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Abstract 

The  design  of  high-level  programming  abstractions  in  the  form  of  algebra-algorithmic
languages and models is one of the promising directions in the development and research of
parallel computing systems. The purpose of such design is the development of architecture-
and language-independent programming tools for multiprocessor platforms. The paper gives
the  results  of  the  construction  and  parallelization  of  a  program  implementing  a  Crank-
Nicolson scheme using algebra-algorithmic specifications represented in a natural-linguistic
form. The Crank-Nicolson scheme is applied for obtaining a numerical solution of the model
of a distributed mass transfer system and identifying the distribution of diffusion coefficients
in a heterogeneous nanoporous medium. Heterogeneous media consisting of thin layers of
particles of forked porous structure with different physical-chemical properties are widely
used in science-intensive technologies and priority sectors of industry, medicine, ecology,
etc. Such layers are distributed systems of pores consisting of two main spaces: micro- and
nanopores  of  particles  and  macropores  and  cavities  between  particles.  In  modeling
concentration and gradient fields for various diffusible components, an important scientific
problem is the identification of kinetic parameters of a transfer, predetermining mass transfer
velocity  on  macro-  and  micro  levels,  and  also  equilibrium  conditions.  The  tools  for
automated design,  synthesis,  and auto-tuning of programs were applied that provided the
translation  of  the  Crank-Nicolson  algorithm  into  source  code  in  a  target  programming
language and its tuning for execution environment to increase the program performance. The
experiment results of auto-tuning the software implementation of the Crank-Nicolson scheme
demonstrated high multiprocessor speedup on test data input. 
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1. Introduction

One of the promising directions in the development and research of parallel computing systems is
the construction of high-level programming abstractions in the form of algebra-algorithmic languages
and models,  the  purpose  of  which is  the  development  of  architecture-  and  language-independent
programming tools for multiprocessor platforms. In works [1–5], methods and tools for automated
design,  synthesis,  and  automatic  self-adjustment  (auto-tuning)  of  parallel  programs  based  on
Glushkov’s system of algorithmic algebras (SAA) and the rewriting rules technique were developed.
SAA is intended for formalized design of programs presented in the form of high-level schemes.
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Auto-tuning  provides  optimization  of  programs  —  their  adjustment  to  a  specific  computing
environment by the automated search for the optimal program from a set of possible options, each of
which is executed on a given parallel architecture with performance (execution time) measurement.
Auto-tuning tools apply rewriting rules to transform programs.

In this paper, the tools developed are used for the design and auto-tuning of a parallel program for
the  implementation  of  the  Crank-Nicolson  scheme  for  execution  on  a  multi-core  processor.  The
Crank-Nicolson method is a special numerical technique for solving differential equations with partial
derivatives  based  on  a  special  scheme  of  the  finite  difference  method,  in  particular,  for  heat
conduction and diffusion equations.  In [6],  the Crank-Nicolson scheme is applied for obtaining a
numerical solution of the model of a distributed mass transfer system and identification in the direct
and conjugate formulation for identifying the distribution of diffusion coefficients in a heterogeneous
nanoporous medium based on the theory of optimal control of the state of multicomponent systems. A
gradient procedure for identifying parameters of internal transfer kinetics was implemented and the
distribution of diffusion coefficient values for intraparticle and interparticle transfer was obtained.

Heterogeneous  nanoporous  media  consisting  of  thin  layers  of  particles  of  a  branched  porous
structure  with  different  physical  and  chemical  properties  are  widely  used  in  science-intensive
technologies and priority sectors of industry, medicine, ecology, etc. Such layers are distributed multi-
level pore systems consisting of two main spaces: micro- and nanopores of particles and macropores
and cavities between particles. The intraparticle space has a higher degree of adsorptive capacity and,
at the same time, a lower rate of diffusion intrusion compared to the interparticle space [7–9]. When
modeling concentration and gradient fields for various diffused components, an important scientific
problem is the identification of kinetic transport parameters that determine the rate of mass transfer at
the macro- and micro-levels, as well as equilibrium conditions.

