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Abstract 
In this paper, we consider for the first time the group problem of pursuit for linear fractional 
differential systems with several pursuers and one evader and with pure delay. We have 
developer an outline of the Method of Resolving Functions and the First Direct Method of 
Pontryagin for such conflict-controlled processes using the latest representation of the Cauchy 
formula. We compare the game end times guaranteed by these two methods. Sufficient 
conditions for ending the group pursuit game and the practical finding method of resolving 
functions are formulated. 
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1. Introduction 

Mathematical models with fractional differential equations with a delay have become widely 
used today, in particular, in the theory of decision-making in conflict situations. In the theory 
of conflict-controlled processes, the problems of group pursuit are relevant, especially in 
military practice. The task is to find pursuer strategies (not necessarily optimal) that guarantee 
the solvability of the group pursuit problem under any admissible controls of the evader. The 
theory of conflict-controlled processes (differential games) enumerates several fundamental 
methods of researching various natural processes that function in conditions of conflict and 
uncertainty. Attempts to construct optimal behavior for opposing sides in dynamic game 
problems inevitably lead to the use of dynamic programming ideology, which is closely related 
to the Hamilton-Jacobi–Bellman-Isaacs equation, the main equation in the theory of differential 
games [1]. The desire to find optimal solutions for counter-acting parties in the game problems 
of dynamics encounters great difficulties of mathematical nature. Therefore, several effective 
mathematical methods have been created for deciding dynamic games, which provide a 
guaranteed result and give sufficient conditions for goal achievement without worrying about 
optimality, which is quite justified from the practical point of view. These are the First Direct 
Method of Pontryagin [2], the Rule of Extremal Aiming of N.N. Krasovskii [3], and the Method 
of Resolving Functions [4]. In this case, the range of group pursuit problems, that can be solved 
using this approach is much wider. This approach follows the rule of parallel pursuit, well 
known to design engineers. 

In this paper, we use the Method of Resolving Functions and the First Direct Method of 
Pontryagin. Inverse Minkowski functionals [5, 6] play a key role in our approach. Resolving 
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functions are typically determined from specific quadratic equations, making this technique a 
convenient and universal means of solving certain problems. 
Delay differential equations are widely used in various fields, including control theory, 
computer engineering, signal analysis, and damage theory. Generally, these mathematical 
models have a peculiarity, which is that the rate of change of these processes is determined by 
their history. In 2003, Khusainov, Shuklin, and Pospíšil [7-9] represented the solutions of linear 
differential equations, proposing to consider the so-called exponential matrix function with a 
delay. Based on the presented analogs of the Cauchy formula for conflict-controlled processes 
described by differential-difference systems, sufficient conditions for solving pursuit games 
have been found in research papers [10, 11]. The work [12] presents a modification of the 
Method of Resolving Functions for differential-difference pursuit games for a group of 
pursuers and one evader. 

Representations of solutions of fractional differential equations with a linear delay are 
increasingly considered. Li and Wang considered a representation of the solution of the linear 
homogeneous fractional differential systems with the pure delay with order 𝛼 ∈ 0, 1  using 
delayed matrix Mittag-Leffler functions [13]. The basic studies by Chikry–Eidelman [14-19] 
contain sufficient conditions for solving the pursuit problem for systems with fractional 
derivatives of arbitrary order 𝛼 ∈ 0, 1 . 

In 2018, Liang et al [20] presented the solution of the linear homogeneous fractional 
differential system with the pure delay with a term that includes Caputo double derivatives 
with order 𝛼 ∈ 0, 1 . In 2021, Liu et al [21] obtained exact solutions for a nonhomogeneous 
fractional oscillation equation with pure delay by constructing two functions derived from the 
extension of the Mittag-Leffler function.  

In 2021, Elshenhab and Wang [22] introduced a new delay matrix of the Mittag–Leffler 
type with two Liu delay matrices. This study is based on the latest achievements in the 
presentation of analogs of the Cauchy formula. 

2. Preliminaries 

In this section, we present some necessary definitions and lemmas for linear fractional 
systems with pure delay used in our subsequent discussions. 

