
Data Stochastic Preprocessing for Sorting Algorithms 
 

Viktor I. Shynkarenko 1, Anatoliy Y. Doroshenko 2, Olena A. Yatsenko 2,  

Valentyn V. Raznosilin 1, Kostiantyn K. Halanin 1 

 
1 Ukrainian State University of Science and Technologies, Lazaryana str. 2., Dnipro, 49010, Ukrain 
2 Institute of Software Systems of National Academy of Sciences of Ukraine, Glushkov prosp. 40., Kyiv, 03187, 

Ukrain 

 

  

Abstract  
The possibilities of improving sorting time parameters through preprocessing by stochastic 

sorting were investigated. The hypothesis that preprocessing by stochastic sorting can 

significantly improve the time efficiency of classical sorting algorithms has been 

experimentally confirmed. Sorting with different computational complexity is accepted as 

classical sorting algorithms: shaker sorting with computational complexity O(n2), insertions 

O(n2), Shell O(n·(log n)2) ... O(n3/2), fast with optimization of ending sequences O(n·log n). 

The greatest effect is obtained when performing comparisons using stochastic sorting in the 

amount of 160 percent of the array’s size. Indicators of the exchange efficiency of two 

elements and a series of comparisons with exchanges are proposed, which made it possible to 

establish the greatest efficiency of data preprocessing by stochastic sorting when one element 

for comparison is selected from the first part of the array, and the other from the second. For 

algorithms with a computational complexity of O(n2) the improvement in time efficiency 

reached 70–80 percent. However, for Shell sort and quick sort, the stochastic presort has no 

positive effect, but instead increases the total sorting time, which is apparently due to the 

initial high efficiency of these sorting methods. The hypothesis about increasing the time 

efficiency of quick sorting combined with sorting by insertions on the final sections due to 

the use of preliminary stochastic processing of such sections has not been confirmed. 

However, according to the experiment, the recommended size of the array was established, at 

which it is necessary to switch to insert sorting in the modified quick sort. The optimal length 

of the ending sequences is between 60 and 80 elements. Given that algorithm time efficiency 

is affected by computer architecture, operating system, software development and execution 

environment, data types, data sizes, and their values, time efficiency indicators should be 

specified in each specific case.  
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1. Introduction 

The possibility of improving the time parameters of sorting by preprocessing with stochastic 

sorting was investigated. 

Stochastic algorithms are very useful in solving complex optimization tasks, for example, in 

finding the roots of complex equations [1]. It was interesting how useful they can be in solving non-

traditional problems such as data sorting.  

Stochastic sorting consists in a cyclic comparison of randomly selected two elements of the array 

and, if necessary, their permutation. The stochastic sorting method, like any method, is capable for 
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modifications related to the selection of elements for comparison, the  distribution law of random 

numbers, etc. 

Combination or hybridization of sorting algorithms is a well-known approach [2-5] for increasing 

the time efficiency of them. For example, combining quicksort and insertion sort on small finite areas 

(to avoid frequent inefficient recursive calls on small arrays). 

In most cases, sorting algorithms are used with some regularity in relatively stable conditions: 

software and hardware, array size and filling, etc. So there is an opportunity to select the most 

effective algorithms or their combinations. 

Of course, stochastic sorting cannot be applied independently, due to the lack of a termination 

condition and theoretical looping. However, a hypothesis was put forward about its effectiveness as a 

preliminary preparation of the array for further sorting by one of the classic methods. Experiments 

were carried out in order to confirm or refute the proposed hypothesis. 

Sorts of different computational complexity [6] are accepted as classical sorting: shaker, with 

computational complexity 2( )O n , insertions (according to [7], the fastest stable sorting of the class 
2( )O n ), Shell 2 3/ 2( (  ) ) ... ( )O n log n O n , fast with optimization of final sections (  )O n log n  [8]. 

