
Weight-based Semantic Testing Approach for Deep Neural
Networks
Amany Alshareef1,*, Nicolas Berthier1,2, Sven Schewe1 and Xiaowei Huang1

1University of Liverpool, Liverpool L69 3BX, United Kingdom
2OCamlPro, France

Abstract
While deep learning models have achieved state-of-the-art performance in a variety of fields, their susceptibility to adversarial
examples has raised serious concerns over their application in safety-critical domains. Existing testing methodologies fail to
consider interactions between neurons and the semantic representation that formed in the DNN through the training process.
This paper proposes a weight-based testing metric that uses feature importance weights to measure the coverage of the test
set and facilitates the generation of additional test cases targeting higher weights’ features. Evaluations were conducted to
compare the initial and final coverage of the proposed weighting approach with normal BN-based feature coverage. The
testing coverage experiments indicated that the proposed weight metrics achieved higher coverage compared to the original
feature metrics while maintaining the effectiveness of finding adversarial samples during the test case generation process.

Keywords
DNN testing metrics, Bayesian abstraction, Feature coverage, Importance weights

1. Introduction
Software testing provides evidence to demonstrate that
the system meets its requirements or is error-free. The
fact that deep learning models are data-driven, not
requirements-driven, makes defining their testing cri-
teria challenging. Technically, the accuracy of the learn-
ing models is reported based on the test dataset. This
standard metric for measuring the model’s overall perfor-
mance cannot be sufficient or trustworthy in the safety-
related domain, where most testing scenarios are ran-
domly chosen from the entire dataset. Besides, the pro-
vided test data may not have good coverage of the data
distribution the model is trained on and may not repre-
sent the data obtained in the real world.

Furthermore, most of the current proposed DNN test-
ing techniques rely on neuron activation as a metric to
measure the test data coverage. Such a criterion does
not prove its correlation to the system’s decision logic
[1]. Moreover, these methods aim to transform the input
data space to generate more test input and completely
ignore the model-internal representations and their roles
in the output decision. Observing that real-world high-
dimensional data lie on low-dimensional manifolds mo-
tivates investigating where the data lie and modeling it
to be analysed instead of confined to the input domain.
There is little attempt to understand machine learning’s

The IJCAI-2023 AISafety and SafeRL Joint Workshop.
*Corresponding author.
$ amany.alshareef@liverpool.ac.uk (A. Alshareef);
nicolas.berthier@ocamlpro.com (N. Berthier);
sven.schewe@liverpool.ac.uk (S. Schewe);
xiaowei.huang@liverpool.ac.uk (X. Huang)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

hidden representations and generate additional test cases
based on them. This paper presents a testing approach
for neural networks that leverages the learned represen-
tations and feature importance to evaluate the test data’s
coverage. The features’ importance weights reflect how
the contribution of each hidden feature, extracted from
the lower-dimensional latent feature space, to the overall
output of the network is distributed across the network.
This identified feature contribution enables the determi-
nation of the causal relationship between the neurons and
the model behaviour. Therefore, the importance weights
relate to the semantic representation and provide insights
into the interaction mechanism underlying the output
decision-making process.

The proposed approach to design weight-based se-
mantic testing metrics for neural networks is using the
Bayesian network abstraction model of Berthier et al. [2].
The authors introduced a dimensionality reduction tech-
nique using feature extraction algorithms to abstract the
behaviour of a neural network into a Bayesian network
(BN). The work in [3] utilised that BN model to quantify
the importance of a neural network’s latent features. It
developed a BN-based sensitivity analysis algorithm that
estimates the importance of a neural network’s latent
features by analysing an associated BN’s sensitivity to
distributional shifts. They integrated various metrics to
compute the difference between the original probability
distributions represented by the abstracted BN and the
distributions obtained after perturbation. Each latent
feature was then assigned a weight value based on the
measured sensitivity distance.

In this work, we transform the traditional binary cov-
erage approach to a weighted probability problem and
define our coverage metric based on the latent features

mailto:amany.alshareef@liverpool.ac.uk
mailto:nicolas.berthier@ocamlpro.com
mailto:sven.schewe@liverpool.ac.uk
mailto:xiaowei.huang@liverpool.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

importance. The neural network’s latent feature space
refers to the internal, hidden representations learned by
the network. These representations are not directly ob-
servable but rather are formed as a result of the network
processing input data and capturing their important pat-
terns [4]. The proposed weight-based testing criterion
emphasises that maximum test coverage is obtained from
the presence of important features that have a dominat-
ing influence on other features and the output decision.
To summarise, the main contributions of the paper are :

• Semantic testing metrics measure a test dataset’s
coverage based on the calculated feature weights.

