
Generation of Multipurpose Formal Models from Legacy Code

Stepan Potiyenko1, Alexander Kolchin1

1V.M.  Glushkov  Institute  of  cybernetics  of  National  Academy  of  Sciences  of  Ukraine,  Academician
Glushkov ave., 40, Kyiv, 03187, Ukraine 

Abstract 

In this paper a method for generation of formal models from legacy software systems code is
proposed. The purpose of these models is to have a possibility of their application in different
tasks such as automatic generation of executable tests, translation to modern programming
languages, reverse engineering. The method pursues goals to decrease complexity of state
space search and checking formulas satisfiability, and to help legacy systems understanding
and re-implementing using modern technologies. We focused on formalization of COBOL
memory  model  as  the  most  common  in  legacy  systems.  Formal  model  is  an  attributed
transition  system  with  arbitrary  control  flow.  We  propose  an  algorithm  for  building
enumerated  types  for  any  variables  whose  usage  fulfills  certain  conditions,  including
translation procedure of numeric variables into enumerated ones. We consider a problem of
translating non-comparable structures that overlap in memory (operator redefines in COBOL)
and are copied or compared with each other. In opposite to the common approach of using
union  semantics  (like  union  construction  in  C++),  our  method  of  structure  fields
decomposition has no drawbacks of unions and contributes to minimization of the bytewise
approach. We have examined the developed method using examples of structures with both
simple fields and arrays. Examples of implementation of the bytewise approach in Java and
C++ languages are given for those variables that cannot be represented as enumerated or
numeric attributes. We have successfully applied this approach to generate tests on medium-
sized projects (up to 100 000 lines of code). The generated formal models were also used to
debug the Cobol to Java translator and to extract business rules.

Keywords

Translation, formal model, legacy systems.

Introduction

The problem of legacy code support is actual for several reasons — the number of specialists in
old programming languages is insufficient and constantly decreasing, support for hardware systems
(mainframe, etc.) is ending, while there is a need in the industry to develop new functionality and
integrate with modern technologies. Mainly, the problem is solved by migrating old systems to new
programming languages. Here a need for complete or partial automation arises, because, for example,
according to estimates in 2021, from 200 to 250 billion lines of code in the COBOL language are
running in the world [1]. Any automation begins with parsing the code and building some model with
defined goals. Existing works, as a rule, pursue one of the goals - translation of legacy code into
modern  programming  languages  (COBOL  translation  into  Java  is  very  common),  generation  of
executable tests, reverse engineering (code classification and clustering, information extraction, etc.).
Models  generated  with  a  specific  purpose,  in  addition  to  obvious  advantages,  have  their
disadvantages.

Conventional  translators  between  languages  generate  intermediate  models  that  are  not  very
different from code. Their main goal is to present the constructions of the source code in a form
convenient  for  further  transformations.  But  the  task  of  generating  tests  using  such  intermediate
models  has  the  same  complexity  as  with  any  code.  At  the  same  time,  these  models  are  often

113th International Scientific and Practical Conference from Programming UkrPROG’2022, October 11-12, 2022, Kyiv, Ukraine
EMAIL: stepan.potiyenko@gmail.com (A. 1); kolchin_av@yahoo.com (A. 2)
ORCID: 0000-0001-9462-599X (A. 1); 0000-0001-7809-536X (A. 2)

©   2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR Workshop Proceedings (CEUR-WS.org) CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073



unreadable and look even less understandable for human than the source code.  For example,  the
authors of [2] proposed a method of accurate translation of data types from legacy systems to Java
classes. They produce 2 Java interfaces and 4 classes with several methods each (50-100 lines of
code) to emulate two overlapping memory areas in COBOL language (7 lines with REDEFINES
statement) using the semantics of the union construct from C++ language. To minimize a number of
generated Java classes an algorithm for optimizing COBOL data structures based on similarities is
given in [3].  Manual work is often required [4-7] in order to produce formal models from which
automated test generation becomes possible.

Reverse  engineering  tools  implement  various  abstraction  techniques  and  are  not  intended  for
simulation.  For  the  sake of  a  compact  and clear  presentation,  a  lot  of  information necessary for
translators  and  test  generators  is  lost.  For  example,  the  Rigi  system [8]  represents  dependencies
between code classes and functions in the form of a graph and divides it into subgraphs according to
various criteria, performs information extraction but omits the control flow and other details. In [9], a
method of slicing COBOL programs is proposed to help in understanding and maintaining systems.
The authors of [10] build a formal model for visualizing a legacy system at different levels, from
hardware to user interface. And in [11], a hypertext generator is proposed for navigating the data
types  of  COBOL  programs  (type  explorer),  where  memory  intersections  (REDEFINES)  are
considered as union.

