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Abstract 

Today, three types of encryptors are most widely used for data encryption: hardware, soft-

ware/hardware, and software. Their main difference is not only in the way encryption is imple-

mented and the degree of data protection reliability but also in the price, which often becomes 

a determining factor for users. While the price of hardware encryptors is much higher than that 

of software encryptors, the price difference is not comparable to a significant increase in the 

quality of information security. Hardware encryption has several strong advantages over soft-

ware encryption, one of which is faster performance. Hardware implementation guarantees the 

integrity of the encryption process. At the same time, the generation and storage of keys, as 

well as encryption, is carried out in the encryption board itself, and not in the computer’s op-

erating memory. In this regard, the development of high-performance hardware processor op-

erating units for asymmetric encryption, despite their high cost, is an urgent scientific and ap-

plied task. This paper analyzes modern approaches to modular multiplication, highlighting 

their strengths and weaknesses. An algorithm for multiplication with stepwise formation of 

partial and intermediate remainders is investigated, which, in turn, does not require preliminary 

calculations, and all calculations do not exceed the range of the module's bit grid. As a result, 

a synchronous matrix multiplier containing n blocks of AND circuits, n – 1 FPRs, and a single 

FIR with an intermediate remainder register has been developed, which will be useful for cryp-

tographic transformations in systems with increased requirements for performance and infor-

mation security (for example, in critical information infrastructure). 

Keywords1 

Multiplier; information security; hardware encryption; public key cryptosystem; cryptography; 

cryptographic algorithm; encryption. 
 

1. Introduction 

The vast majority of modern cryptographic 

systems perform transformations with integers. 

Large integers (not necessarily primes) act as keys 

to perform cryptographic transforxmations. To 

achieve the desired level of security, depending on 

the cryptosystem, integers range from several 

hundred to several thousand bits. Over time, to 

maintain the desired level of security, the size 

should increase. To work with integers in binary 

representation, the following arithmetic 

operations are widely used: addition, subtraction, 
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left and right shifts, multiplication, squaring, 

modular multiplication, and division. 

Specifically, in asymmetric cryptosystems, the 

data encryption and decryption procedure are 

carried out by raising the number a to a degree x 

by modular Р (a x modP), which can be realized 

by software, hardware, and software and hardware 

means [1, 2]. 

Hardware encryption has several significant 

advantages over software encryption, one of 

which (and probably the most significant) is faster 

performance [3, 4]. The hardware implementation 

guarantees the integrity of the encryption process. 

In this case, the generation and storage of keys, as 



58 

well as encryption, is carried out directly in the 

encryption board itself, and not in the computer’s 

operating memory. 

Today, the development of high-speed 

operating units of hardware processors for 

asymmetric encryption, despite their high cost, is 

an urgent scientific and applied task [5–7]. 

Given the above, the main goal of the paper is 

the development of a modular matrix multiplier 

for cryptographic transformations. 

2. Analysis of Modular Multiplication 
Approaches 

The multiplication operation takes a leading 

place among the operations in rings and number 

fields, which form the basis for cryptographic trans-

formations with public keys. At the same time, mul-

tiplication is a pretty time-consuming operation [8]. 

Modular multiplication can be done in two ways. 

In the first case, the operation is divided into two 

stages. At the first stage, n-bit numbers A and B are 

multiplied and form a 2n-bit number C. In the second 

stage, the product C = A*B is reduced modulo P. 

To date, a lot of experience has been accumu-

lated in the development of high-speed integer 

multipliers and tools for squaring. 

Among them are: Brown’s multiplier, Wal-

lace’s multiplier, Dadd’s multipliers, systolic and 

vedic multipliers, and quadratus, where the com-

plexity of the calculation is O (𝑛2) bit operations. 

However, these multipliers are very effective in 

calculating “low-bit” numbers, which are widely 

used in the construction of processing units of all 

kinds of computers [9]. 

Today, the following integer multiplication 

methods are known and used in cryptography: 

▪ Column multiplication. 

▪ Karatsuba-Ofman. 

▪ Toom-Cook. 

▪ Schönhage-Strassen. 

▪ Comba. 

▪ Führer (development of the Schönhage-

Straussen method). 

In cryptography, the Karatsuba method [10], 

which has a complexity of O(𝑛2) steps (bit opera-

tions), and the Toom-Cook algorithm [11] with a 

complexity of O(𝑛log2 3) bit operations are widely 

used to multiply multibit numbers, allowing to 

calculation of the required product faster than 

O(𝑛2) steps (bit operations). The Schönhage-

Strassen algorithm [12] allows multiplying two n-

bit numbers in O(nlogn, logn) bit operations. 

The modulo reduction operation performed in 

the second step is to obtain the rest of the result of 

dividing C = A*B by the modulo P. Paper [13] an-

alyzes various ways to reduce numbers by modu-

lar. It is shown that the most effective means of 

building is a modular drive device based on a di-

viding device. This device includes a partial re-

mainder maker. High-performance matrix and 

conveyor modulo conversion devices can be eas-

ily implemented based on partial residue formers 

[8, 14–18]. 