Consider the system 
𝐷 𝑧 𝑡 𝐴𝑧 𝑡 ℎ 𝑓 𝑡 , for 𝑡 0, ℎ 0,                         (1) 

where 𝐷  denotes the Caputo fractional derivative of order 𝛼 ∈ 1, 2  with the lower limit 
zero, 𝑧 𝑧 , 𝑧 , … , 𝑧 : ℎ, ∞ → ℝ  is a solution satisfying (1) for every 𝑡 0, A is an 
𝑛 𝑛 constant real nonzero matrix, 𝑓: 0, ∞ → ℝ  be a given function,  
with the initial conditions 

𝑧 𝑡 ≡ 𝜑 𝑡 , 𝑧 𝑡 ≡ 𝜑 𝑡 ,   ℎ 𝑡 0, 
where 𝜑 𝜑 , 𝜑 , … , 𝜑 : ℎ, ∞ → ℝ  is an arbitrary differentiable function. 
Definition 1. [22]. The two-parameter Mittag-Leffler function is defined as 

𝐸 , 𝑧
𝑧

Γ 𝛼𝑘 𝛾
,    𝛼, 𝛾 0, 𝑧 ∈ ℂ. 

Especially, if 𝛾 1, then 

𝐸 , 𝑧 𝐸 𝑧
𝑧

Γ 𝛼𝑘 1
,    𝛼 0. 

Definition 2. [22]. The delayed Mittag-Leffler type matrix functions 𝐻 , 𝐴𝑡 , 𝑀 , 𝐴𝑡 , 
and 𝑆 , 𝐴𝑡  are defined as follows: 
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𝐻 , 𝐴𝑡

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

Θ, ∞ 𝑡 ℎ,
𝐸, ℎ 𝑡 0,

𝐸 𝐴
𝑡

Γ 1 𝛼
, 0 𝑡 ℎ,

…

𝐸 𝐴
𝑡

Γ 1 𝛼
𝐴

𝑡 ℎ
Γ 1 2𝛼

⋯

1 𝐴
𝑡 𝑘 1 ℎ

Γ 1 𝑘𝛼
, 𝑘 1 ℎ 𝑡 𝑘ℎ;

 

 

𝑀 , 𝐴𝑡

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

Θ, ∞ 𝑡 ℎ,
𝐸 𝑡 ℎ , ℎ 𝑡 0,

𝐸 𝑡 ℎ 𝐴
𝑡

Γ 2 𝛼
, 0 𝑡 ℎ,

…

𝐸 𝑡 ℎ 𝐴
𝑡

Γ 2 𝛼
𝐴

𝑡 ℎ
Γ 2 2𝛼

⋯

1 𝐴
𝑡 𝑘 1 ℎ

Γ 2 𝑘𝛼
, 𝑘 1 ℎ 𝑡 𝑘ℎ;

 

 

𝑆 , 𝐴𝑡

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

Θ, ∞ 𝑡 ℎ,

𝐸
𝑡 ℎ

Γ 𝛼
, ℎ 𝑡 0,

𝐸
𝑡 ℎ

Γ 𝛼
𝐴

𝑡
Γ 2𝛼

, 0 𝑡 ℎ,
…

𝐸
𝑡 ℎ

Γ 𝛼
𝐴

𝑡
Γ 2𝛼

𝐴
𝑡 ℎ

Γ 3𝛼
⋯

1 𝐴
𝑡 𝑘 1 ℎ

Γ 𝛼 𝑘 1
, 𝑘 1 ℎ 𝑡 𝑘ℎ;

 

 
where Γ is a gamma function, the notations Θ and E are the 𝑛 𝑛 zero and identity matrices, 
respectively, k = 0, 1, …. 
Definition 3. [22]. Let 𝑧: ℎ, ∞ → ℝ  be a function of order 𝛼 ∈ 1, 2 . Then the Caputo 
fractional derivative for 𝑧 is given by 

𝐷 𝑧 𝑡
1

Γ 2 𝛼
𝑦 𝑠

𝑡 𝑠
𝑑𝑠,  𝑡 0. 