The goal of our work is to generate formal models with the following properties:
 less complexity in relation to direct modeling of the code, which is important in such tasks as
state space search, checking formulas satisfiability, test generation according to various coverage
criteria, behavior analysis and debugging;
 accurate mapping of model artifacts to terms of source code to obtain executable tests and the
possibility of translation into other languages;
 greater human understanding than the source code.
This work is an evolution of the methods and systems described in [12-14]. We pay the main

attention to Cobol language, as it is the most widespread in the domain of legacy code, but we also
had examples of applying our work for older versions of Java and Visual Basic. In this paper, we
focus on the formalization of the memory model and also recall the general principles of building the
model from the source code.

Formal model

As a formal model we use attributed transition system [17], where transitions are represented by
tuples of the form (t,α,σ,β), where t is the name of the transition, α is its precondition, σ is an input or
output  signal,  and  β is  a  postcondition.  The  precondition  contains  the  first-order  predicate  logic
formula, and the postcondition contains a set of assignments of new values (expressions) to model
attributes. Signals can contain parameters in the form of constants or attributes. The semantics of
transitions is analogous to Dijkstra's guarded commands [15]: if the precondition of some transition t
is fulfilled in some state s, then the model can perform this transition and pass to a new state s'=t(s),
which differs from the previous one by the values of the assigned attributes in postcondition. Model
attributes are typed and can be integer, boolean or of enumerated types, and can also be arrays of
elements of these types. We prefer the enumerated types in formal models: first, in order to increase
the efficiency of symbolic computation, second, it significantly simplifies debugging and analysis of
system behavior [13, 16].

To specify the control flow, directed graphs of the form CFG = (V, E) are used, where V is a set of
vertices,  E is  a  set  of  edges  specified  by  pairs  of  vertices.  The  vertices  of  the  graph are  either
transitions of the formal model or links to other graphs that implement the semantics of function calls
in the source code. Such a representation is comparable with the source code and is convenient for
saving, human reading, and further translation of the formal model.

For a number of tasks, it is necessary to unfold all link-vertices by substitution into one  CFGU
graph. Such tasks include the determination of data dependencies, the construction of def-use pairs,
and the search for cycles. Although explicit loops can be taken from the structure of the code, for
example, in the COBOL language, GO TO operator and fall through semantics between paragraphs



are often used, which can generate implicit loops. When constructing a CFGU graph, there is a size
problem because all reachable function call stacks must be expanded. It also makes it impossible to
fully support recursion, although it can be limited, but this also leads to an increase in size. One
method of solving this problem is to move the function call stack from the control flow to the data
flow. But in this work, we do not solve this problem, taking into account the practical applications in
which unfold approach was sufficient.

Expressions translation

Pre-  and postconditions  are  represented in  a  form of  abstract  syntax trees  (AST).  Tree nodes
express operators or terminal symbols. Operators in order of priority descending (from high to low)
are the following:

 "[]" – access to an array element;
 " " – function call (typically, parentheses in source code);
 "abs" – integer modulus;
 "." – delimiter in full qualified names of fields of structures;
 "-", "!" – unary minus and negation;
 "*", "/" – arithmetic operations;
 "+", "-" – arithmetic operations;
 "<", ">", "<=", ">=", "==", "!=" – comparison operations;
 "&&" – conjunction (logical AND);
 "||" – disjunction (logical OR);
 "," – delimiter of parameters in function call;
 ":=" – assignment;
 ";" – delimiter of statements (currently used for several assignments in one CFG node);
Binary operators have right-side associativity besides binary minus and division – they are left-

sided.
AST is independent on source code language and may contain any uninterpreted operators. We can

abstract  them by changing to  nondeterministic  assignments  and obtain upper  approximation.  The
same is fair for library functions, whose bodies are absent in code under analysis.