High-performance matrix and conveyor devices 

for modular multiplication can be easily imple-

mented based on partial remainder formers [14–

18]. 

In the second method, modular multiplication is 

performed by using an algorithm for dividing large 

numbers. For example, the Barrett algorithm [19] 

requires preliminary calculations of the constant 

𝜇 = ⌊
𝑑2𝑚

𝑁
⌋ 

where 𝑑 = 2𝑘, k is word size in bits, m is the num-

ber of words in the module N. The effectiveness 

of the Barrett algorithm depends entirely on how 

efficiently the preliminary calculations are per-

formed by the distribution of large numbers. 

Montgomery’s algorithm requires the prelimi-

nary calculation of the constant 𝑟2(mod𝑁), using 

division with remainder [20, 21]. 

In the third method, the process of modular 

multiplication is performed in a large number of 

steps, where the number of steps is determined by 

the bit depth of the multiplier. 

This paper describes the modular multiplica-

tion of numbers, where multiplication begins with 

the analysis of the lowest bits. In such a multiplier, 

the following steps are performed at each step of 

the multiplication: 

1. Partial remainder FPRi calculates the partial 

remainder ri for which the previous partial re-

mainder ri – 1, shifted by one digit toward the 

higher digit, by modulo P, i.e., ri=2ri–1modP. 

When forming the first partial remainder ri, A is 

taken as the previous partial remainder, i.e., 

ri = A1. 

2. The partial remainder ri is logically multi-

plied by the i-bit of the multiplier B by the logic 

circuit block Ii. 

3. The intermediate residual Ri is calculated by 

adding up the partial remainder ri with the previ-

ous intermediate remainder Ri–1 by module Р, that 

is Ri = (ri + Ri–1) modP. 
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After performing n multiplication steps, the re-

sult is formed R – Rn–1=(rn–1 + Rn–2) modP. 

In work [22], the algorithm for multiplying 

numbers by modulo is implemented according to 

an asynchronous matrix system that consists of n 

block schemes of I, n – 1 FPR, and n – 1 FIR 

(intermediate residual shaper). The disadvantage 

of this scheme is the complexity of its hardware 

implementation. To eliminate this disadvantage, 

this paper proposes a synchronous matrix 

multiplier developed by the authors, which 

contains n block schemes of І, n – 1 FPR, and a 

single FIR with an intermediate remainder 

register. The operation of the multiplier is 

synchronized using a level divider. 

 

 

3. Developed Modular Matrix  
Multiplier 

The functional scheme of a synchronous mul-

tiplier with a matrix structure is shown in Fig. 1. 

The multiplier consists of the n-bit multiplier reg-

ister RgB, the multiple registers RgA, and the 

module register RgP, the synchronization block 

SYNCHRO unit that generates level signals for 

the block of schemes І0 ÷ Іn–1. At the entrance 

SYNCHRO unit is supplied to the START signal, 

clock signals CLOCK and a binary code to the 

signal for the number of multiplier digits n. Fol-

lowing the START signal, the RECEPTION sig-

nal vibrates, after which the discharge of multi-

plier B is received into the RgP register through 

circuit block 3'. 
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Figure 1: Functional scheme of the modular matrix multiplier 
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The SYNCHRO unit consists of a binary coun-

ter and a decoder. The state of the counter is de-

coded on their outputs generating signal levels for 

І0 ÷ Іn–1. With the START signal, the binary code 

of the number n is also written to the binary coun-

ter and permits the clock signal Clock to pass to 

the counter input. 

The multiplier also includes partial remainder 

generators FPR.1÷FPR.n–1 and circuits І0 ÷ Іn–1, 

circuit OR1, and intermediate remainder generator 

FIR with intermediate remainder register. 

The results output of multiplication І4' after re-

ceiving the clock signal un–1 from the SYNCHRO 

unit through the delay element EZ. 

The value of the modulus P̅ from the inverted 

output RgP is delivered to the inputs of all 

FPR.1 ÷ FPR.n–1 and FIR. On the RECEIVE sig-

nal, the multiplier A is delivered to the inputs of 

the I2' circuit block with a shift of one bit toward 

the high bit to the FPR.1 input. The other inputs of 

the I0 block receive the value of the lowest bit of 

the RgB – b0 register and the control level u0 from 

the SYNCHRO unit output. 

The output of I0 is connected to the FIR regis-

ter. The output FPR.1 is connected to the input of 

the circuit block I1. The other inputs of the I1 are 

connected to the outputs of the RgB and SYN-

CHRO unit, through which the value of the bit b1 

and the control level u1 are received. The output 

of the I1 block is connected to the input of the OR1. 

The code value from the output of FPR.1 with 

a shift of one bit toward the lowest bit is applied 

to the input of FPR.2. In turn, the output of FPR.2. 

is connected to the inputs of the I2 circuit block, to 

the other inputs of which the value of the bit b2 

from the RgB register and the control level u2 

from SYNCHRO unit are supplied. The output of 

the I2 block is connected to the input of the OR1 

scheme. There are similar connections between 

FPR.3 ÷ FPR.n–2 and blocks of schemes І3 ÷ Іn–2. 