Lemma 1. [22]. The solution 𝑧 𝑡  of (1) is given by 

𝑧 𝑡

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝜑 𝑡 , ℎ 𝑡 0,
𝐻 , 𝐴 𝑡 ℎ 𝜑 0 𝑀 , 𝐴 𝑡 ℎ 𝜑 0

𝐴 𝑆 , 𝐴 𝑡 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠

𝑆 , 𝐴 𝑡 ℎ 𝑠 𝑓 𝑢 𝑠 , 𝑣 𝑠 𝑑𝑠 ,   𝑡 0.
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3. Problem statement 

Let the motion of an object 𝑧 𝑧 , 𝑧 , … , 𝑧 , 𝑧 ∈ ℝ , evolve in a finite-dimensional 
space ℝ , 𝑛 𝑛 𝑛 ⋯ 𝑛  subject to the equations 

𝐷 𝑧 𝑡 𝐴 𝑧 𝑡 ℎ 𝑓 𝑢 𝑡 , 𝑣 𝑡 , 𝑖 1, 2, . . . , 𝜈, for 𝑡 0, ℎ 0,        (2)                  
where 𝐴  are square matrices of order 𝑛 ; 𝑓 𝑢 , 𝑣 ,  𝑓 : 𝑈 𝑉 → ℝ , are jointly continuous 
vector functions of its variables; 𝑈  and V are nonempty compacts. 

Let 𝑧 𝑡  be a solution of the system (2) under the initial condition 
𝑧 𝑡 ≡ 𝜑 𝑡 , 𝑧 𝑡 ≡ 𝜑 𝑡 ,   ℎ 𝑡 0, 𝑖 1, 2, . . . , 𝜈.                     (3) 

The terminal set 𝑀∗ consists of sets 𝑀∗, … , 𝑀∗, 𝑀∗ ⊂ ℝ ,  each having the form 
𝑀∗ 𝑀 𝑀 ,                                                        (4) 

where 𝑀  is a linear subspace in ℝ   and 𝑀  is a convex compact belonging to the orthogonal 
complement 𝐿  to subspace 𝑀  in the space ℝ .   

The valid controls 𝑢  and 𝑣 are the measurable Lebesgue functions, 𝑢 ∈ 𝑈  and 𝑣 ∈ 𝑉. 
Denote 

Ω 𝑢 𝑠 : 𝑢 𝑠 ∈ 𝑈 , 𝑠 ∈ 0, ∞ , 
Ω 𝑣 𝑠 : 𝑣 𝑠 ∈ 𝑉, 𝑠 ∈ 0, ∞ . 

The function 𝑣 ∙)∈ Ω  is chosen by the evader based on knowledge of the initial condition 
[4].  

The function 
  

𝑣 𝑣 𝑠 : 𝑣 ∙ ∈ Ω , 𝑠 ∈ 0, 𝑡 , 
is the prehistory of the control of evader 4 . 

We define quasistrategies 23  of the pursuers as the mappings 𝑈 𝑡, 𝜑 ∙ , 𝑣 ∙ . To 
each moment 𝑡 0, 𝑣  and condition 3  it assigns 4  a Lebesgue measurable function 
𝑢 𝑡 𝑈 𝑡, 𝜑 ∙ , 𝑣 ∙ , 𝑡 0, for all 𝑖 1, 2, . . . , 𝜈. 

The group pursuit game (2), (3) terminates when 𝑧 ∈ 𝑀∗ for some i.  