• A guided systematic approach that samples test
cases targeting the higher-priority features.

• Empirical studies on the quality of the proposed
weight-based coverage compared with the origi-
nal BN-based coverage

2. Existing Testing Techniques
Deep neural network testing is an active research area
where safety-critical applications are being deployed
with them. Numerous techniques have been developed to
address the challenges of testing these learning systems
in terms of test coverage criteria, test generation, and
test oracles.

2.1. Testing Metrics and Coverage Criteria
Testing coverage metrics are measurements used to eval-
uate the adequacy of testing by providing a quantitative
evaluation of how thoroughly a deep neural network
has been tested according to specific criteria. Coverage-
guided deep neural network testing techniques are a class
of testing methods that aim to increase the coverage of
the network during testing, with the goal of covering dif-
ferent regions of the input space and revealing as many
potential bugs and unexpected behaviours as possible.
Enforcing higher coverage during the testing process
makes the network under investigation more likely to be
robust and reliable. We divide the related existing testing
works in the literature into two categories:

(i) Structural coverage metrics that are defined based
on the syntactic characteristics of the NNs, and

(ii) High-level semantic coverage metrics that are
concentrated on the semantic representations cre-
ated by NNs.

Most proposed testing approaches have been focused
on the structural testing coverage to measure the coverage
of the dataset relied on the individual neuron activation.
These techniques are based on the idea of activating as

many neurons in the network as possible during the
testing phase. The more neurons that are activated with
a specific value, the more complete the testing of the
network is considered to be.

Neuron activation was firstly introduced by Pei et al.
[5] as a systematic metric which calculates the number
of activated neurons (w.r.t. ReLU activation function)
during the testing. They proposed the DeepXplore which
is a white box differential testing algorithm for generating
test inputs that can discover inconsistencies between
multiple DNNs. Following the neuron coverage (NC)
principle, DeepTest [6] and Dlfuzz [7] have made some
improvements to it. Although the NC metric has been
shown to be effective at finding hidden bugs and has
been used to test real-world DNNs, investigations by [8]
demonstrated that NC is too coarse and easy to achieve.

Further approaches such as DeepGauge [9], and Deep-
Cover [8] have been developed to extend neuron cov-
erage, with a focus on various activation value factors.
Beyond that, more testing metrics, i.e., quantitative pro-
jection coverage [10], safety coverage [11] and surprise
coverage [12], have been designed based on the activa-
tion functions and the syntactic connections between
neurons in successive layers.

Unfortunately, neuron activation and other structural
coverage techniques have proven to be less effective in
validating the safety behaviours of intelligent systems. A
study by Li et al. [13] showed that there is no correlation
between the number of misclassified natural input tests
and their structural coverage on the corresponding neural
networks. There is still considerable ambiguity about
how such coverage criteria directly relate to the decision
logic of black-box machine learning systems. Especially
in that case, the semantic relationship between layers is
ignored. Additionally, structural coverage has a limited
correlation with network robustness, where high neuron
coverage does not imply the network is robust to all
possible inputs or will behave well on unseen data [1, 14].

There are relatively few testing strategies that address
the semantic aspects of DNN’s internal representation.
One recent effort is the BN-based feature coverage intro-
duced in [2] that is improved with weights in this study.
Two testing coverage metrics are defined based on the
suggested BN abstraction: the BN-based feature coverage
(BFCov) and the BN-based feature-dependence coverage
(BFdCov). These metrics give the proportion of hidden
features or causal relationships between them that are
adequately exercised by a set of inputs. Moreover, the au-
thors implemented a combined metric BFxCov(ℬ𝒩 ,X)
of the two above as: BFCov(ℬ𝒩 ,X)×BFdCov(ℬ𝒩 ,X).
For the space limit, we include the BFCov metric below
and refer the reader to the original document for the rest.