The FPR.n–1 inputs receive the value of the 

code from the FPR.n–2 output with a shift of one 

bit toward the lowest bit and the code of the P 

module from the RgP outputs. The output of 

FPR.n–1 is connected to the input of the In–1 circuit 

block, which also receives the value of the high 

bit bn–1 of the RgB register and the control signal 

un–1 from the SYNCHRO unit. The output of the 

In–1 circuit block is connected to the OR1 input. 

Fig. 2 shows the structure of the FPR, which is used 

to form a partial remainder ri from the doubled pre-

vious remainder by modulo P: ri = 2ri–1modP. 

Add

P

1

21

2ri-1

ri

+1П

Зн

MS

 
Figure 2: FPR structure 

 

FPR consists of a binary adder Add and multi-

plexer MS, which contains blocks of schemes І1, І2, 

and scheme OR1. 

The doubled partial remainder 2ri–1, module 

reverse code �̅�, and a single signal +1 is delivered 

to the adder inputs. As a result of performing the 

operation ri = 2ri–1 mod�̅� + 1, a difference with its 

sign ZN is formed at the output of the adder. 

If ZN = 1, the following code 2ri–1 (2ri–1 ˂Р) is 

transmitted to the FRP outputs. At the same time, 

transferring from the digit sign Р = 0. If ZN = 0, 

then the result of subtraction 2ri–1 – Р (2ri–1 ≥ Р) is 

transferred to the FPR outputs. 

Fig. 3 shows the structure of the FIR interme-

diate remainder generator, which includes the 

Add adder, FPR, OR2 circuits, and the RgR inter-

mediate remainder register. The output of the RgR 

register is connected to the Add input, where the 

Ri–1 value is transferred. It is easy to see that the 

circuit operates Ri = (ri + Ri–1) modP. 

Let’s consider the operation of a modular ma-

trix multiplier. After receiving the operands A, B, 

and P into the corresponding registers and the bi-

nary code, the number of bits multiplier in the 

SYNCHRO unit is the first clock impulse Clock 1 

arrives and code 1 is written to the binary counter. 

At the same time, output 1 of the SYNCHRO unit 

produces a high level u0, which is supplied to the 

input of the circuit block I0. 
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Figure 3: FIR structure 

The other inputs of I0 are supplied with the 

lowest bit of the multiplier b0 and the bits of the 

multiplier A. With b0 = 1, a partial remainder 

r0 = R0 is generated at the output of the I0 block, 

which is written to RgR FIR. After that, the clock 

signal Clock 2 is delivered to the SYNCHRO unit, 

and the control level u2 is generated at the output 

of the SYNCHRO unit, which is sent to the input 

of I2. The other inputs of I2 are supplied with the 

value of the bit b2 of the RgB register and the 

value r2 from the output of FPR.2. The outputs of 

the I2 circuit block are sent to the input of the OR1 

scheme. 

Partial remainders r3 ÷ rn are formed in a sim-

ilar way, which also through schemes OR1 are 

supplied to the entrance FIR. FIR, receiving par-

tial remainder ri, creates Ri according to the for-

mula Ri = (ri + Ri–1)modP. 

Table 1 shows an example of performing a 

modular multiplication operation in a synchro-

nous matrix multiplier, where А = 2710; 

B = 2310 = 101112; P = 3510. For convenience, 

all arithmetic operations are performed in the dec-

imal system. 

Verification:  

R = (27×23) mod 35 = 621 mod 35 = 2610 

Table 1 
The order of multiplying numbers by modulo 

 u0 u1 u2 u3 u4 

ri 
r0 = A*b0 = 

= 2710 

r1 = 2r0modP =  

= 54 – 35 = 1910 

r2 = 2r1modP =  

= 38 – 35 = 310 

r3 = 2r2modP = 

= 6mod35 = 610 

r4 = 2r3modP = 

= 12mod35 = 1210 

RgR 
R0 = r0 = 

= A = 2710 

R1 = 

= (r1b1 + R0)modP = 

= (19+27)mod35 = 

= 1110 

R2 = 

= (r2b2 + R1)modP = 

= (3 + 11)mod35 = 

= 1410 

R3 = 

= (r3b3 + R2)modP = 

= (6*0 + 14)mod35 = 

= 1410 

R4 = 

= (r4b4 + R3)modP = 

= (12 + 14)mod35 = 

= 2610 
 

5. Conclusions 

This paper analyzes modern approaches to 

modular multiplication and highlights their 

strengths and weaknesses. A multiplication 

algorithm with step-by-step formation of partial 

and intermediate remainders was studied, which, 

in turn, does not require preliminary calculations, 

and all calculations do not go beyond the range of 

the bit grid of the module. As a result, a 

synchronous matrix multiplier has been 

developed that contains n blocks of circuits I, 

n – 1 FPR, and a single FIR with an intermediate 

remainder register. The obtained results will be 

useful for cryptographic transformations in 

systems with increased requirements [23] for 

performance and information security (for 

example, in critical information infrastructure). 
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