One of the difficulties in language transformations is a data types emulation. Let’s consider main
data definitions in COBOL from the Figure 1.

level-number [data-name-1 | FILLER]
  [REDEFINES data-name-2]
  [{PICTURE | PIC} IS character-string]
  [[USAGE IS] {BINARY | COMPUTATIONAL | COMP | DISPLAY | INDEX |
    PACKED-DECIMAL}]
  [OCCURS integer-2 TIMES
  [VALUE IS literal-1].
66 data-name-1 RENAMES data-name-2 [{THROUGH | THRU} data-name-3].
88 condition-name-1 {VALUE IS | VALUES ARE}
   {literal-1 [{THROUGH | THRU} literal-2]} ... .

Figure 1: Subset of COBOL data definitions syntax

Level  numbers from 1 to 50 define hierarchy.  A variable can appear to be a structure,  which
contains all variables defined below with greater level up to the end of section or to a variable with the
same or lower level. There are special levels:

 level 66 is used to define alternative name data-name-1 of memory area containing given
variable data-name-2 or all variables from data-name-2 to data-name-3;
 level 88 does not set any variable but is used for comparison of a variable defined above 88th
level with defined value or a set of values.
Types of variables can be binary integer or alphanumeric, the latter we name string. We don’t

consider floating point types here.



We transform the names of 88th level as follows:
 All occurrences of names of 88th level with the only defined value are changed to comparison
of parent  variable  with this value or to  corresponding assignment,  depending on semantics  in
source code.
 If a name of 88th level has a set of values every its occurrence is transformed to disjunction of
corresponding comparisons with parent variable.

Enumerated types

Formal model contains a set  T of enumerated types. Every type  Ti є T is an unordered set  of
constants Ti = {e1, …, en} with defined operations "==" (equal) and "!=" (not equal). These operations
require  strong  type  correspondence  meaning  that  both  arguments  should  have  the  same  type.
Variables  in  these  arguments  are  called  connected.  For  example,  predicate  a ==  b[i]  connects  a
variable a and an array b, so that a must be of the same type as elements of the array b, but it's not fair
for index i. To generate first order predicate calculus formulas in a formal model we need to detect
variables from source code, which can be represented as attributes of enumerated types, and build a
set of these types. 

Corresponding  algorithm  in  a  form  of  pseudo  code  with  self-explanatory  operators  is  the
following:

// 1. Collect connected variables and their values from predicates
// they are comparison operators and assignments
for each variable v {
  new set CVALS(v) = collect values for v
  new set CVARS(v) = collect connected variables for v
}
// 2. Collect type groups
// they are pairs <set of variables, set of values>
new set G = 
for each variable v {
  if exists pair <VARS, VALS>  G: v  VARS
  then { // add v to existing group
    VARS = VARS  {v}  CVARS(v)
    VALS = VALS  CVALS(v)
  } else { // add new group to G
    G = G  {<{v}  CVARS(v), CVALS(v)>}
  }
}
// 3. Build enumerated types
// collect pairs <set of attributes, set of enumerated elements>
new set T = 
for each pair <VARS, VALS>  G {
  Boolean E = true
  for each variable v  VARS {
    if not (check enumerated types restrictions for v)
    then E = false
  }
  if E
  then {
    T = T  {<create set of attributes from VARS, create set of elements 
from VALS>}
    G = G \ {<VARS, VALS>}
  }
}
Figure 2: Algorithm for building enumerated types



After completion we have two sets:  T containing enumerated types in a form of pairs <set of
attributes, set of elements of the type>, and G with groups of variables which do not fulfill restrictions
for enumerated types. Variables from G become integer attributes or are processed bytewisely as
described below.

Let’s specify the algorithm for COBOL language:
1. Whole source code is analyzed and all predicates are collected. Predicates analysis allows to
detect  variables  connected  by  operators  requiring  strong  types  correspondence  (assignment,
comparison).  Also  all  occurring  values  are  collected  for  each  variable.  Predicates  analysis  is
performed by the following rules:

MOVE VAL TO VAR1
VAR1 = VAL
VAR1 NOT = VAL

VAR1 is not a structure
VAL is a constant

Constant VAL is added to the set of values CVALS(VAR1)
This rule is also applied to predicates generated by procedure of 
variables decomposition.

MOVE TERM TO VAR1(X:Y)
VAR1(X:Y) = TERM
VAR1(X:Y) NOT = TERM

VAR1(X:Y) is reference 
modification

If X or Y is not a constant then the variable VAR1 is marked for 
bytewise processing. If it is a structure then all its fields are also 
marked as bytewise. If TERM is a name of a variable then it is 
also marked as bytewise (with all the fields in a case of 
structure).
If both X and Y are constants then the variable VAR1 is 
decomposed by the algorithm described below.