Definition 2.1 (BN-based Feature Coverage). Given
a trained DNN 𝒩 , the BFCov(ℬ𝒩 ,𝒳) coverage of a

non-empty set of inputs 𝑋 ⊂ D𝑋 is obtained via the BN
abstraction ℬ𝒩 ,𝑋 as

1⃒⃒
𝑉𝒩 ,𝑋

⃒⃒ ∑︁
L𝑓♯

𝑖,𝑗M∈𝑉𝒩 ,𝑋

⃒⃒⃒{︁
𝑓 ♯𝑘
𝑖,𝑗 ∈ F♯

𝑖,𝑗 | 𝒫𝑖

(︁
𝑓 ♯𝑘
𝑖,𝑗

)︁
≥ 𝜀

}︁⃒⃒⃒
⃒⃒⃒
F♯
𝑖,𝑗

⃒⃒⃒ ,

(1)

Informally, BFCov(ℬ𝒩 ,X) ranges over [0, 1], and gives
the percentage of feature intervals that are adequately
exercised by 𝑋 . Intuitively, the coverage metric checks
the marginal probabilities 𝒫𝑖 for every interval 𝑓 ♯𝑘

𝑖,𝑗 ∈
F♯
𝑖,𝑗 in the BN’s node that appears with a probability

bigger than 𝜀.
Furthermore, a closely related work to the proposed

importance-based semantic testing is the DeepImpor-
tance approach presented in [15]. The authors developed
a testing approach based on the Importance-Driven (IDC)
test adequacy criterion that employs the layer-wise rel-
evance propagation to identify the important neurons.
They then evaluated the test’s adequacy by targeting dif-
ferent combinations of important neurons’ behaviours.

2.2. Test Cases Generation Algorithms
The existing set of test case generation algorithms for
DNNs is categorised into: (i) Input mutation based, which
generates new test inputs, either natural or adversarial,
by altering the original data using transformation rules;
(ii) Fuzzing based, which generates invalid random input
data to detect faults and vulnerabilities in the model;
and (iii) Symbolic execution based, which is an analysis
technique that tests whether specific inputs cause each
part of a system to be executed.

Concolic testing is a testing technique in which con-
crete execution directs the symbolic analysis to generate
a high coverage test suite. The DeepConcolic introduced
in [16] used a concolic testing algorithm that alternates
concrete executions, which evaluate the test input us-
ing the trained DNN under test, and symbolic analyses,
which synthesise new test inputs based on some test
target that is chosen to increase coverage.

2.3. Test Cases Evaluation
A Test oracle is a reference or ground truth that
provides the expected output for a given input and is
used to compare the output of the system to determine
its accuracy.

Overall, the structural coverage criteria focus on the pat-
terns that appear in the outputs of ReLU activation func-
tions, while the semantic coverage metrics are high-level
criteria that focus on the features that have been learned

by hidden layers of the DNN. The proposed semantic
metrics are based on the model-internal representations
and their contribution to the output behaviours.

3. The BNWeighted Feature
Model

The goal of the weighted feature model is to construct
an abstracted Bayesian network that includes the impor-
tance weight for each node of the BN. We first review the
main components of building the BN abstraction. The
creation of the BN model goes through the following:

1. Extraction of hidden features. In this stage,
the hidden features learned by the DNN layers are
identified by using feature extraction techniques,
i.e., Principal Component Analysis (PCA) and In-
dependent Component Analysis (ICA), on neuron
activation values induced by a given training set;

2. Feature space discretisation. The extracted fea-
tures range over a continuous space, therefore,
each feature component is discretised into a fi-
nite set of feature intervals according to various
strategies, i.e., density- and uniform-based;

3. Bayesian network construction. This consists
in representing the probabilistic distribution of
each extracted feature with a node in the BN.
Each node is associated with either a marginal
probability table for hidden features of the first
layer, or a conditional probability table (CPT) for
hidden or output layers.

Preliminaries. The BN ℬ𝒩 ,𝑋 = (𝑉,𝐸, 𝑃) is an ab-
stracted model constructed from the DNN𝒩 and training
dataset 𝑋 . The 𝑉 are nodes containing the extracted la-
tent features from the 𝒩 . Each feature is defined as a
pair 𝑓𝑖,𝑗 and partitioned into a finite set of 𝑚 intervals
denoted with ♯ exponents. The 𝐸 are directed edges
indicating dependencies between features in successive
layers, and 𝑃 maps each node in 𝑉 to a probability table
representing the conditional probability of the current
feature over its parent features w.r.t. 𝑋 .