4. Scheme of the Method of the Resolving Functions 

Denote by 𝜋  the operator of orthogonal projection from ℝ  onto 𝐿 . Consider the set-valued 
maps 

𝑊 𝑡, 𝑣 𝜋 𝑆 , 𝐴 𝑡 𝑓 𝑈 𝑣 , 

𝑊 𝑡 𝑊 𝑡, 𝑣 .
∈

 

Condition 1. 𝑊 𝑡 ∅ for all 𝑖 1, 2, . . . , 𝜈, 𝑡 0. 
Since 𝑑𝑜𝑚𝑊 𝑡 0, ∞  the set-valued map 𝑊 𝑡  is upper semicontinuous and each of 

them has a Borelian selection 𝑔 𝑡  [24]. Let us denote 𝑔 ∙ 𝑔 ∙ , … , 𝑔 ∙  and 𝐺
𝑔 ∙ : 𝑔 𝑡 ∈ 𝑊 𝑡 , 𝑡 0, 𝑖 1, … , 𝜈 . For fixed g ∙ ∈ 𝐺  we put 

𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ 𝜋 𝐻 , 𝐴 𝑡 ℎ 𝜑 0 𝑀 , 𝐴 𝑡 ℎ 𝜑 0  

𝜋 𝐴 𝑆 , 𝐴 𝑡 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠 𝑔 𝑠 𝑑𝑠.                   (5) 

Consider the resolving function 
𝛼 𝑡, 𝑠, 𝑣 𝛼 𝑡, 𝑠, 𝜑 ∙ , 𝑣, 𝑔 ∙  

𝑠𝑢𝑝 𝜌 0: 𝑊 𝑡 ℎ 𝑠, 𝑣 𝑔 𝑡 ℎ 𝑠 ∩ 𝜌 𝑀 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ ∅ .   (6) 
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We also observe that function 𝛼 𝑡, 𝑠, 𝜑 ∙ , 𝑣, 𝑔 ∙ ∞ for all 𝑠 ∈ 0, 𝑡 , 𝑣 ∈ 𝑉, if and 
only if 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ ∈ 𝑀 . If for some 𝑡 0 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ ∉ 𝑀 , then the function (6) 
assumes finite values. 

Denote  

 0
( ( ), ( )) inf 0 : inf max inf ( , , ) 1 , 1,..., ,

t

i
v V v Vi

T g t t s v ds i  
 

       

𝑔 ∙ 𝑔 ∙ , … , 𝑔 ∙ , 𝜑 ∙ 𝜑 ∙ , … , 𝜑 ∙ . 
If the inequality in the curly brackets does not hold for all 𝑡 0, we put 𝑇 𝜑 ∙ , 𝑔 ∙ ∞. 
Theorem. Let the conflict-controlled process (2) and (4) with the initial condition (3) satisfy 
Condition 1. Let coM , 𝑖 1, … , 𝜈, and let for given 𝜑 ∙ 𝜑 ∙ , … , 𝜑 ∙  and some 
Borelian selection 𝑔 ∙ ∈ 𝐺  hold the inequality: 𝑇 𝑇 𝜑 ∙ , 𝑔 ∙ ∞.   

Then for at least one i a trajectory of the corresponding process (2) can be brought from 
𝜑 ∙  to the set 𝑀∗ at the moment 𝑇 𝜑 ∙ , 𝑔 ∙  under any controls v. 

Proof. Let 𝑣 ∙)∈ Ω . First consider the case 𝜉 𝑇, 𝜑 ∙ , 𝑔 ∙ ∉ 𝑀  for all 𝑖 1, … , 𝜈.  We 

introduce the controlling function 
ℎ 𝑡 ℎ 𝑇, 𝑡, 𝜑 ∙ , 𝑣 ∙ , 𝑔 ∙  

1 min
,…,

𝛼 𝑇, 𝑠, 𝜑 ∙ , 𝑣 𝑠 , 𝑔 ∙ 𝑑𝑠, 𝑡 0. 

