stochastic sorting before insertion sorting at the end sections. An assessment of the

distribution of the lengths of the final sections was previously performed in order to accomplish this;

70 elements were chosen as the maximum length of the final section. Figure 9 depicts distribution of

https://en.wikipedia.org/wiki/Computational_complexity_theory

the arrays size sorted at the final sections. Approximately 80% are arrays with 2 to 30 elements, and

the remaining 20% are arrays with 31 to 70 elements.

Figure 8: Efficiency of fast sorting at different lengths of the end subarrays, which is sorted by inserts

Figure 9: Distribution of lengths of end sub-arrays which is sorted by inserts

Experiments have shown that using random permutations to sort the final sections has no positive

effect. The very short lengths of the end sections (2…30 elements in 80% of cases) explain this. As

previously demonstrated, the effectiveness of stochastic sorting is most significant on large arrays

with 410 elements or more.

8. Conclusions

The experiments confirmed the hypothesis that there is a significant improvement in the time

efficiency of classical sorting with time efficiency 2()O n using stochastic preprocessing compared to

the same classic without preprocessing.

The hypothesis about the possibility of increasing the time efficiency of quicksort by

preprocessing small final parts of the array with stochastic sorting before switch to insert sort was not

confirmed.

However, during the experiment, the recommended of the subarray size was determined, at which

the two-component quick and insertion sort must be switched to the second component - insertion

sort.

Any sorting algorithm has advantages and disadvantages, and the programmer must choose based

on the task requirements. In some cases, using class ()O n log n sorts is less efficient than using class
2()O n . This could be due to hardware limitations, array filling specifics, the law of the array's value

distribution, data types, and their representation in the RAM. Pre-processing with a stochastic

algorithm in these cases may improve their time efficiency.

Because algorithm time efficiency is affected by computer architecture, operating system, software

development and execution environment, data types, data volumes, and their values, time efficiency

indicators should be determine on a case-by-case basis.

9. References

[1] V. Shynkarenko, P. Ilchenko, H. Zabula Tools of investigation of time and functional efficiency of bionic algorithms for function

optimization problems, in Proceedings of the 11th International Conference of Programming (UkrPROG 2018), Kyiv, 2018,

CEUR-WS Team, 2139, 270–280.
[2] A. Mubaraka, S. Iqbalb, T. Naeemc, S. Hussaind 2 mm: a new technique for sorting data, Theoretical Computer Science 910,

2022, 68–90.

[3] O. Yatsenko On application of machine learning for development of adaptive sorting programs in algebra of algorithms, in: Proc.
Int. Workshop “Concurrency: Specification and Programming” (CS&P’2011), 2011, 577–588.

[4] A. Doroshenko, O. Yatsenko Formal and adaptive methods for automation of parallel programs construction: emerging research
and opportunities. Hershey: IGI Global, 2021.

[5] A. Doroshenko, P. Ivanenko, O. Novak, O. Yatsenko A mixed method of parallel software auto-tuning using statistical modeling

and machine learning. Communications in Computer and Information Science. Information and Communication Technologies in
Education, Research, and Industrial Applications 1007. 2019, 102–123. doi: 10.1007/978-3-030-13929-2_6

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein Introduction to algorithms (3rd ed.). Cambridge, MA: The MIT Press.

2009.
[7] R. Yadav, R. Yadav, S. B. Gupta Comparative study of various stable and unstable sorting algorithms. in Artificial Intelligence

and Speech Technology. CRC Press, 2021, 463–477.

[8] Sorting algorithm. URL: https://en.wikipedia.org/wiki/Sorting_algorithm.
[9] D. Knuth The Art of Computer Programming, Vol. 3: Sorting and searching (3rd. ed.), Addison Wesley Longman Publishing

Co., Inc., 1997.

[10] H.H. Aung Analysis and Comparative of Sorting Algorithms, International Journal of Trend in Scientific Research and
Development 3(5), 2019, 1049-1053. doi:10.31142/ijtsrd26575

[11] M. R.Choudhury, A. Dutta, (2022). Establishing pertinence between Sorting Algorithms prevailing in n log (n) time, J Robot

Auto Res 3 (2), 2022, 220-226. doi: 10.21203/rs.3.rs-1754555/v1
[12] K. Thabit, A. Bawazir A novel approach of selection sort algorithm with parallel computing and dynamic programing concepts.

JKAU: Comp. IT 2, 2013, 27–44. doi: 10.4197 / Comp. 2-2

[13] A. S. Mohammed, Ş. E. Amrahov, F. V. Çelebi, (2017). Bidirectional Conditional Insertion Sort algorithm; An efficient progress
on the classical insertion sort. Future Generation Computer Systems, 71, 2017,102-112. doi: 10.1016/j.future.2017.01.034

[14] O. K. Durrani, V. Shreelakshmi, S. Shetty, D. C. Vinutha Analysis and determination of asymptotic behavior range for popular

sorting algorithms. In Special Issue of International Journal of Computer Science & Informatics 2(1), 2018, 149–154.
[15] I. Drămnesc, T. Jebelean, S. Stratulat Mechanical synthesis of sorting algorithms for binary trees by logic and combinatorial

techniques. Journal of Symbolic Computation 90, 2019, 3–41. doi: 10.1016/j.jsc.2018.04.002

[16] VirtualAlloc function. URL: https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc.
[17] A. N Frak. et al. Comparison study of sorting techniques in static data structure, International Journal of Integrated Engineering:

Special Issue Data Information Engineering 10(6), 2018, 106–112. doi: 10.30880/ijie.2018.10.06.014

[18] S. Kushagra, A. López-Ortiz, A. Qiao, J. I. Munro Multi-pivot quicksort: theory and experiments. Proc. Sixteenth Workshop on
Algorithm Engineering and Experiments (ALENEX), 2014, 47–60.

[19] R. Mansi Enhanced quicksort algorithm. Int. Arab J. Inf. Technol 7(2), 2010, 161–166.

[20] A. Aftab et al. Review on performance of quick sort algorithm, International Journal of Computer Science and Information
Security 19(2), 2021, 114–120. doi: 10.5281/zenodo.4602255

[21] M. Woźniak et al. Preprocessing large data sets by the use of quick sort algorithm, Springer: Knowledge, Information and

Creativity Support Systems: Recent Trends, Advances and Solutions, 2016, 111–121. doi: 10.1007/978-3-319-19090-7_9

https://www.scopus.com/authid/detail.uri?authorId=26635896100
https://www.scopus.com/authid/detail.uri?authorId=57203262068
https://www.scopus.com/authid/detail.uri?authorId=57203264810
https://www.sciencedirect.com/science/article/abs/pii/S0304397522000512#!
https://www.sciencedirect.com/science/article/abs/pii/S0304397522000512#!
https://www.sciencedirect.com/science/article/abs/pii/S0304397522000512#!
https://www.sciencedirect.com/science/article/abs/pii/S0304397522000512#!
https://www.sciencedirect.com/journal/theoretical-computer-science
https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein
https://books.google.com/books?id=NLngYyWFl_YC
https://en.wikipedia.org/wiki/Sorting_algorithm
https://doi.org/10.1016/j.future.2017.01.034
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