2. Related works 

For a long time [9], many different sorting algorithms have been known and used to solve various 

programming tasks. In terms of theoretical analysis and algorithm design, sorting is a fundamental 

problem. Sorting algorithms are an ongoing topic of study in both scientific and educational circles. 

Both theoretical (for example, [10]) and experimental methods for studying algorithms [11] are used 

in this case. 

Since the time characteristics of algorithms are largely affected by the hardware and software 

environment for their implementation and execution (multitasking, command execution pipeline, pre-

pipeline optimization of command execution, branch prediction in the pipeline, caching of commands 

and data, and a number of others), the time of commands depends significantly non-linearly on 

specified environments. Comparative studies of sorting efficiency in various software and hardware 

environments are not the goal of this work. We have performed an experimental study on a laptop in 

the Windows 10 operating system using the Delphi development environment. 

Sorting algorithms are quite universal, but they have their own effective application sphere. In this 

regard, the search for new sorting algorithms and improvements to existing ones continues. The 

"2 mm" algorithm [2], for example, is a modification of the Min-Max Bidirectional Parallel Selection 

Sort (MMBPSS) algorithm [12], which modifies the bidirectional parallel selection sort. The use of a 

stack is proposed in the MMBPSS algorithm to reduce the number of comparisons, and in [2] – 

memory size ( )O n . New opportunities to improve well-known algorithms are being sought. For 

example, proposed bidirectional insertion sort algorithm [13] improves the time characteristics of the 

classical algorithm. 

Separately, we note algorithm hybridization in order to improve time efficiency. An experiment 

was carried out in [3] to develop a hybrid sorting program based on the method of selecting 

algorithms, a machine learning system, and an algebraic-algorithmic approach to program design [4]. 

The hybrid algorithm chose between insertion sort and quick sort based on the length and degree of 

sorting of the array. The algorithm is based on a decision tree derived from the analysis of statistical 

data from array sorting. In [5] considers hybrid parallel sorting, in which sorting is done by merging 

or insertion depending on the block size of the numeric data array. The system of automatic program 

debugging selects the optimal value of the block size. 

As is known, “efficient implementations generally use a hybrid algorithm, combining an 

asymptotically efficient algorithm for the overall sort with insertion sort for small lists at the bottom 

of a recursion” [8].  

There is also ongoing research into the effectiveness of sorting algorithms. Additional quality 

indicators are offered. Thus, in [14] the range of asymptotic behavior of known algorithms was 

determined. 

https://en.wikipedia.org/wiki/Hybrid_algorithm


Work is being done to automate the development of sorting algorithms, such as those based on 

logic and combinatorics [15]. 

3. The experimental basis 

Software. The experiments were carried out on the Windows 10 operating system. In the Delphi 

10.3 environment, a 32-bit window program was created that implements sorting algorithms with 

various variants of random permutations.  

The following measures were used to stabilize the results and significantly reduce the random 

factors that affect the execution time of the algorithms: 

• a separate thread was used to run a series of experiments; 

• the program was compiled in code optimization (release) mode; 

• the program was executed outside of the development environment;  

• no other windowed programs running; 

• during the experiments, the network was turned off; 

• the cache was cleared prior to the time measurements. 

Hardware. The experiments were performed on a laptop with the technical characteristics listed in 

the Table 1 and Table 2. 

 

Table 1 
Characteristics of used hardware: RAM specifications 

Component Description 

RAM type SK hynix HMT351S6CFR8C-PB 
Unit size 4 Gb (2 ranks, 8 banks) 
Unit number 2 х 4 Gb 

 

Table 2 
Characteristics of used hardware: CPU specifications 

Component Description 

CPU type Mobile QuadCore Intel Core i7-3610QM, 3200 МHz (32 x 100) 
Cores 8 
Cache L1 code 32 Kb per core 
Cache L1 data 32 Kb per core 
Cache L2 256 Kb per core (On-Die, ECC, Full-Speed) 
Cache L3 6 Mb (On-Die, ECC, Full-Speed) 
Instruction set x86, x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AES 