From the definition of T, there is a switching time 𝑡∗ 𝑡∗ 𝑣 ∙ , 0 𝑡∗ 𝑇, such that the 
controlling function becomes zero: 

ℎ 𝑡∗ 0.                                                             (7) 
Consider the set-valued maps 

𝑈 𝑠, 𝑣 𝑢 ∈ 𝑈 :  𝜋 𝑆 , 𝐴 𝑇 ℎ 𝑠 𝑓 𝑢 , 𝑣 𝑔 𝑇 ℎ 𝑠 ∈ 

𝛼 𝑇, 𝑠, 𝑣 𝑀 𝜉 𝑇, 𝜑 ∙ , 𝑔 ∙ .                                  (8)               

The selection  
𝑢 𝑠, 𝑣 lexmin𝑈 𝑠, 𝑣 , 𝑖 1, … , 𝜈, 

appear as a jointly Borelian function in their variables [25]. The control of each of the pursuers 
on the interval 0, 𝑡∗  equals to 

𝑢 𝑠 𝑢 𝑠, 𝑣 𝑠 , 𝑖 1, … , 𝜈,                                           (9) 
and it is a Borelian function [25]. 

From (7) it follows that there exists a number 𝑖∗, such that 

1 𝛼
∗

𝑇, 𝑠, 𝜑
∗

∙ , 𝑣 𝑠 , 𝑔
∗

∙ 𝑑𝑠∗ 0.                                (10) 

Then the maps 
𝑈 𝑠, 𝑣 𝑢 ∈ 𝑈 : 𝜋 𝑆 , 𝐴 𝑇 ℎ 𝑠 𝑓 𝑢 , 𝑣 𝑔 𝑇 ℎ 𝑠 0 ,      (11) 

𝑠 ∈ 𝑡∗, 𝑇 , 𝑣 ∈ 𝑉,  are Borelian functions in s and v, and so are the selections  
𝑢 𝑠, 𝑣 lexmin𝑈 𝑠, 𝑣 , 𝑖 1, … , 𝜈. 

 

We set 𝛼
∗

𝑇, 𝑠, 𝜑
∗

∙ , 𝑣 𝑠 , 𝑔
∗

∙ ≡ 0 on the interval 𝑡∗, 𝑇 , and the control of the 𝑖∗-th 

pursuer equal to 
𝑢

∗
𝑠 𝑢

∗
𝑠, 𝑣 𝑠 .                                                   (12) 

At the same time, we can assign arbitrary control to all other pursuers. 

If 𝜉 𝑇, 𝜑 ∙ , 𝑔 ∙ ∈ 𝑀  for some 𝑖 1, … , 𝜈, then we set  

𝑢 𝑠 𝑢 𝑠, 𝑣 𝑠 , 𝑠 ∈ 0, 𝑇 . 
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At the same time, we can assign arbitrary control to all other pursuers. 

Let us examine the case when 𝜉 𝑇, 𝜑 ∙ , 𝑔 ∙ ∉ 𝑀  for all 𝑖 1, … , 𝜈. We shall follow 

the 𝑖∗ pursuer. Since 𝛼
∗

𝑇, 𝑠, 𝜑
∗

∙ , 𝑣 𝑠 , 𝑔
∗

∙ ≡ 0, 𝑠 ∈ 𝑡∗, 𝑇 , 𝑣 ∈ 𝑉, equation (10) implies 

that 

𝛼
∗

𝑇, 𝑠, 𝜑
∗

∙ , 𝑣 𝑠 , 𝑔
∗

∙ 𝑑𝑠 1.                                      (13) 

From the Cauchy formula (Lemma 1) for the 𝑖∗ pursuer we have 

𝜋
∗
𝑧

∗
𝑇 𝜋

∗
𝐻

∗, 𝐴
∗

𝑇 ℎ
∗

𝜑
∗

0 𝑀
∗, 𝐴

∗
𝑇 ℎ

∗
𝜑

∗
0  

𝜋
∗
𝐴

∗
𝑆

∗, 𝐴
∗

𝑇 2ℎ
∗

𝑠 𝜑
∗

𝑠 𝑑𝑠

∗

 

𝜋
∗

𝑆
∗, 𝐴

∗
𝑇 ℎ

∗
𝑠 𝑓

∗
𝑢

∗
𝑠 , 𝑣 𝑠 𝑑𝑠.                        (14) 

If we add and subtract from the right-hand side of (14) the value 𝑔
∗

𝑇 𝑠 𝑑𝑠, we obtain 
the equality: 

