
57

Modular Matrix Multiplication for Cryptographic Conversions

Sakhybay Tynymbayev1, Sergiy Gnatyuk2,3, Rat Berdibayev1, Kaiyrbek Makulov2,

and Tetiana Okhrimenko3

1 Almaty University of Power Engineering and Telecommunication, 126/1 Baytursynuly str., Almaty, 050013,

Kazakhstan
2 Yessenov University, micro district 32, 130000, Aktau, Kazakhstan
3 National Aviation University, 1 Lybomyra Huzara ave., Kyiv, 03058, Ukraine

Abstract

Today, three types of encryptors are most widely used for data encryption: hardware, soft-

ware/hardware, and software. Their main difference is not only in the way encryption is imple-

mented and the degree of data protection reliability but also in the price, which often becomes

a determining factor for users. While the price of hardware encryptors is much higher than that

of software encryptors, the price difference is not comparable to a significant increase in the

quality of information security. Hardware encryption has several strong advantages over soft-

ware encryption, one of which is faster performance. Hardware implementation guarantees the

integrity of the encryption process. At the same time, the generation and storage of keys, as

well as encryption, is carried out in the encryption board itself, and not in the computer’s op-

erating memory. In this regard, the development of high-performance hardware processor op-

erating units for asymmetric encryption, despite their high cost, is an urgent scientific and ap-

plied task. This paper analyzes modern approaches to modular multiplication, highlighting

their strengths and weaknesses. An algorithm for multiplication with stepwise formation of

partial and intermediate remainders is investigated, which, in turn, does not require preliminary

calculations, and all calculations do not exceed the range of the module's bit grid. As a result,

a synchronous matrix multiplier containing n blocks of AND circuits, n – 1 FPRs, and a single

FIR with an intermediate remainder register has been developed, which will be useful for cryp-

tographic transformations in systems with increased requirements for performance and infor-

mation security (for example, in critical information infrastructure).

Keywords1

Multiplier; information security; hardware encryption; public key cryptosystem; cryptography;

cryptographic algorithm; encryption.

1. Introduction

The vast majority of modern cryptographic

systems perform transformations with integers.

Large integers (not necessarily primes) act as keys

to perform cryptographic transforxmations. To

achieve the desired level of security, depending on

the cryptosystem, integers range from several

hundred to several thousand bits. Over time, to

maintain the desired level of security, the size

should increase. To work with integers in binary

representation, the following arithmetic

operations are widely used: addition, subtraction,

CQPC-2023: Classic, Quantum, and Post-Quantum Cryptography, August 1, 2023, Kyiv, Ukraine

EMAIL: s.tynym@gmail.com (S. Tynymbayev); s.gnatyuk@nau.edu.ua (S. Gnatyuk); r.berdybaev@aues.kz (R. Berdibayev);
kaiyrbek.makulov@yu.edu.kz (K. Makulov); t.okhrimenko@npp.nau.edu.ua (T. Okhrimenko)

ORCID: 0000-0002-9326-9476 (S. Tynymbayev); 0000-0003-4992-0564 (S. Gnatyuk); 0000-0002-8341-9645 (R. Berdibayev); 0000-

0002-0826-0371 (K. Makulov); 0000-0001-9036-6556 (T. Okhrimenko)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

left and right shifts, multiplication, squaring,

modular multiplication, and division.

Specifically, in asymmetric cryptosystems, the

data encryption and decryption procedure are

carried out by raising the number a to a degree x

by modular Р (a x modP), which can be realized

by software, hardware, and software and hardware

means [1, 2].

Hardware encryption has several significant

advantages over software encryption, one of

which (and probably the most significant) is faster

performance [3, 4]. The hardware implementation

guarantees the integrity of the encryption process.

In this case, the generation and storage of keys, as

58

well as encryption, is carried out directly in the

encryption board itself, and not in the computer’s

operating memory.

Today, the development of high-speed

operating units of hardware processors for

asymmetric encryption, despite their high cost, is

an urgent scientific and applied task [5–7].

Given the above, the main goal of the paper is

the development of a modular matrix multiplier

for cryptographic transformations.

2. Analysis of Modular Multiplication
Approaches

The multiplication operation takes a leading

place among the operations in rings and number

fields, which form the basis for cryptographic trans-

formations with public keys. At the same time, mul-

tiplication is a pretty time-consuming operation [8].