2. The tools for automated design, generation, and auto-tuning of programs

In  this  work,  we  use  the  system of  algorithmic  algebras  [1]  intended for  the  construction  of
algorithms and programs  represented  in  the  form of  high-level  schemes.  SAA is  the  two-sorted
algebra , where  and  are sets of predicates and operators defined on

an information set;  is a signature of operations, consisting of logic (disjunction, conjunction,
negation) and operator constructs, which will be considered further. In this work, a natural-linguistic
form  of  operations  notation  is  used.  SAA  is  based  on  the  language  SAA/1  [1],  which  uses  a
representation of algorithms close to natural language and can be translated into a target programming
language  (C++,  Java  and  other).  Algorithms  represented  in  SAA/1  are  called  SAA  schemes.
Identifiers  of  predicates  are  written  in  single  quotes,  and  operators  are  enclosed  in  double  ones.
Predicates and operators in SAA/1 can be basic or compound. Basic elements are elementary atomic
abstractions in SAA schemes.

Compound operators are built from basic operators based on the following operations:
 composition (sequential execution) of operators: 
 branching: 
 for loop: 
 asynchronous execution of  operators (threads): 
 control point:  , which is associated with a synchronization condition that has
the value “false” until the computation process has reached this point in an algorithm scheme, and
the value “true” after the point is reached;
 synchronizer: ,  which  delays  the  computation  until  the  value  of  the
synchronization condition becomes “true”.
The developed integrated toolkit for program design and synthesis (IDS) [1, 4] provides automated

construction  of  algorithm schemes  and  generation  of  corresponding  code  in  target  programming
languages (C, C++, Java). Algorithms are designed using a list of SAA operations and a tree. The user
selects constructs from the list and adds them to the algorithm construction tree. At each step of the
design process, the system allows the user to select only those operations, the insertion of which into
the  scheme  does  not  violate  its  syntactic  correctness.  The  algorithm  tree  is  further  used  to



automatically generate the text of the SAA scheme and the code in a programming language. The
representation of  each SAA construct  in  the  text  in  the  programming language is  specified  as  a
template in the database of the integrated toolkit.

The  application  of  formal  methods  in  the  IDS  toolkit  and  rewriting  rules  of  the  TermWare
system [4,  5] provides an opportunity to automate the manual  work of programmers and perform
more complex parallelization of algorithms. TermWare provides a language for describing rewriting
rules that operate on special data structures — terms, as well as tools for processing and interpreting
rules for transforming terms. The performance of the designed programs can be improved by using
the developed automatic program tuning system TuningGenie [2, 3]. TuningGenie is intended for the
automated generation of  autotuner applications from source code in Java language. The idea of  the
autotuner is to empirically evaluate several versions of the input program and select the best one —
with reduced execution time and higher accuracy of the results. The system works with the program
text, using the expert knowledge of the developer, who adds certain metadata (parameter names and
value ranges) to the source code in the form of special comments (pragmas). By using such expert
knowledge,  the  number  of  options  for  the  evaluation  program  is  reduced,  which  increases  the
performance of the autotuner.

TuningGenie uses  TermWare  to  extract  expert  knowledge  from  original  software  code  and
generate a new version of a program at each autotuning iteration. By manipulating terms represented
as abstract syntax trees, TuningGenie can perform structural changes in program computations using
the  declarative  style  of  the  TermWare  system.  In  the  process  of  analyzing  the  source  code  and
building  a  term  tree,  the  autotuner builds  a  set  of  configurations  based  on  expert  data.  These
configurations are then translated into rewriting rules. Also, at this preliminary stage, some program
parameter  values  are  computed.  The  outputs  of  this  step  include  a  program  term,  a  set  of
parameterized rewriting rules, and a set of rule configurations that specify specific parameter values.
Each of these configurations specifies a unique version of the input application. Next, TuningGenie
searches for the most efficient configuration for a given computing environment.