𝜋
∗
𝑧

∗
𝑇 𝜋

∗
𝐻

∗, 𝐴
∗

𝑇 ℎ
∗

𝜑
∗

0 𝜋
∗
𝑀

∗, 𝐴
∗

𝑇 ℎ
∗

𝜑
∗

0  

𝜋
∗
𝐴

∗
𝑆

∗, 𝐴
∗

𝑇 2ℎ
∗

𝑠 𝜑
∗

𝑠

∗

𝑑𝑠 𝑔
∗

𝑇 ℎ
∗

𝑠 𝑑𝑠  

𝜋
∗
𝑆

∗, 𝐴
∗

𝑃 ℎ
∗

𝑠 𝑓
∗

𝑢
∗

𝑠 , 𝑣 𝑠 𝑔
∗

𝑇 ℎ
∗

𝑠 𝑑𝑠. 

Taking the pursuer's control choice laws (8), (9), (11), (12) into account we deduce the 
inclusion  

𝜋
∗
𝑧

∗
𝑇 ∈ 𝜉

∗
𝑇, 𝜑

∗
∙ , 𝑔

∗
∙ 𝛼

∗
𝑇, 𝑠, 𝑣 𝑀

∗
𝜉

∗
𝑇, 𝜑

∗
∙ , 𝑔

∗
∙ 𝑑𝑠  

𝜉
∗

𝑇, 𝜑
∗

∙ , 𝑔
∗

∙ 𝛼
∗

𝑇, 𝑠, 𝑣 𝑀
∗
𝑑𝑠  

𝛼
∗

𝑇, 𝑠, 𝑣 𝜉
∗

𝑇, 𝜑
∗

∙ , 𝑔
∗

∙ 𝑑𝑠. 

Then 

𝜋
∗
𝑧

∗
𝑇 ∈ 𝜉

∗
𝑇, 𝜑

∗
∙ , 𝑔

∗
∙ 1 𝛼

∗
𝑇, 𝑠, 𝑣 𝑑𝑠

∗

𝛼
∗

𝑇, 𝑠, 𝑣 𝑀
∗
𝑑𝑠

∗

. 

Since (13) and the set 𝑀
∗
is convex then 𝜋

∗
𝑧

∗
𝑇 ∈ 𝑀

∗
. 

If for some i 𝜉 𝑇, 𝜑 ∙ , 𝑔 ∙ ∈ 𝑀 , then, because of the control choice law, in this case, 

formula (5), and Lemma 1, we infer the inclusion 𝜋 𝑧 𝑇 ∈ 𝑀 . The proof is therefore 
complete. 
Remark. For the linear process (2) 

𝑊 𝑡 𝜋 𝑆 , 𝐴 𝑡 𝑈 ∗ 𝜋 𝑆 , 𝐴 𝑡 𝑉, 

where   is a geometric subtraction of the sets (Minkowski’s difference) [26-29]. 
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Corollary. Let the conflict-controlled process (2), (4) be linear (𝑓 𝑢 , 𝑣 𝑢 𝑣 , Condition 
1 is fulfilled, and let there exist continuous positive functions 𝑟 𝑡 , and nonnegative numbers 
𝑙  such that  

𝜋 𝑆 , 𝐴 𝑡 𝑈 𝑟 𝑡 𝐶 , 
𝑀 𝑙 𝐶 , 

where 𝐶  is a unit ball centered at zero in the subspace 𝐿 . 
Then when 𝜉 𝑇, 𝜑 ∙ , 𝑔 ∙ ∉ 𝑀 , the resolving functions 𝛼 𝑡, 𝑠, 𝜑 ∙ , 𝑣, 𝑔 ∙  turn out 

to be the largest roots of the quadratic equations for 𝜌 ,  𝜌 0, 
𝜋 𝑆 , 𝐴 𝑡 ℎ 𝑠 𝑣 𝑔 𝑡 ℎ 𝑠 𝜌 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙  