The feature sensitivity analysis process discussed in [3]
is calculated based on the change in the BN’s probability
distribution as follows:

𝑊𝑖,𝑗 =
𝛿(𝑃ref , 𝑃

′
𝑓)∑︀

𝑓∈F♯ 𝛿(𝑃ref , 𝑃 ′
𝑓)

(2)

Where 𝑊𝑖𝑗 is the sensitivity weight of the feature 𝑓 ♯
𝑖,𝑗 ,

𝑃ref is the original (reference) probability distribution
represented by the BN, 𝑃 ′

𝑓 is the probability after per-
turbing 𝑓𝑖,𝑗 , and 𝛿 is a function returning the distance be-
tween two probabilities distribution according to a given
metric 𝑑𝑝. F♯ is the set of considered latent features.

Figure 1: Example of computed distances from the feature sensitivity weighting method introduced in [3], annotated with
the used distance metrics 𝑑𝑝 at the header. The diagram illustrates the used structure of the Bayesian Network.

The previous equation represents unnormalised
weights, which is further normalised:

∑︀
𝑖,𝑗 𝑊𝑖,𝑗 = 1.

Thus, we obtain 𝑊𝑓 , which is a vector of the computed
weights for the extracted latent features from the DNN.

Definition 3.1 (Weighted Feature Model). A
weighted feature model over a hidden DNN’s features F♯

is a function 𝑓 :F♯
𝑖,𝑗 → R≥0 that maps features into their

importance values according to their sensitivity weights
resulting from selected 𝑑𝑝.

Example 1. Figure 1 shows a BN constructed from three
selected layers of a CNN: max_pooling2d_1, activation_6,
and dense_3. The activation values are computed for each
considered layer, then the dimensionality reduction is ap-
plied and produced three feature component that is discre-
tised into five intervals. The figure illustrates an example
of the latent features’ sensitivity weights obtained using
various distance metrics.

4. Weight-based Testing
This section provides a detailed technical description of
the proposed weight-based semantic testing metrics and
algorithm. We first introduce and define the concepts of
feature coverage. Then, we describe how the test cases
are generated using the Concolic testing algorithm.

4.1. Weight Feature Metric
The BN abstraction and the hidden feature weights are
utilised to develop new coverage metrics that assess the
quality of a test dataset in terms of reporting the coverage
based on the non-uniform contribution theory. That is,
the metrics focus on the semantic values of the neuron
activation instead of the syntactic values of the adjusted
weights, which is a very local and less decisive criterion.

Definition 4.1 (Weight-based Feature Coverage).
Given a trained DNN𝒩 , the weight-based feature cover-
age of a non-empty set of inputs 𝑋 ⊂ D𝑋 is obtained via

the BN abstraction ℬ𝒩 ,𝑋 as: WFCov(ℬ𝒩 ,𝒳)
def
=

∑︁
L𝑓♯

𝑖,𝑗M∈𝑉𝒩 ,𝑋

𝑤L𝑓♯
𝑖,𝑗M ·

⃒⃒⃒{︁
𝑓 ♯𝑘
𝑖,𝑗 ∈ F♯

𝑖,𝑗 | 𝒫𝑖

(︁
𝑓 ♯𝑘
𝑖,𝑗

)︁
≥ 𝜀

}︁⃒⃒⃒
⃒⃒⃒
F♯
𝑖,𝑗

⃒⃒⃒ ,

(3)
where

∑︀
L𝑓♯

𝑖,𝑗M∈𝑉𝒩 ,𝑋
𝑤L𝑓♯

𝑖,𝑗M = 1.

The coverage metric in the equation above ranges over
[0, 1], and gives the weighted proportion of features that
are adequately exercised by 𝑋 . The WFCov(ℬ𝒩 ,𝒳) is
similar to the basic feature coverage in Equation 1, where
the factor 1/ |𝑉𝒩 ,𝑋 | that acts as an equals weight for
all features is replaced with the computed importance
weight.