Expert knowledge about the subject domain and implementation is stored in a source code as
special directives called pragmas. Pragmas are special form comments, so they are ignored by the
Java  compiler.  Adding  pragmas  does  not  change  the  structure  of  computations,  and  a  program
equipped with pragmas can be translated by any compiler without additional libraries. Below is an
example of one of TuningGenie’s pragmas called tunableParam. This pragma sets the possible values

for the  NumThreads variable, which stores the number of parallel threads, in a range   with

step 1:

// tunableParam name=NumThreads start=1 stop=16 step=1
int NumThreads = 1;

The tunableParam pragma is used for algorithms that use data parallelization: it allows finding the
optimal  decomposition of  calculations  by estimating the size  of  a  block that  is  executed on one
processor.  It  can  also  be  used  when  it  is  necessary  to  estimate  the  optimal  amount  of  limited
resources, for example, the size of the cache.

In this  work,  the  developed tools  are  used for  the  automated  design and tuning of  a  parallel
program for the implementation of the Crank-Nicolson scheme. The formulation of the problem for
which the scheme is used is considered in the next section.

3. Formulation of  the problem of  two-level  transport  in  a  heterogeneous
system of nanoporous particles and an algorithm for implementing the
gradient method of identifying intraparticle diffusion coefficients

Mass transfer in a system of heterogeneous media consisting of small particles of a nanoporous
structure  causes  two  types  of  mass  transfer:  diffusion  in  macropores,  due  to  the  space  between
particles, and diffusion in the system of micro- and nanopores inside the particles of a heterogeneous
medium. To determine the contribution of each type of diffusion to the overall mass transfer system, it



is necessary to know the values of the parameters that define the adsorption  equilibria, etc. In this
work, a heterogeneous nanoporous medium is considered, which consists of a large number of 
thin layers, nanoporous spherical particles located perpendicular to the direction of the incoming flow
and  interconnected  by  a  system  of  conditions  of  n-interface  interactions.  This  is  decisive  for
heterogeneous thin nanoporous samples, especially in the case of gas diffusion before the state of
adsorption equilibrium, taking into account the system of multi-interface interactions. Mass transfer
occurs through the permeable surface of the bed in two directions: in the axial direction — in the
space of macropores (direction   along the height of the bed, perpendicular to the surface of the
layers) and radial — in the space of micro- and nanopores. The evolution of the system towards
equilibrium is carried out  by concentration gradients in macropores and micro- and nanopores of
particles (from the surface to the center).

The mathematical  model  of  such a transfer,  taking into account the above-mentioned physical
factors, is described in the form of a mixed boundary value problem [7]: to construct a bounded in
domain

solution of the system of equations in partial derivatives written in matrix form:

, (1)

, (2)

with initial conditions:
 , (3)

boundary conditions:

,
(4)

, .
(5)

and a system of conditions of n-interface interactions along coordinate :

, ,
(6)

where , , , .



The system of differential equations (1) describes the transfer in the interparticle space, limited by
the right-hand parts of the system, which take into account the effect of  micro transfer on the outer
surfaces of particles or crystallites  for each k-th layer of the bed. The system of equations (2)
describes  transport  in  micro-  and  nanopores  of  the  intraparticle  space.  The  relation  between
concentrations  in the interparticle space and concentrations  in the intraparticle space is defined
by the system of right-hand boundary conditions (5), which also defines the conditions of adsorption
equilibrium on the surfaces of spherical particles,  is the thickness of the k-th layer, 
is the radius of the particle. The problem is solved using the Crank-Nicolson difference scheme [6].