MOVE VAR2(X:Y) TO VAR1
VAR1 = VAR2(X:Y)
VAR1 NOT = VAR2(X:Y)

VAR2(X:Y) is reference 
modification

If X or Y is not a constant then both variables (with all the fields 
in a case of structures) are marked for bytewise processing.
If both X and Y are constants then the variable VAR2 is 
decomposed by the algorithm described below.

MOVE TERM TO STR1
STR1 = TERM
STR1 NOT = TERM

STR1 is a structure

If TERM is reference modification like VAR2(X:Y) then 
previous rule is applied.
If TERM is a constant then we break it, as character string, into 
parts with lengths corresponding to STR1 fields. The predicate is 
transformed to a sequence of predicates (sequence of 
assignments, conjunction of equalities or disjunction of 
inequalities).

If TERM is a variable name (can be a structure) then it is 
decomposed by the algorithm described below.

MOVE STR2 TO VAR1
VAR1 = STR2
VAR1 NOT = STR2

STR2 is a structure

Previous rule is applied where arguments of the predicate are 
swapped, i.e. TERM is VAR1 and STR1 is STR2.

VAR1 > VAR2

Also operations
>=, <, <=, NOT >, NOT < 

If any variable VAR1 or VAR2 is not numeric by definition 
(PICTURE 9(N) or S9(N)) then both variables are marked for 
bytewise processing. It is also fair to structures.

Figure 3: Rules for analysis of COBOL statements

2. Connected variables are merged into groups so that all variables in each group have the same
type.  So,  the  set  VALS  of  all  found  values  of  these  variables  forms  a  set  of  elements  of
corresponding  enumerated  type.  Also  auxiliary  element  OTHER  is  added  for  an  abstract
representation of other values which don't occur in code.
3. Enumerated  type  is  generated  for  each  group  where  all  variables  fulfill  the  following
restrictions:



 no >, >=, <, <= comparisons with other variables or expressions (comparisons with numeric
constants are allowed);
 no arithmetic operations;
 no occurrences of a variable as an array index;
 no operations  over  strings  (like  concatenation  or  substring),  no substring  operations  with
variable indices;
 no operator REDEFINES in DATA DIVISION (*)
 no operations over whole structures if a variable is a field of structure (*).
4. For groups where restrictions marked with asterisk (*) are not fulfilled, a method for variables
decomposition is applied (described below). It produces new variables and new groups and this
algorithm is repeated for them.

Names of  attributes  in  the  formal  model  are  built  as  full  qualified name of  corresponding
variable (names of all structures above this variable are appropriately joined).

Translation of numeric constants

Enumerated types are created for groups where variables are compared with numeric constants by
operations >, >=, <, <= by the following algorithm:

1. Build  a  set  of  intervals  I.  Initially,  I =  {(-,+)}.  Every  constant  c which  occurs  in
comparison operations >, >=, <, <=, ==, != with a variable from current group, splits the interval
from І which contains c to three: c  (n,m)  (n,m)  I  I = (I \ {(n,m)})  {(n,c),[c,c],(c,m)}.
2. Create  enumerated  type  T from the  set  of  intervals  І,  where  one  and  only  one  element
corresponds to each interval.
3. For each predicate with comparison >, >=, <, <=, ==, != of a variable from current group with
a  constant,  calculate  a  subset  of  allowed  intervals  from  I and  substitute  this  predicate  with
disjunction of equalities of the variable with corresponding elements of the type T.

For example, let we have predicates v < 0 and v >= 5. Then:
I = {(-,0), [0,0], (0,5), [5,5], (5,+)}, T = {LS_0, EQ_0, GT_0_LS_5, EQ_5, GT_5},

v < 0  v == LS_0, v >= 5  v == EQ_5 || v == GT_5.

Numeric variables

Binary variables of Cobol language (BINARY, COMPUTATIONAL or COMP) are translated to
integer attributes. According to the Cobol description, a binary variable with a PICTURE description
of four or fewer decimal digits  (S9(1) to S9(4) and 9(1) to 9 (4))  occupies 2 bytes; five to nine
decimal digits, 4 bytes; and 10 to 18 decimal digits, 8 bytes. We abstract of the variables size while
creating integer attributes, however, it is important for the bytewise approach.