Example 2. Consider the BN shown in Figure 2. For layer
𝑙3, we can compute the following marginals based on the
given conditional probability table for the node 𝑓3,0 as:
Pr (𝑓3,0 < 3) ≈ 0.453, Pr (3 ≤ 𝑓3,0 ≤ 5) ≈ 0.323,
Pr (𝑓3,0 > 5) ≈ 0.224. Then the sum of intervals’
marginals is multiplied with the node weight which results
in 1× 0.173 = 0.173. Assuming similar non-negligible
marginal probabilities for the nodes pertained to layers 𝑙1
and 𝑙2, then we obtain each node coverage 3/3 and then
multiply it with its per-node weight to obtain the coverage
of the test set with the WFCov(ℬ𝒩 ,𝒳) = 1.

4.2. Weight Feature Dependence Metric.
Further, the causal relationships exercised by a dataset X
that the BN’s conditional probabilities define are used to
develop the following coverage metric:

Definition 4.2 (Weighted Feature Dependence Cov).
Given a trained DNN 𝒩 , the weight-based feature de-
pendence coverage is obtained via the ℬ𝒩 ,𝑋 as:

WFdCov (ℬ𝒩 ,𝑋)
def
=

∑︁
L𝑓♯

𝑖,𝑗M∈𝑉 +
𝒩 ,𝑋

𝑤L𝑓♯
𝑖,𝑗M·

⃒⃒⃒⃒
⃒⃒⃒(𝑓 ♯𝑘

𝑖,𝑗 , 𝐹
♯
𝑖−1) ∈

F♯
𝑖,𝑗 × F♯

𝑖−1

⃒⃒⃒⃒
⃒𝒞𝒫𝑖

(︁
𝑓 ♯𝑘
𝑖,𝑗 |𝐹

♯
𝑖−1

)︁
≥ 𝜀

∨ 𝒫𝑖

(︁
𝑓 ♯𝑘
𝑖,𝑗

)︁
< 𝜀

⃒⃒⃒⃒
⃒⃒⃒

⃒⃒⃒
F♯
𝑖,𝑗 × F♯

𝑖−1

⃒⃒⃒
(4)

Figure 2: An abstracted Bayesian network from three CNN’s selected hidden layers. Two features are extracted from each
layer and discretised into three intervals. The features 𝑓1,0 and 𝑓1,1 have marginal tables. Features 𝑓3,0 and 𝑓3,1 are illustrated
with a complete conditional probability table, while other CPTs have the same length (𝑚𝑝 number of intervals to the number
of parents), but are shortened in the diagram. The weight column shows per-node probability.

where
∑︀

L𝑓♯
𝑖,𝑗M∈𝑉 +

𝒩 ,𝑋
𝑤L𝑓♯

𝑖,𝑗M = 1.

Here, 𝑉 +
𝒩 ,𝑋 represents a set of nodes excluding the in-

put layer, for which conditional probability table doesn’t
exist. Intuitively, in the same manner as the weighted
feature coverage, we iterate over all nodes in 𝑉 +

𝒩 ,𝑋 and
calculate a weighted coverage. For each node, we look
at its CPT which lives in the space F♯

𝑖,𝑗 × F♯
𝑖−1, and

look at all of the values larger than 𝜀. In other words,
𝒞𝒫𝑖(𝑓

♯𝑘
𝑖,𝑗 |𝐹

♯
𝑖−1) ≥ 𝜀. For the metric to be independent

from the previous feature coverage, the values for which
marginal distribution is smaller than 𝜀 are also included,
i.e. 𝒫𝑖(𝑓

♯𝑘
𝑖,𝑗) < 𝜀.

Example 3. Continuing the Example 2, the weighted fea-
ture dependence coverage is considered now. The function
iterates over last 4 out of 6 nodes for which CPT exists.
For this example, let calculate coverage for the node 𝑓3,0,
with 𝜀 = 0.01. Taking a look into its CPT, there are 26
out of 27 items with probabilities larger than 0.01. Fur-
thermore, all marginal probabilities are larger than 0.01
too, which finally means that the coverage is 26/27. Now,
we calculate how much will the node amount to the to-
tal weighted feature dependence coverage. Because the
weights in Figure 2 are normalized to sum to 1 for all
nodes, they have to be firstly renormalised, so that only
the ones with CPT sum to 1. Normalisation constant is
just the sum over all but first layer weights, which for
our example amounts to 0.8687. Finally, the contribu-
tion of the node 𝑓3,0 to the total coverage amounts to

0.1730/0.8687 · 26/27 = 0.1917. Similarly, for the node
𝑓3,1, there are 25 out of 27 values with probability larger
than 0.01, which means the node will contribute to the total
coverage as 0.2697/0.8687 · 25/27 = 0.2875. Summing
up contribution from all 4 nodes with CPT assuming there
is one probabilities less than 0.01 for each 𝑓2,0 and 𝑓2,1,
the final weighted feature dependence coverage amounts
to 0.2190 + 0.2532 + 0.1917 + 0.2875 = 0.9514%.