𝑟 𝑡 ℎ 𝑠 𝜌 𝑙 .                                                 (15) 
Proof. Under the assumption of Corollary, we conclude from expression (6) that the resolving 
functions 𝛼 𝑡, 𝑠, 𝜑 ∙ , 𝑣, 𝑔 ∙  are the maximal numbers 𝜌  such that 

𝑟 𝑡 ℎ 𝑠 𝐶 𝜋 𝑆 , 𝐴 𝑡 ℎ 𝑠 𝑣 𝑔 𝑡 ℎ 𝑠 ∩ 

∩ 𝜌 𝑙 𝐶 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ ∅. 
This expression is equivalent to include 

𝜋 𝑆 , 𝐴 𝑡 ℎ 𝑠 𝑣 𝑔 𝑡 ℎ 𝑠 𝜌 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ ∈ 
∈ 𝑟 𝑡 ℎ 𝑠 𝜌 𝑙 𝐶 .                                               (16) 

Since the left part of inclusion (16) is linear in 𝜌 , the vector  
𝜋 𝑆 , 𝐴 𝑡 ℎ 𝑠 𝑣 𝑔 𝑡 ℎ 𝑠 𝜌 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ ∈ 

lies on the boundary of the sphere 𝑟 𝑡 ℎ 𝑠 𝜌 𝑙 𝐶  for the maximal value of 𝜌  for 
each 𝑖 1, … , 𝜈. In other words, the length of this vector is equal to the radius of this ball for 
each 𝑖 1, … , 𝜈, which is demonstrated by (15). The proof is complete. 

5. Scheme of the First Direct Method of Pontryagin  

Denote the Pontryagin function 

𝑃 𝜑 ∙ 𝑚𝑖𝑛 𝑡 0: 𝜋 𝐻 , 𝐴 𝑡 ℎ 𝜑 0 𝑀 , 𝐴 𝑡 ℎ 𝜑 0

𝜋 𝐴 𝑆 , 𝐴 𝑡 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠 ∈ 

𝑀 𝑊 𝑡 ℎ 𝑠 𝑑𝑠 , 𝑖 1, … , 𝜈.                (17) 

Let us prove that the quantity (17) is the guaranteed moment when the i-th pursuer catches the 
evader, i.e., it is the end of the pursuit game by the First Direct Method of Pontryagin [23]. 

Theorem 2. Let the process (2), (4) with the initial condition (3) satisfy Condition 1, and for 
the given initial state 𝜑 ∙ 𝜑 ∙ , … , 𝜑 ∙  the inequality holds:  P=𝑃 𝜑 ∙ ∞, 
where𝑃 𝜑 ∙  is determined by the equality (17).  

Then for at least one i a trajectory of the process (2)-(4) can be brought from 𝜑 ∙  to the 
terminal set 𝑀∗ at the moment 𝑃. 
Proof.  We shall follow the i-th pursuer. The following inclusion holds 

𝜋 𝐻 , 𝐴 𝑃 ℎ 𝜑 0 𝑀 , 𝐴 𝑃 ℎ 𝜑 0  

𝜋 𝐴 𝑆 , 𝐴 𝑃 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠 ∈ 



89 
 

𝑀 𝑊 𝑃 ℎ 𝑠 𝑑𝑠. 

Hence, there exists a point 𝑚 ∈ 𝑀  and a selector 𝑔 ∙ ∈ 𝐺   such that 

𝜋 𝐻 , 𝐴 𝑃 ℎ 𝜑 0 𝑀 , 𝐴 𝑃 ℎ 𝜑 0  

𝜋 𝐴 𝑆 , 𝐴 𝑃 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠  

𝑚 𝑔 P ℎ 𝑠 𝑑𝑠. 

Consider the set-valued maps 
𝑈 𝑠, 𝑣 𝑢 ∈ 𝑈 : 𝜋 𝑆 , 𝐴 𝑃 ℎ 𝑠 𝑓 𝑢 , 𝑣 𝑔 𝑃 ℎ 𝑠 0 ,   (18) 

where 𝑠 ∈ 0; P , 𝑣 ∈ 𝑉. 
They are Borel measurable functions in s, v. The selections 

𝑢 𝑠, 𝑣 𝑙𝑒𝑥𝑚𝑖𝑛𝑈 𝑠, 𝑣  
are Borel measurable functions in s, v. 