Numeric variables (not binary) with PICTURE description 9(N) or S9(N) are translated to integer
attributes in the same way as binary but differ in bytewise representation. Each digit occupies one
byte with a code of digit symbol.

If all integer variables from a particular type group fulfill restrictions of enumerated types then an
enumerated type and attributes are created.

Decomposition of variables

In the case when different structures are compared with each other, one is assigned to another, or
they overlap in memory using the REDEFINES operator, it is necessary to bring them to one common
structure. To work with structures overlapping in memory, it is common to use union semantics [2,
11], but this has the disadvantage of not being able to use two fields of different structures at the same
time. In C++, the field to which the last assignment was made is considered active, and the behavior
when reading inactive fields is undefined. In Java, there is no direct analogue of union, and even if to



make an implementation with data copying between fields, difficulties arise when the field types are
not comparable. In general, for non-comparable structures, the bytewise approach is used, where, in
one way or another, each byte of the variable is processed separately. This leads both to an increase in
the number of states during modeling, and to the impossibility of reading and understanding such
artifacts by a human. To avoid the bytewise approach, we suggest making the minimum necessary
decomposition of the fields of the structures. For simplicity, it is better to show the algorithm on
examples.

Example 1. Let we have two non-comparable structures STR1 and STR2 with lengths 5 and 6 that
overlap in memory (starting from the same address). We will present a version of translation into a
Java class using the bytewise approach:

01 STR1.
  05 A PIC X(2).
  05 B PIC X(3).
01 STR2 REDEFINES STR1.
  05 C PIC X(1).
  05 D PIC X(2).
  05 E PIC X(3).

public class STR1 {
  char[] data = new char[6];
  String getA() {
    return String.valueOf(data,0,2);
  }
  String setA(String s) {
    for (int i = 0; i < 2; i++)
      if (i < s.length())
        data[i] = s.charAt(i);
      else
        data[i] = ' ';
  }
  ...
  String getE() {
    return String.valueOf(data,3,3);
  }
  String setE(String s) {
    for (int i = 0; i < 3; i++)
      if (i < s.length())
        data[3 + i] = s.charAt(i);
      else
        data[3 + i] = ' ';
  }
}

Figure 4: Example of the bytewise approach in Java

Fields of these structures overlap in memory as shown in the Figure 5.

A B
C D E
Figure 5: Fields overlapping in memory

Let’s divide all fields of one structure by boundaries of fields of another, and vice versa, as in the
Figure 6.

A_FIELD1 A_FIELD2 B_FIELD1 B_FIELD2
C D_FIELD1 D_FIELD2 E_FIELD1 E_FIELD2
Figure 6: Fields decomposition

Now, we can map fields of structures one-to-one and apply the algorithm for building enumerated
types.

Besides overlaps in memory (REDEFINES),  decomposition is  required for statements STR1 =
STR2 and MOVE STR1 TO STR2. To do this, align the structures along the left edge and make a
similar decomposition, as well as transform the statements accordingly, as in the Figure 7.



STR1 = STR2 is transformed to:
A_FIELD1 = C AND A_FIELD2 = D_FIELD1 AND … AND E_FIELD2 = SPACE
MOVE STR1 TO STR2 is transformed to:
C := A_FIELD1; D_FIELD1 := A_FIELD2; …; E_FIELD2 := SPACE;

Figure 7: Statements transformation

When comparing and assigning alphanumeric variables of different lengths in Cobol, the shorter
one is prolonged by spaces, hence the SPACE in the E_FIELD2 field.

Example  2. Take  the  structure  STR2  from  the  example  1  and  the  variable  N  defined  as
01 N PIC 9(4). In the case of numeric variables, they must be right-aligned and leading zeroes are
provided for shorter one. Then, for the statements STR2 = N and MOVE N TO STR2, decomposition
is shown in the Figure 8.

0 0 N_RFIELD2 N_RFIELD1
C D_FIELD1 D_FIELD2 E
Figure 8: Fields decomposition

Analogous  decomposition  is  applied  by  substrings  boundaries  in  the  statement  VAR(X:Y)
(reference modification) with constant indices. Next consider arrays.

Example  3. Let  the  structure  STR1  contains  an  array  of  structures  ARR1  with  length  of  3
elements, see the Figure 9.