4.3. Generalised Weighted Feature Cov.
To deliver a consistent coverage measure that is based on
every probability entry in the BN, the two feature met-
rics 3 and 4 can be combined to produce the generalised
weight feature coverage. This generalised weighted
feature metric gives a single, unified coverage. In the
simplest approach, one can consider two coverages de-
coupled from each other, and simply multiply them:
WFCovTot = WFCov×WFdCov. This is in most
situations sufficient, however the other possibility is to
average them on per-node level:

WFCovTot (ℬ𝒩 ,𝑋)
def
=

∑︁
L𝑓♯

𝑖,𝑗M∈𝑉𝒩 ,𝑋

𝑤L𝑓♯
𝑖,𝑗M ·

{︃
WFCovL𝑓♯

𝑖,𝑗M if 𝑖 = 1 ,

𝑇𝐶𝑜𝑣 otherwise .

(5)

where 𝑇𝐶𝑜𝑣 = 1
2

(︂
WFCovL𝑓♯

𝑖,𝑗M +WFdCovL𝑓♯
𝑖,𝑗M

)︂
.

4.4. Coverage Criteria
Weight-based Feature Coverage Criterion. A non-
empty set of inputs 𝑋 ⊂ D𝑋 satisfies the Weight-based
feature coverage criterion that is obtained via the BN ab-
straction ℬ𝒩 ,𝑋 iff WFCov(ℬ𝒩 ,X) = 1.

Weight-based Feature-dependence Coverage Cri-
terion. A non-empty set of inputs 𝑋 ⊂ D𝑋 satis-
fies the Weight-based feature-dependence coverage crite-
rion that is obtained via the BN abstraction ℬ𝒩 ,𝑋 iff
WFdCov(ℬ𝒩 ,X) = 1.

4.5. Concolic Test Generation
The weight-based feature metrics are implemented on
the DeepConcolic tool 1 and the features weights are
used as criteria to direct the Concolic testing algorithm.
A detailed description of the test generation procedure is
provided in Algorithm 1.

For a given trained DNN 𝒩 on a dataset 𝑋 and the
associated abstract BN ℬ𝒩 ,𝑋 , the features weights 𝑊𝑓

are calculated for all extracted features. We assume that
suitable feature extraction and discretisation have been
applied on a training sample 𝑋𝑡𝑟𝑎𝑖𝑛 to obtain the struc-
ture of the ℬ𝒩 ,𝑋 . The test generation procedure starts
by randomly sampling an initial seed set of test inputs
𝑋0 from 𝑋𝑡𝑒𝑠𝑡 data set that is correctly classified by
𝒩 , and initialising the probability tables in the BN to
produce ℬ𝒩 ,𝑋0 . Next, the algorithm identifies the test
target intervals 𝑇𝑎𝑟_𝑖𝑛𝑣𝑎𝑙𝑠 = {𝑓 ♯

𝑖,𝑗} through analysing
the non-epsilon probabilities of the marginal or condi-
tional probability tables in ℬ𝒩 ,𝑋0 . The non-epsilon is
the probabilities that are less than 𝜀 and not yet met
by the current set of input test cases in 𝑋0. Thus, the
𝑇𝑎𝑟_𝑖𝑛𝑣𝑎𝑙𝑠 consist a set of hidden feature interval(s)
that should be elicited by the test input to be generated.
The test case generation algorithm then iterates 𝑚𝑎𝑥
times according to the following:
First, identifying the 𝑡 ∈ 𝑇𝑎𝑟_𝑖𝑛𝑣𝑎𝑙𝑠 with the high-
est importance weight in 𝑊𝑓 , and selecting a test input
𝑠 ∈ 𝑋0 based on some heuristics, such as closeness to
the targeted interval 𝑡. The implemented assumption to
find a good-enough candidate input 𝑠 is searching for an
input 𝑠 ∈ 𝑋0 whose feature value is close to the target
interval boundaries. Then, constructing an LP problem
based on 𝑡 and solve the optimisation objective that seeks
to minimise the distance between activations of input
neurons and 𝑠. This problem is formulated as:

Minimise: ‖(𝑛1,1, . . . , 𝑛1,|𝑙1|)− (𝑠1,1, . . . , 𝑠1,|𝑙1|)‖∞
(6)

Where 𝑛1,1, . . . , 𝑛1,|𝑙1| is the set of all input neurons.