Modular multiplication can be done in two ways.

In the first case, the operation is divided into two

stages. At the first stage, n-bit numbers A and B are

multiplied and form a 2n-bit number C. In the second

stage, the product C = A*B is reduced modulo P.

To date, a lot of experience has been accumu-

lated in the development of high-speed integer

multipliers and tools for squaring.

Among them are: Brown’s multiplier, Wal-

lace’s multiplier, Dadd’s multipliers, systolic and

vedic multipliers, and quadratus, where the com-

plexity of the calculation is O (𝑛2) bit operations.

However, these multipliers are very effective in

calculating “low-bit” numbers, which are widely

used in the construction of processing units of all

kinds of computers [9].

Today, the following integer multiplication

methods are known and used in cryptography:

▪ Column multiplication.

▪ Karatsuba-Ofman.

▪ Toom-Cook.

▪ Schönhage-Strassen.

▪ Comba.

▪ Führer (development of the Schönhage-

Straussen method).

In cryptography, the Karatsuba method [10],

which has a complexity of O(𝑛2) steps (bit opera-

tions), and the Toom-Cook algorithm [11] with a

complexity of O(𝑛log2 3) bit operations are widely

used to multiply multibit numbers, allowing to

calculation of the required product faster than

O(𝑛2) steps (bit operations). The Schönhage-

Strassen algorithm [12] allows multiplying two n-

bit numbers in O(nlogn, logn) bit operations.

The modulo reduction operation performed in

the second step is to obtain the rest of the result of

dividing C = A*B by the modulo P. Paper [13] an-

alyzes various ways to reduce numbers by modu-

lar. It is shown that the most effective means of

building is a modular drive device based on a di-

viding device. This device includes a partial re-

mainder maker. High-performance matrix and

conveyor modulo conversion devices can be eas-

ily implemented based on partial residue formers

[8, 14–18].

High-performance matrix and conveyor devices

for modular multiplication can be easily imple-

mented based on partial remainder formers [14–

18].

In the second method, modular multiplication is

performed by using an algorithm for dividing large

numbers. For example, the Barrett algorithm [19]

requires preliminary calculations of the constant

𝜇 = ⌊
𝑑2𝑚

𝑁
⌋

where 𝑑 = 2𝑘, k is word size in bits, m is the num-

ber of words in the module N. The effectiveness

of the Barrett algorithm depends entirely on how

efficiently the preliminary calculations are per-

formed by the distribution of large numbers.

Montgomery’s algorithm requires the prelimi-

nary calculation of the constant 𝑟2(mod𝑁), using

division with remainder [20, 21].

In the third method, the process of modular

multiplication is performed in a large number of

steps, where the number of steps is determined by

the bit depth of the multiplier.

This paper describes the modular multiplica-

tion of numbers, where multiplication begins with

the analysis of the lowest bits. In such a multiplier,

the following steps are performed at each step of

the multiplication:

1. Partial remainder FPRi calculates the partial

remainder ri for which the previous partial re-

mainder ri – 1, shifted by one digit toward the

higher digit, by modulo P, i.e., ri=2ri–1modP.

When forming the first partial remainder ri, A is

taken as the previous partial remainder, i.e.,

ri = A1.

2. The partial remainder ri is logically multi-

plied by the i-bit of the multiplier B by the logic

circuit block Ii.

3. The intermediate residual Ri is calculated by

adding up the partial remainder ri with the previ-

ous intermediate remainder Ri–1 by module Р, that

is Ri = (ri + Ri–1) modP.

59

After performing n multiplication steps, the re-

sult is formed R – Rn–1=(rn–1 + Rn–2) modP.

In work [22], the algorithm for multiplying

numbers by modulo is implemented according to

an asynchronous matrix system that consists of n

block schemes of I, n – 1 FPR, and n – 1 FIR

(intermediate residual shaper). The disadvantage

of this scheme is the complexity of its hardware

implementation. To eliminate this disadvantage,

this paper proposes a synchronous matrix

multiplier developed by the authors, which

contains n block schemes of І, n – 1 FPR, and a

single FIR with an intermediate remainder

register. The operation of the multiplier is

synchronized using a level divider.

3. Developed Modular Matrix
Multiplier

The functional scheme of a synchronous mul-

tiplier with a matrix structure is shown in Fig. 1.