We set the control of i-th pursuer equal to 
 

𝑢 𝑠 𝑢 𝑠, 𝑣 𝑠 , 𝑠 ∈ 0; 𝑃 , 

where 𝑣 𝑠 , 𝑣 𝑠 ∈ 𝑉,  is a measurable function.  Under (18) and (17), we obtain 
𝜋 𝑧 𝑃 𝜋 𝐻 , 𝐴 𝑃 ℎ 𝜑 0 𝜋 𝑀 , 𝐴 𝑃 ℎ 𝜑 0  

𝜋 𝐴 𝑆 , 𝐴 𝑃 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠  

𝜋 𝑆 , 𝐴 𝑃 ℎ 𝑠 𝑓 𝑢 𝑠 , 𝑣 𝑠 𝑑𝑠 𝑚 ∈ 𝑀 . 

Finally, we have the inclusion 𝑧 𝑃 ∈ 𝑀∗. The proof is complete. 
Theorem 3. Let the conflict-controlled process (2), and (4) with the initial condition (3) satisfy 
Condition 1.  

Then the inclusion 

𝜋 𝐻 , 𝐴 𝑡 ℎ 𝜑 0 𝑀 , 𝐴 𝑡 ℎ 𝜑 0  

𝜋 𝐴 𝑆 , 𝐴 𝑡 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠 ∈ 

𝑀 𝑊 𝑡 ℎ 𝑠 𝑑𝑠 0, 

holds if and only if there exists a selector g ∙ ∈ G   such that 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ ∈ 𝑀 . 

Proof.  Let   
𝜋 𝐻 , 𝐴 𝑡 ℎ 𝜑 0 𝑀 , 𝐴 𝑡 ℎ 𝜑 0  

𝜋 𝐴 𝑆 , 𝐴 𝑡 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠 ∈ 

𝑀 𝑊 𝑡 ℎ 𝑠 𝑑𝑠. 
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Then there exists a point 𝑚 ∈ 𝑀  and a selection g ∙ ∈ G  such that 

𝜋 𝐻 , 𝐴 𝑡 ℎ 𝜑 0 𝑀 , 𝐴 𝑡 ℎ 𝜑 0  

𝜋 𝐴 𝑆 , 𝐴 𝑡 2ℎ 𝑠 𝜑 𝑠 𝑑𝑠  

𝑚 𝑔 t ℎ 𝑠 𝑑𝑠. 

It follows that 𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ 𝑚 ∈ 𝑀 . 

If we assume that for some 𝑔 ∙ ∈ G   𝜉 𝑡, 𝜑 ∙ , 𝑔 ∙ ∈ 𝑀 ,  then reasoning in the 

reverse order, we will get the desired result. 
Corollary. Let the conflict-controlled process (2)-(4) satisfy Condition 1.  

Then for at least one i and initial state (3), there exists a selection g ∙ ∈ G  such that 

𝑇 𝜑 ∙ , 𝑔 ∙ 𝑃 𝜑 ∙ . 

Remark. In the case when the resolving function 𝛼 𝑡, 𝑠, 𝑧 ∙ , 𝑣, 𝑔 ∙ ∞  the Method of 
Resolving Functions coincides with the First Direct Method of Pontryagin [4].  

6. Conclusions 

This paper elaborates the results obtained in previous research [30] and focuses on group 
pursuit games, which are described by fractional differential systems with pure delay. We 
construct outlines of the Method of Resolving Functions and the First Direct Method of 
Pontryagin using an analog of the Cauchy formula for these systems, and formulate sufficient 
conditions for the ending of the game. The game end times guaranteed by these two methods 
are comparable. The method of practical implementation of the resolving functions is 
presented.  

In the future, it is planned to develop outlines of Methods of Resolving Functions and the 
First Direct Method of Pontryagin for processes described by linear fractional systems with 
multiple delays given by commutative and noncommutative matrices. 
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