1The tool is available at https://github.com/TrustAI/DeepConcolic.

Algorithm 1 Test Dataset Generation
Input:
𝒩 ← DNN under test
𝑋 ← data set
ℬ𝒩 ,𝑋𝑡𝑟𝑎𝑖𝑛 ← abstract BN
𝑊𝑓 ← features sensitivity weights
Output: test inputs𝑋0, coverage

1: 𝑋0← sampling initial seed test inputs from 𝑋𝑡𝑒𝑠𝑡

2: ℬ𝒩 ,𝑋0 ← initialising the BN prob. tables with 𝑋0

3: 𝑇𝑎𝑟_𝑖𝑛𝑣𝑎𝑙𝑠← intervals with prob ≤ 𝜀
4: for 𝑖 = 1 to max iterations do
5: 𝑡← 𝑇𝑎𝑟_𝑖𝑛𝑣𝑎𝑙𝑠 with highest weight in 𝑊𝑓

6: select a test input 𝑠 ∈ 𝑋0

7: construct an LP problem based on 𝑡
8: solve the optimisation objective:

min ‖(𝑛1,1, . . . , 𝑛1,|𝑙1|)− (𝑠1,1, . . . , 𝑠1,|𝑙1|)‖∞
9: 𝑠′ = (𝑛1,1, . . . , 𝑛1,|𝑙1|)

10: if 𝑠′ passes the oracle then
11: 𝑠′ ← newly generated test input
12: if 𝑓𝒩 (𝑠′) = 𝑓𝒩 (𝑠) then
13: 𝑋0 ← 𝑋0∪ {𝑠′}
14: update ℬ𝒩 ,𝑋0 probabilities
15: update coverage
16: else
17: 𝑠′ ← adversarial input
18: end if
19: end if
20: end for

After solving the LP problem and extracting the newly
generated test input 𝑠′ from values of input neurons:
𝑠′ = (𝑛1,1, . . . , 𝑛1,|𝑙1|), the algorithm will check two
properties of the new input 𝑠′. Does the 𝑠′ pass the oracle,
i.e., is it structurally close enough to 𝑠 w.r.t the 𝐿∞ norm?
If yes, then, does the 𝑠′ output the same classification
label of 𝑠, in other words, is 𝑓𝒩 (𝑠′) == 𝑓𝒩 (𝑠)? If yes,
then, the 𝑠′ is considered a valid input and added to
the test input 𝑋0 = 𝑋0∪ {𝑠′}. Otherwise, the 𝑠′ is
considered adversarial for𝒩 , as 𝑠′ is both deemed close
enough to 𝑠 from which it is derived, and it is not assigned
the same classification label as 𝑠 by𝒩 . Accordingly, the
probabilities in ℬ𝒩 ,𝑋0 are updated to account for the
new test 𝑠′ and then recalculate the coverage. The test
case generation continues if the test criteria obtained via
the new ℬ𝒩 ,𝑋0 is not yet satisfied.

Note that, the new test 𝑠′ may not actually improve
reported coverage if it is just "closer" to the target interval
than 𝑠 but does not hit it. The expectation is that, 𝑠′ will
later be selected to generate a new input 𝑠′′ according
to the same process, and eventually the target interval
might be reached.

https://github.com/TrustAI/DeepConcolic

5. Evaluation
This section reports on the experimental analysis con-
ducted to evaluate the performance of the suggested cov-
erage metrics and the usability of the weight in guiding
the adapted Concolic test case generation. The first set of
analyses examined the quality of the existing BN-based
feature metrics originated by Berthier et al. [2]. Then, the
efficiency of the developed feature weights was tested
and compared to the previous coverage results.The re-
search questions that were investigated are:

1. RQ1: Do existing BN-based testing metrics guar-
antee covering a model’s critical parts and direct-
ing their test generation algorithm to target the
most relevant features?