 

Data structures. Sorting was accomplished by preparing arrays of 4 byte integers. The sizes of the 

arrays were depending on the sorting method – smaller for less efficient sortings. Memory for arrays 

was allocated directly by the Windows operating system using VirtualAlloc [16]. The sorted array 

was filled with numbers ix  ranging from 0 to 1N − , where N  is the array element count. This was 

followed by shuffling, which was accomplished by repeatedly swapping two randomly selected 

elements. The number of such exchanges (5 )N  was determined to be adequate for high-quality 

mixing of the original array and obtaining a random distribution of array elements. 

The experiment's organization. The execution time of sorting the same array will be random 

with some variance due to the volatility of Windows operating system threads and hardware state. 

The sorting time was calculated by averaging the mean and median time spent sorting the same 

data array M  times. The address of the array in memory did not change, the data was copied from the 

original unsorted array before each measurement. 

The CPU cache was cleared before performing a separate sorting (parallel measurement). The 

following techniques were used to accomplish this: 

• at least ten passes of sequential access to cells in a previously allocated memory area;  



• sleep function call for 500 ms delay. 

4. Preliminary experiments 

To estimate the required number of parallel measurements (previously denoted as M) that would 

give a stable mean and median sorting time, a preliminary experiment was performed. In order to do 

this, quicksort was used on the same dataset 500 times. 

This experiment results (Figure 1 and Figure 2) demonstrated that approximately 100 parallel 

measurements for the same data set are adequate for estimating the mean and median sorting time. At 

the same time, the sorting time will be overestimated rather than underestimated, with a maximum 

deviation of 0.5% from the value for 500 parallel measurements. All of the data presented in this 

paper were obtained for 100 parallel measurements (for each type of sorting, amount of data, etc.). 

 

Figure 1: Spread of results at sorting 
 

 

Figure 2: Average sorting time calculated on an accrual basis 

5. An investigation into stochastic sorting 

Before carrying out the main part of the experiments, effectiveness of the swapping of elements 

was investigated for improve of the array ordering. The time indicators of the series of exchanges 

were not determined at this stage. 

Two methods of selecting random elements for comparison (with possible subsequent exchange) 

were investigated. 

In first method selected two evenly distributed numbers ranging from 0 to 1N − . A pair of 

elements to be compared may be located anywhere in the array. 



In the second, the first element of the pair is chosen using the uniform distribution law from 0 to 

/2 1N −  and the second from / 2N  to 1N − . As a result, a pair of elements in the array's different 

halves is formed. 

For the experiment, an array of randomly mixed 510  integers ranging from 0 to 99999 was 

prepared. Elements for comparison were chosen by series of 1000 pairs in one test and 200 such tests 

were performed sequentially. Totally 52 10  or 2N  comparisons. The following indicators were 

recorded for each series of comparisons: 

• the number of exchanges in the series;  

• the average efficiency of exchanges in the series;  

• the disorder of the array after the series of comparisons ended. 

The number of permutations for the first and second methods is shown in Figure 3. The trend line 

(based on the exponential law) is also depicted. 

 

Figure 3: Comparison of the exchanges number in one series of comparisons (1000 pairs) 
 

In a series of 1000 comparison attempts, the initial number of exchanges is around 500 (Figure 3), 

after which it begins to decrease. Over a range of 200,000 comparisons, the first method reduces the 

number of exchanges to 280 and the second to 100. The number of exchanges performed decreases in 

both methods of element selection according to laws that are close to linear. With a large enough 

number of attempts, the number of completed exchanges tends to zero. In practice, this means 

determining not only the most efficient way to select elements for comparison, but also a reasonable 

number of comparisons with at least 100 exchanges for every 1000 attempts. 