The multiplier consists of the n-bit multiplier reg-

ister RgB, the multiple registers RgA, and the

module register RgP, the synchronization block

SYNCHRO unit that generates level signals for

the block of schemes І0 ÷ Іn–1. At the entrance

SYNCHRO unit is supplied to the START signal,

clock signals CLOCK and a binary code to the

signal for the number of multiplier digits n. Fol-

lowing the START signal, the RECEPTION sig-

nal vibrates, after which the discharge of multi-

plier B is received into the RgP register through

circuit block 3'.

Бл. СИНХ
"Пуск"
Clock

n

bn-1 b0 RgР

AB P

Р

1' 2' 3'

. . . b2 b1

0

FPR.1

1

FPR.2

2

. . .

. . .

. . .

FPR.n-1

n-1

1

rn-1

FIR

Э3

4'

Rn=(AꞏB)modP

"Прием"

123
un-1

...n-1
u2 u1 u0

RgB

r0=A

1

r12r1

+1

2r0=2A

+1

r22r2

+1

r0=A

r1r2
...

+1

ri
Ri-1

Figure 1: Functional scheme of the modular matrix multiplier

SYNCHRO unit

«Receiving»

«Start»

60

The SYNCHRO unit consists of a binary coun-

ter and a decoder. The state of the counter is de-

coded on their outputs generating signal levels for

І0 ÷ Іn–1. With the START signal, the binary code

of the number n is also written to the binary coun-

ter and permits the clock signal Clock to pass to

the counter input.

The multiplier also includes partial remainder

generators FPR.1÷FPR.n–1 and circuits І0 ÷ Іn–1,

circuit OR1, and intermediate remainder generator

FIR with intermediate remainder register.

The results output of multiplication І4' after re-

ceiving the clock signal un–1 from the SYNCHRO

unit through the delay element EZ.

The value of the modulus P̅ from the inverted

output RgP is delivered to the inputs of all

FPR.1 ÷ FPR.n–1 and FIR. On the RECEIVE sig-

nal, the multiplier A is delivered to the inputs of

the I2' circuit block with a shift of one bit toward

the high bit to the FPR.1 input. The other inputs of

the I0 block receive the value of the lowest bit of

the RgB – b0 register and the control level u0 from

the SYNCHRO unit output.

The output of I0 is connected to the FIR regis-

ter. The output FPR.1 is connected to the input of

the circuit block I1. The other inputs of the I1 are

connected to the outputs of the RgB and SYN-

CHRO unit, through which the value of the bit b1

and the control level u1 are received. The output

of the I1 block is connected to the input of the OR1.

The code value from the output of FPR.1 with

a shift of one bit toward the lowest bit is applied

to the input of FPR.2. In turn, the output of FPR.2.

is connected to the inputs of the I2 circuit block, to

the other inputs of which the value of the bit b2

from the RgB register and the control level u2

from SYNCHRO unit are supplied. The output of

the I2 block is connected to the input of the OR1

scheme. There are similar connections between

FPR.3 ÷ FPR.n–2 and blocks of schemes І3 ÷ Іn–2.

The FPR.n–1 inputs receive the value of the

code from the FPR.n–2 output with a shift of one

bit toward the lowest bit and the code of the P

module from the RgP outputs. The output of

FPR.n–1 is connected to the input of the In–1 circuit

block, which also receives the value of the high

bit bn–1 of the RgB register and the control signal

un–1 from the SYNCHRO unit. The output of the

In–1 circuit block is connected to the OR1 input.

Fig. 2 shows the structure of the FPR, which is used

to form a partial remainder ri from the doubled pre-

vious remainder by modulo P: ri = 2ri–1modP.

Add

P

1

21

2ri-1

ri

+1П

Зн

MS

Figure 2: FPR structure

FPR consists of a binary adder Add and multi-

plexer MS, which contains blocks of schemes І1, І2,

and scheme OR1.

The doubled partial remainder 2ri–1, module

reverse code �̅�, and a single signal +1 is delivered

to the adder inputs. As a result of performing the

operation ri = 2ri–1 mod�̅� + 1, a difference with its

sign ZN is formed at the output of the adder.

If ZN = 1, the following code 2ri–1 (2ri–1 ˂Р) is

transmitted to the FRP outputs. At the same time,

transferring from the digit sign Р = 0. If ZN = 0,

then the result of subtraction 2ri–1 – Р (2ri–1 ≥ Р) is

transferred to the FPR outputs.