01 STR1.
  05 ARR1 OCCURS 3 TIMES.
    10 A PIC X(1).
    10 B PIC X(2).

01 STR2.
  05 C PIC X(1).
  05 D PIC X(3).
  05 E PIC X(1).
  05 F PIC X(2).

Figure 9: Fields decomposition

In this case of decomposition it’s required to unfold the array by elements as in the Figure 10.

A_1 B_1 A_2 B_2_FIELD1 B_2_FIELD2 A_3 B_3
C D_FIELD1 D_FIELD2 E F_FIELD1 F_FIELD2
Figure 10: Fields decomposition

In some cases, we can avoid unfolding arrays. We have developed a procedure for determining
such cases and show one of them in the following example.

Example 4. Take  the structure  STR1 from the example  3  and the  variable  01 S PIC X(12).
Variable S is 12 bytes long, while the entire array ARR1 is 9 bytes. Then the variable S can be
divided  into  a  corresponding  array  and  a  tail  of  length  3,  and  the  structure  STR1  will  remain
unchanged, see the Figure 11.

01 STR1.
  05 ARR1 OCCURS 3 TIMES.
    10 A PIC X(1).
    10 B PIC X(2).

01 S PIC X(12).
Is transformed to a structure:
01 S.
  05 S_FIELD1 OCCURS 3 TIMES.
    10 S_FIELD1_1 PIC X(1).
    10 S_FIELD1_2 PIC X(2).
  05 S_FIELD2 PIC X(3).

Figure 11: Fields decomposition

In general, decomposition of variables allows to group new fields of different structures and build
enumerated types for them. In the worst case, variables will be split  into fields of one byte each,
which is equivalent to the bytewise approach.



The bytewise approach

The bytewise approach is used in cases where the constraints of enumerated types are not met and
integer attributes cannot be generated, for example:

 VAR(X:Y) (reference modification) – access to a substring with variable indices;
 STRING – operation of concatenation of several values into one;
 Comparisons >,  >=, <,  <= of non-numeric variables or structures requires lexicographical
processing.
For bytewise processing, variables are represented as arrays of integers in the formal model. Each

element of the array corresponds to one byte of memory.
The bytewise approach generates complex formulas or even behaviors implemented by source

code language operators. We consider them as atomic transitions, and implement them as external
functions in the C++ language, the calls of which are located in the preconditions and postconditions
of  model  transitions.  Thus,  during simulation,  we avoid generating many unnecessary states,  but
completely preserve the semantics of the source code. The Figure 12 shows the implementation of one
of the simple functions cobol_move_int, which is used for bytewise processing of the construction
MOVE N TO VAR, where N is an integer number, VAR is not a binary variable (there is another
function for binary).

void cobol_move_int(int attr, int number) {
  // attr – identifier of an attribute in the model, the attribute must be an array of integers
  // number – a number to be written as a string
  string str = to_string(abs(number)); // convert modulus of the number to a string
  int lens = str.length(); // length of the string
  int len = get_array_size(attr); // length of the array
  int symb = 0;
  for (int i = 0; i < len; ++i) { // for each byte of the array attr
    if (i < len - lens)
      symb = '0'; // fill the beginning by zeroes
    else if (i == len - lens && number < 0)
      // set a flag of negative number according to Cobol semantics
      symb = str[0] | 0b01000000;
    else
      symb = str[i + lens - len]; // take current symbol of the string
    set_array_value(attr, i, symb); // write the symbol in the array
  }
  return 0;
}
Figure 12: Implementation of cobol_move_int function

Such external functions are implemented to simulate all cases of accessing variables in bytewise
representation – for writing strings, filling with one character (LOW-VALUE, SPACE, ZERO, etc.),
writing and extracting numbers in alphanumeric and binary representations, comparing alphanumeric,
numeric binary and non-binary variables in various combinations, value type checks.

Conclusions

The proposed method of building formal models was applied to several medium-sized projects
(10,000 – 100,000 lines of code) for further use in test generation [13, 14] and behavior analysis [12,
16] and showed its viability. The specifics of projects in the Cobol language is such that the definition
of static memory (DATA DIVISION) occupies most of the code, so the generated models contain
significantly fewer transitions than lines of code. The methods of constructing enumerated types and
decomposing  variables  made  it  possible  to  effectively  search  the  state  space  for  the  purpose  of
generating  executable  tests.  Automated  testing  of  the  production  version  of  the  Cobol  to  Java



translator on a banking project was performed and 5 defects were found in the translator and 2 in the
source  code.  On larger  projects,  the  method of  variables  decomposition played a  special  role,  it
reduced the size of  memory that  is  processed bytewisely,  on average,  by 3 times.  This not  only
increased the efficiency of test generation and allowed to reach more coverage, but also significantly
simplified the models  for  human understanding and reduced the time to debug the tests  and the
systems under testing.