Note that in the first method, the exchange of elements is more often performed. However, in this 

case, an additional comparison is required to determine the order of the selected indices i  and j  

( i j , i j  or i j= ). For the second method of index selection, it is guaranteed that i j . 

The relative change in the position of the elements before and after the permutation to their final 

position (in the sorted array) is defined as the efficiency of the permutation of a pair of elements: 

| | | |
( , , ) ,
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x N x
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where ,i j  – index of elements in array x ; N  – number of elements in array. We take into account 

that the array element's value is also its index in the ordered array (due to the method of forming an 

unordered array proposed above). 

The indicator ( ), ,e i j N  determines how close the element at index i  will become to its final 

position in the ordered array x  after it is moved to the position at index j . 



It should be noted that this function gives the same range of values regardless of the number of 

elements N  in the array x . The worst possible value is (0,0, ) 1e N = −  at 0ix = , and the best possible 

value is (0, , ) 1e N N =  at ix N= . 

Exchange efficiency indicator ( , , )E i j N  is averages values ( , , )e i j N  and ( , , )e j i N  for a pair of 

swapped elements: 

( , , ) ( , , )
( , , ) 100%.

2

e i j N e j i N
E i j N

+
=   

The exchange efficiency for each element of the pair can be both positive and negative. The worst-

case scenario is that both elements' positions worsened as a result of the exchange; the best-case 

scenario is that both elements' positions improved. 

Figure 4 depicts the average exchange efficiency for the first and second methods of selecting 

elements for comparison. The trend line (according to the exponential law) is also shown. 

 

Figure 4: Comparison of the exchanges efficiency in one series of comparisons (1000 pairs) 
 

The indicator of the average efficiency of exchanges is closly to linear for both methods of 

choosing elements. At the same time, the second method of exchange demonstrates a much larger 

spread of values (instability). Despite this, over the entire comparison interval, even the minimum 

values obtained for the second method of selecting elements remain higher than the values obtained 

for the second method. 

In terms of exchange efficiency, the second method outperforms the first by about 1.5 times. 

The last indicator of permutation efficiency determines the array's disorder after the completion of 

the series of comparisons: 
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The average disorder of array elements for both methods is shown in Figure 5. 

The second method is better on exchange efficiency if the number of previous comparisons 

exceeds 160% of the total number of array elements. 

The results of experiments using the second method of exchange, in which the index values are 

chosen from the first and second halves of the sorted array, are shown below. This method is the most 

useful in practice because, even with a large number of comparisons ( 2   3N N ), it has lower 

overhead due to a smaller number of conditional transition operators. 

 



 

Figure 5: Comparison of the array disorder after the series of comparisons (1000 pairs) 

6. Classical sorting with preprocessing by stochastic sorting 

A series of experiments were carried out to test the hypothesis regarding the efficacy of stochastic 

sorting as array preprocessing prior to the application of the classic sorting algorithm. First, sorting 

with computational complexity 2( )O n  was considered: insertion sort and shaker sort. 

The size of sorted array was of 310 , 410 , and 510  elements alternately. The sorting time was 

averaged by 100 parallel measurements were taken. In stochastic sorting, the number of comparisons 

varied from 0,5N  to 5N  with a step of 0,5N . 

The results of the experiments are shown in Figure 6 and Figure 7. Efficiency was calculated as 

2
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where класt  is the time of classical sorting without preprocessing; стохt  – stochastic sorting time; 2класt  

is the same classic sorting, but after stochastic. 

 

 
Figure 6: Efficiency for shaker sorting 
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Figure 7: Efficiency for insertion sorting 
 

The proposed method demonstrated high efficiency for sorting with an computational complexity 
2( )O n , the greater the larger of the sorted array size. 

If the volume of the array is greater than 410  elements, the number of pairs for stochastic ordering 

should be in the range 3 4N N . The time spent sorting can be reduced by 70-80% using the methods 

considered. 