Fig. 3 shows the structure of the FIR interme-

diate remainder generator, which includes the

Add adder, FPR, OR2 circuits, and the RgR inter-

mediate remainder register. The output of the RgR

register is connected to the Add input, where the

Ri–1 value is transferred. It is easy to see that the

circuit operates Ri = (ri + Ri–1) modP.

Let’s consider the operation of a modular ma-

trix multiplier. After receiving the operands A, B,

and P into the corresponding registers and the bi-

nary code, the number of bits multiplier in the

SYNCHRO unit is the first clock impulse Clock 1

arrives and code 1 is written to the binary counter.

At the same time, output 1 of the SYNCHRO unit

produces a high level u0, which is supplied to the

input of the circuit block I0.

61

Ri

Add

ri

RgR

FPR

2

r0=A P

Ri-1

Figure 3: FIR structure

The other inputs of I0 are supplied with the

lowest bit of the multiplier b0 and the bits of the

multiplier A. With b0 = 1, a partial remainder

r0 = R0 is generated at the output of the I0 block,

which is written to RgR FIR. After that, the clock

signal Clock 2 is delivered to the SYNCHRO unit,

and the control level u2 is generated at the output

of the SYNCHRO unit, which is sent to the input

of I2. The other inputs of I2 are supplied with the

value of the bit b2 of the RgB register and the

value r2 from the output of FPR.2. The outputs of

the I2 circuit block are sent to the input of the OR1

scheme.

Partial remainders r3 ÷ rn are formed in a sim-

ilar way, which also through schemes OR1 are

supplied to the entrance FIR. FIR, receiving par-

tial remainder ri, creates Ri according to the for-

mula Ri = (ri + Ri–1)modP.

Table 1 shows an example of performing a

modular multiplication operation in a synchro-

nous matrix multiplier, where А = 2710;

B = 2310 = 101112; P = 3510. For convenience,

all arithmetic operations are performed in the dec-

imal system.

Verification:

R = (27×23) mod 35 = 621 mod 35 = 2610

Table 1
The order of multiplying numbers by modulo

 u0 u1 u2 u3 u4

ri
r0 = A*b0 =

= 2710

r1 = 2r0modP =

= 54 – 35 = 1910

r2 = 2r1modP =

= 38 – 35 = 310

r3 = 2r2modP =

= 6mod35 = 610

r4 = 2r3modP =

= 12mod35 = 1210

RgR
R0 = r0 =

= A = 2710

R1 =

= (r1b1 + R0)modP =

= (19+27)mod35 =

= 1110

R2 =

= (r2b2 + R1)modP =

= (3 + 11)mod35 =

= 1410

R3 =

= (r3b3 + R2)modP =

= (6*0 + 14)mod35 =

= 1410

R4 =

= (r4b4 + R3)modP =

= (12 + 14)mod35 =

= 2610

5. Conclusions

This paper analyzes modern approaches to

modular multiplication and highlights their

strengths and weaknesses. A multiplication

algorithm with step-by-step formation of partial

and intermediate remainders was studied, which,

in turn, does not require preliminary calculations,

and all calculations do not go beyond the range of

the bit grid of the module. As a result, a

synchronous matrix multiplier has been

developed that contains n blocks of circuits I,

n – 1 FPR, and a single FIR with an intermediate

remainder register. The obtained results will be

useful for cryptographic transformations in

systems with increased requirements [23] for

performance and information security (for

example, in critical information infrastructure).

References

[1] S. Tynymbayev, et al., Development of Pipe-

lined Polynomial Multiplier Modulo Irreduc-

ible Polynomials for Cryptosystems, East-

ern-European Journal of Enterprise Technol-

ogies 1(4-115) (2022) 37–43.

[2] E. Aitkhozhaeva, S. Tynymbaev, Aspects of

Hardware Modulo Conversion in Asymmet-

ric Cryptography, Bulletin of the National

Academy of Sciences of Kazakhstan 5

(2014) 88–93.