References

[1] Patrick Stanard,     A history of COBOL, why it’s so popular today, where to find COBOL talent
and  the  benefits  of  migrating  to  v6.3.  https://techchannel.com/Enterprise/03/2021/business-
systems-cobol. (2021)

[2] M.  Ceccato,  T.R.  Dean,  P.  Tonella,  D.  Marchignoli,  Data  Model  Reverse  Engineering  in
Migrating  a  Legacy System to  Java,  Reverse  Engineering,  2008.  WCRE '08.  15th  Working
Conference on , vol., no., pp.177–186. (2008)

[3] Yohei Ueda, Moriyoshi Ohara. Refactoring of COBOL data models based on similarities of data
field name. (2014)

[4] European  Telecommunications  Standards  Institute.  TTCN-3:  Core  Language.  ES  201  873-1
4.11.1. (2019)

[5] International Telecommunications Union. Message Sequence Charts Z.120. (2011)
[6] A. Letichevsky, J. Kapitonova, V. Kotlyarov, V. Volkov, A. Letichevsky Jr., and T. Weigert,

Semantics of Message Sequence Charts.  Proc. 12th International SDL Forum: Model Driven,
LNCS, vol. 3530, pp.117-132. (2005)

[7] M. Wynne and A. Hellesoy, The Cucumber Book. The Pragmatic Bookshelf. (2012)
[8] Holger M. Kienle, Hausi A. Müller, Rigi – An environment for software reverse engineering,

exploration, visualization, and redocumentation, Science of Computer Programming, Volume 75,
Issue 4, pp. 247-263. (2010)

[9] Ákos Hajnal & István Forgács, A demand-driven approach to slicing legacy COBOL systems.
Journal of Software Maintenance, 24, pp. 67-82. (2012)

[10] A. Sivagnana Ganesan, T. Chithralekha, M. Rajapandian, A Formal Model for Legacy System
Understanding. I.J. Intelligent Systems and Applications, 10, pp. 27-41. (2018)

[11] Arie van Deursen, Leon Moone, Exploring Legacy Systems Using Types. Proceedings Seventh
Working Conference on Reverse Engineering. IEEE, pp. 32-41. (2000)

[12] А. Guba, et al., A method for business logic extraction from legacy COBOL code of industrial
systems. In: Proceedings of the 10th International Conference on Programming UkrPROG2016,
CEUR-WS, vol. 1631, pp. 17–25 (2016)

[13] T. Weigert,  et  al.,  Generating test  suites to validate legacy systems. In:  Fonseca i  Casas,  P.,
Sancho,  M.-R.,  Sherratt,  E.  (eds.)  SAM 2019.  LNCS,  vol.  11753,  pp.  3–23.  Springer,  Cham
(2019). https://doi.org/10.1007/978-3-030-30690-8_1 

[14] A.  Kolchin,  S.  Potiyenko,  T.  Weigert,  Challenges  for  automated,  model-based  test  scenario
generation. Comm. Comput. Inf. Sci. 1078, 182–194. (2019)

[15] Edsger  W.  Dijkstra,  Guarded  commands,  nondeterminacy  and  formal  derivation  of
programs. Communications of the ACM 18.8 (1975), pp. 453-457. (1975)

[16] A.  Kolchin,  Interactive method for  cumulative analysis  of  software formal  models  behavior.
Proc. of the 11th Int. Conf. on Programming UkrPROG’2018, CEUR-WS vol. 2139, pp. 115–
123. (2018)

[17] A. Letichevsky, A. Godlevsky, O. Letychevskyy (jr.), S. Potiyenko, V. Peschanenko, Properties
of VRS predicate transformer. Cybernetics and System Analysis, vol. 46, pp. 521–532. (2010)

https://techchannel.com/Enterprise/03/2021/business-systems-cobol
https://techchannel.com/Enterprise/03/2021/business-systems-cobol
https://techchannel.com/Enterprise/03/2021/business-systems-cobol

	Introduction
	Formal model
	Expressions translation
	Enumerated types
	Translation of numeric constants
	Numeric variables
	Decomposition of variables
	The bytewise approach
	Conclusions
	References