The maximum efficiency for small size arrays (less than 410  element) is approximately 25-40% 

and is achieved after stochastic ordering of approximately 2 2,5N N  pair. The efficiency then 

reaches a plateau (shaker sorting) or starts to decline (insert sorting). 

A similar series of experiments was conducted for Shell sorting with a computational complexity 

of 2 3/ 2( (  ) ) ... ( )O n log n O n  and quick sorting – (  )O n log n  . However, for these sortings the pre-

ordering of randomly selected pairs of elements  no longer have a positive efficiency. On the contrary 

increases the total sorting time, which is obviously explained by the initial high efficiency of these 

sorting methods. 

7. Bicomponent sorting: quicksort and insertion 

In subsequent experiments, the quicksort implementation assumes that end sections of a certain 

length will be sorted by insertion sort. This type of sorting outperforms fast sorting with small 

amounts of data [17]. We did not investigate other modifications of the quick sorting algorithm, such 

as those with two reference points [18], SMS algorithms [19], hybrid algorithms [20], and others [21]. 

The efficiency of applying preprocessing by stochastic sorting of the final parts of the array before 

using insertion sorting is of interest. 

A series of experiments were carried out to determine the optimal value at which the transition 

from recursive calls to insertion sorting should occur. Quicksort was used to sort an array of 
62 10  

elements without end-section optimization and an array of 16 to 160 elements with a step of two. In 

each case, 100 parallel measurements were taken, and the results were averaged. The average time on 

sorting was compared.  Without optimization, the quicksort time was 212.3 ms. Figure 8 depicts the 

time on sorting with optimization at various sizes of the final section. The optimal length of the final 

section is between 60 and 80 elements. This quicksort parameter was assumed to be 70 in subsequent 

experiments. Quicksorting with two components and inserts reduces quicksort time by about 20%. 

In subsequent experiments, an attempt was made to improve the efficiency of quick sort by 

performing stochastic sorting before insertion sorting at the end sections. An assessment of the 

distribution of the lengths of the final sections was previously performed in order to accomplish this; 

70 elements were chosen as the maximum length of the final section. Figure 9 depicts distribution of 

https://en.wikipedia.org/wiki/Computational_complexity_theory


the arrays size sorted at the final sections. Approximately 80% are arrays with 2 to 30 elements, and 

the remaining 20% are arrays with 31 to 70 elements. 

 

 

Figure 8: Efficiency of fast sorting at different lengths of the end subarrays, which is sorted by inserts 
 

 

Figure 9: Distribution of lengths of end sub-arrays which is sorted by inserts 
 

Experiments have shown that using random permutations to sort the final sections has no positive 

effect. The very short lengths of the end sections (2…30 elements in 80% of cases) explain this. As 

previously demonstrated, the effectiveness of stochastic sorting is most significant on large arrays 

with 410  elements or more. 

8. Conclusions 

The experiments confirmed the hypothesis that there is a significant improvement in the time 

efficiency of classical sorting with time efficiency 2( )O n  using stochastic preprocessing compared to 

the same classic without preprocessing. 



The hypothesis about the possibility of increasing the time efficiency of quicksort by 

preprocessing small final parts of the array with stochastic sorting before switch to insert sort was not 

confirmed.  

However, during the experiment, the recommended of the subarray size was determined, at which 

the two-component quick and insertion sort must be switched to the second component - insertion 

sort. 

Any sorting algorithm has advantages and disadvantages, and the programmer must choose based 

on the task requirements. In some cases, using class (  )O n log n  sorts is less efficient than using class 
2( )O n . This could be due to hardware limitations, array filling specifics, the law of the array's value 

distribution, data types, and their representation in the RAM. Pre-processing with a stochastic 

algorithm in these cases may improve their time efficiency. 

Because algorithm time efficiency is affected by computer architecture, operating system, software 

development and execution environment, data types, data volumes, and their values, time efficiency 

indicators should be determine on a case-by-case basis. 
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