[3] Y. Sadykov, et al., Technology of Location

Hiding by Spoofing the Mobile Operator IP

Address, in: IEEE International Conference

on Information and Telecommun. Technolo-

gies and Radio Electronics (2021) 22–25.

doi: 10.1109/UkrMiCo52950.2021.9716700

62

[4] A. Carlsson, et al., Sustainability Research of

the Secure Wireless Communication System

with Channel Reservation, in: 2020 IEEE

15th International Conference on Advanced

Trends in Radioelectronics, Telecommunica-

tions and Computer Engineering (2020).

doi:10.1109/tcset49122.2020.235583

[5] I. Kuzminykh, et al., Investigation of the IoT

Device Lifetime with Secure Data Transmis-

sion, Internet of Things, Smart Spaces, and

Next Generation Networks and Systems, vol.

11660 (2019) 16–27. doi: 10.1007/978-3-

030-30859-9_2

[6] M. Vladymyrenko, et al., Analysis of Imple-

mentation Results of the Distributed Access

Control System. in: 2019 IEEE International

Scientific-Practical Conference Problems of

Infocommun., Sci. and Technology (2019).

doi: 10.1109/picst47496.2019.9061376

[7] V. Sokolov, P. Skladannyi, H. Hulak, Stabil-

ity Verification of Self-Organized Wireless

Networks with Block Encryption, in: 5th In-

ternational Workshop on Computer Model-

ing and Intelligent Systems, vol. 3137 (2022)

227–237.

[8] A. Okhrimenko, V. Kovtun, Experimental

Research of the Developed Methods of

Arithmetic Operations in Cryptographic

Transformations According to the ECDSA

Scheme, in Cyber Hygiene 2654 (2019) 827–

837.

[9] P. G. Comba, Exponentiation Cryptosystems

on the IBM PC, IBM Systems Journal 29(4)

(1990) 526–538.

[10] A. Karatsuba, Y. Ofman, Multiplication of

Many-Digital Numbers by Automatic Com-

puters, DAN USSR 145 (1962) 293–314.

[11] S. A. Cook, S. O. Aanderaa, On the Mini-

mum Computation Time of Functions, Trans.

AMS 142 (1969) 291–314.

[12] A. Schönhage, W. Strassen, Fast Multiplica-

tion of Large Numbers, Cybernetic Compen-

dium 2 (1973) 87–98.

[13] R. Brumnik, et al., Techniques for Perfor-

mance Improvement of Integer Multiplica-

tion in Cryptographic Applications, Mathe-

matical Problems in Engineering (2014) 1–7.

[14] V. Petrenko, A. Chipiga, Combination Re-

current Residue Generator, Patent 2029435,

MPK N03M7/18, no. 5032302/24 (1995).

[15] V. Petrenko, A. Sidorchuk, Y. Kuzminov,

Device for Forming Residues according to an

Arbitrary Modulus, Patent 2368942, MPK

N03M7/18, no. 02101066858/08, Bulletin.

No. 21 (2009).

[16] S. Tynymbayev, Y. Aitkhozhayeva, S. Adil-

bekkyzy, High-Speed Device for Modular

Reduction, Bulletin of National Academy of

Sciences of the Republic of Kazakhstan

6(376) (2018) 147–152.

[17] S. Tynymbaev, E. Aitkhozhaeva, Residue

Generator using an Arbitrary Modulus, Pa-

tent of the Republic of Kazakhstan, no.

30983 (2016).

[18] S. Tynymbaev, et al., High-Speed Devices for

Reducing Numbers Modulo, in 4th Int. Asian

School Seminar “Problems of optimization of

complex systems,” part 2 (2018) 273–279.

[19] P. Berrett, Implementing the Rivest Shamir

and Adleman Public Key Encryption Algo-

rithm on a Standard Digital Signal Processor

(1987). doi: 10.1007/3-540-47721-7_24

[20] P. L. Montgomery, Modular Multiplication

without Trial Division, Math. Compulation

44(170) (1985) 519–521. doi: 10.20307/

2007970.

[21] P. Eran, T. M. Henige, Method and Appa-

ratus for Efficient Modulo Multiplication,

Patent US no. 8Y17756B2 (2013).

[22] B. Kaliski, Moore’s Law, in van Tilborg

H.C.A., Jajodia S. (eds) Encyclopedia of

Cryptography and Security (2011).

[23] B. Kuzma, et al., Fast Matrix Multiplication

viaCompiler-only Layered Data Reorganiza-

tionand Intrinsic Lowering. doi: 10.1002/

spe.3214