The procedure for  implementing the gradient  method of identifying intraparticle  mass transfer

coefficients ( , ) is based on the use of the system state matrix ,

which corresponds to the total accumulated mass of the diffused component in the pores of particles
in the interparticle and intraparticle space [10]. The matrix is defined by the formula 

,

where  is the matrix of experimental studies data for і-th surface and k-th time

layers (Figure 1) [11].

Figure 1: Experimental data of studies of competitive mass transfer in a heterogeneous nanoporous
catalytic medium [11]

In the matrix  , time and space variables   and  define specific states of the

competitive  transfer  system for  heterogeneous  (by  direction  )  catalytic  medium of  nanoporous
particles, for which identification of kinetic parameters-coefficients of intraparticle diffusion is carried

out  for each of  layers.

To identify this distribution (vector) , one of the gradient methods is used, the mathematical

substantiation of which is applied to the problems of parametric identification of multicomponent
distributed systems and is presented in [12, 13]. Based on the specifics of the problem, the method of
minimum errors is the most suitable, according to which, to define the ( )-th the approximation of

the  diffusion  coefficient  in  the  intraparticle  space  ,  we  apply  the  following  gradient-

identification procedure defined in matrix form:

where  is the value of the coefficient for each -th step of the iteration.



The general scheme of the algorithm for identifying intraparticle diffusion coefficients  ,

is shown in Figure 2.

Figure 2: Block diagram of the algorithm for identifying intraparticle diffusion coefficients

The results of  the experiments on numerical  modeling and identification of kinetic parameters
based on the given algorithm are considered in [6].

4. Results of experiments

This section gives the results of tuning the parallel program implementing the Crank-Nicolson
scheme  to  a  target  execution  environment  and  numerical  modeling  and  identification  of  kinetic
parameters of a heterogeneous nanoporous mass transfer system.

Further,  the  process  of  parallelization  of  one of  the  subroutines  of  the  implementation of  the
Crank-Nicolson scheme is described. The sequential SAA scheme of this routine, designed using the
IDS toolkit,  is  shown below.  The scheme is  a  loop by  variable  ,  in  which functions
iterate_c(k)  and  iterate_q(k)  calculate  the  k-th  layer  for  concentration  values   and  

 
in  the

interparticle and intraparticle space, respectively.

SCHEME CRANK-NICOLSON SEQUENTIAL ====



“iterations”
==== FOR (k FROM 1 TO N)
           “iterate_c(k)”;
           “iterate_q(k)”
         END OF LOOP

END OF SCHEME

The parallelization of the scheme consists in the division of the segment  into NumThreads
sections processed simultaneously. The SAA scheme of the parallel algorithm is as follows:

SCHEME CRANK-NICOLSON PARALLEL ====

“iterations”
==== PARALLEL(j = 1,..., NumThreads)
          (
              “IterateThread(j)”
          );
          WAIT ‘Processing in all (NumThreads) threads is finished’;

“IterateThread(j)”
==== “chunk := N / NumThreads”;
          “start := (j – 1) * chunk + 1”;
          “end := (j – 1) * chunk + chunk”;
          IF (j = NumThreads) THEN
             “end := N”
          END IF;
          FOR (k FROM start TO end)
             “iterate_c(k)”;
             “iterate_q(k)”
          END OF LOOP;
          CP ‘Processing in the thread (j) is finished’;

END OF SCHEME

Based on the designed scheme, the IDS toolkit performed automated code generation in the Java
language. Next, the TuningGenie system was used to find the optimal configuration for the program
when running on a multi-core processor. With this system, various combinations of performance-
related  JVM compiler  options  (-XX:-UseBiasedLocking/-XX:BiasedLockingStartupDelay) were
tested at various thread count values. Changing compiler options did not show a significant impact on
computational  performance,  so the  following results  refer  mainly  to  changes  to  the  NumThreads
parameter.  The characteristics of the test environment were the following: quad-core processor Intel
Core i7-6820HQ with frequency 2,7 GHz; cache L1: 32k/32k x4, cache L2/L3: 256k x4, 8 MB; RAM
16 GB, 2133 MHz LPDDR3; OpenJDK build 11.0.2+9; macOS v11.6.

Intuition suggests that the optimal number of threads should be 8, since the processor is a quad-
core with support for hyper-threading technology. This configuration is marked with a triangle in the
diagram (Figure 3) and demonstrated an acceptable multiprocessor speedup of 5.16 on the test input
data.



Figure 3: The dependency of the execution time on the number of threads for the parallel program
implementing the Crank-Nicolson scheme

However,  increasing  the  number  of  threads  further  resulted  in  additional  performance
improvement of approximately 140%. The fastest application configuration with 62 threads (indicated
by the dot in the diagram) achieved a fairly good multiprocessor speedup of 6.5. This is explained by
the increased efficiency of using processor caches. Fine-grained decomposition is more likely to be
placed in the L1–L3 cache and saves time for access to “slow” RAM. This effect is balanced by the
additional time cost of thread competition. Nevertheless, the overall effect was positive.

The results of the parametric identification of kinetic parameters carried out in accordance with the
considered methodology and using the specified experimental  data are presented in Figure 4 and
Figure 5. Like the results of the experimental studies (Figure 1), they were obtained for different time
snapshots for the cases of the process of independent diffusion of benzene and hexane. Figure 4 (a)
and Figure 5 (a) show the graphical distributions of the values of the identified diffusion coefficients
along  coordinate   during  the  diffusion  of  benzene  for  the  moments  of  time   and

From the given graphic results of the process of identification of diffusion coefficients  ,

, for the intraparticle space, it is possible to distinguish general characteristic laws, which
consist in a somewhat pseudo-exponential decrease of the values of diffusion coefficients in the range
of   m/sec2  (taking  into  account  the  computation  errors).  A  similar  picture  is
observed for the diffusion process of hexane, for which the procedure of identification of diffusion

coefficients in the intraparticle space   for time snapshots   and   was

carried out. The results of the identification are presented in Figure 5 (a).
The obtained results  of  the identified distributions  of diffusion coefficients  in  the  intraparticle

space  along coordinate   (the  main  direction  of  heterogeneity  of  the  system)  allow sufficiently
accurate modeling of the concentration fields and integral mass distributions in the heterogeneous
catalytic  nanoporous  layer.  Figure  4  (b)  and  Figure  5  (b)  present  the  concentration  profiles
demonstrating a comparative analysis of model curves (2), constructed as a result of the numerical
solution of the problem (1)–(6) using the Crank-Nicolson scheme, and also the comparison of the
results  of  identified  coefficients  within  particle  diffusion  with  approximations  of  experimental
distribution curves of the absorbed mass in the nanoporous layer used for the identification procedure.



for 

for 
a)         b)

Figure 4: The results of identification of diffusion coefficients for time points  and 
for  benzene  diffusion:  a)  the  distribution  of  diffusion  coefficients  in  the  intraparticle  space;  
b) the comparison of model (2) and experimental (1) curves

for 

for 
                                     a)          b)

Figure 5: The results of identification of diffusion coefficients for time points  and 

for hexane diffusion: a) the distribution of diffusion coefficients   in the  intraparticle space;

b) the comparison of model (2) and experimental (1) curves



5. Conclusion

Automated  design  and  parallelization  of  the  Crank-Nicolson  scheme  implementation  program
using algebraic-algorithmic specifications presented in the natural-linguistic form were performed.
Previously  developed  tools  for  automated  design,  synthesis,  and  auto-tuning  of  programs  were
applied, which provided the transformation of algebraic-algorithmic schemes into source code in a
programming language and its automated tuning to the execution environment to increase the program
performance.  The  results  of  the  experiment  on  the  automated  tuning  of  the  parallel  program
demonstrated a high multiprocessor speedup on test input data.
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