2. RQ2: Does the proposed coverage metrics deliver
a reliable testing measure in terms of reporting
the coverage prioritising the important internal
representation of the model?

5.1. Datasets and Models
Two trained CNN models have been trained for the exper-
iments: the first one targets the Fashion-MNIST classifi-
cation problem with 89.03% validation accuracy, and the
second model targets the CIFAR-10 dataset with 81.00%
validation accuracy. The models are reasonably sized,
with more than 10 layers, including blocks of convolu-
tional and max-pooling layers, followed by a series of
dense layers. Three different layers with various func-
tionality are chosen for the testing to fairly cover all types
of layers. For the two models, the considered layers are
the convolutional ReLU, 2d max pooling, and dense ReLU.
Note that our proposed testing approach is applicable
to any size of neural network since it is based on an ab-
stracted model that performs a dimension reduction on
any number of desired layers.

5.2. Experimental Setup
In the following experiments, the high-level criteria is
used to investigate how a test dataset exercises a set of
hidden features that has been learned from the training
dataset and internally represented by any layer of the
CNNs. Therefore, the reliance will be placed on the latent
features learned by the trained CNN models. Multiple
strategies for linear dimensionality reduction and dis-
cretisation of each feature component were applied to
construct various BN abstraction scheme. Two linear fea-
ture extraction techniques were selected: PCA and ICA,
with two to five numbers of extracted features for each
of the abstracted layers. The Kernel Density Estimation
(KDE) and uniform-based discretisation are considered,
with varying numbers of the uniform partitions bins that

are: one, three, and five. Finally, the extended Concolic
testing tool is run on both DNNs models with a maxi-
mum 100 iterations per run. Each run is initialised with
uniformly drawn test sets 𝑋0 of 10 and 100 correctly
classified inputs.

5.3. Results and Discussion
To analyse the testing outcomes, it is necessary to care-
fully select and decide how to split different categories.
Since the experiment objective is to demonstrate the in-
crease in coverage over the run time, the primary vari-
ables will be the initial coverage, the final coverage, and
the time it takes to obtain the final coverage. So, there
are two numerical parameters: run-time and coverage.
Other parameters are categorical: initial or final; ICA
or PCA; initial test sizes. Therefore, plotting the result
in space of run-time vs. coverage, and have one error
point representing each categorical class - initial PCA,
initial ICA, final PCA and final ICA, will illustrate the
desired intention. For each of those variables, the errors
are calculated as following: For the run-time, standard
normal error is expected, so the mean and one standard
deviation are calculated. This amounts to 68% interval
around the mean. For coverage, however, distribution is
neither normal nor symmetric. Therefore, median and
68% interval around it is computed, equivalent to the
previous case.

RQ1: Coverage Quality Analysis Using Existing
Metrics. The plots in Figure 3 show the results of a
standard test generation process, for two of our datasets.
First and second rows show BFCov and BFxCov metrics
respectively. Every column differs in the initial test size
𝑋0 ∈ {10, 100}. Each individual plot shows initial and
final coverage distributions (their medians and 68% re-
gions), for PCA and ICA methods. The interpretation is
that higher median line on coverage, better the median
coverage and smaller the errors.

The analysed outcomes illustrate that test generation
process consistently enlarges the median of the coverage,
which is expected. However, the spread of a distribution
stays similar, with a few exceptions. Larger number of
runs could improve the precision of results, however, we
believe the main reason for such a spread is that only
runs with higher initial coverage managed to improve.
The ones with low initial coverage were hard to improve
and stayed the same. It can be observed that the con-
stant 0.33333333333 initial coverage that appeared fre-
quently in all testing situations, did not increase in most
cases (note the minimum coverage -initial and final for
all charts is 0.33).

Considering the initial test size, we can see that larger
initial test size, i.e.,, 𝑋0 = 100 consistently results in
larger (sometime comparable) coverage. A larger 𝑋0

Figure 3: BN-based feature coverage plots show the overall distribution of initial and the respective final coverage of up to
100 iterations of Concolic test case generation. X-axis indicates the run time in seconds (initial and run time). The vertical lines
are the coverage, and the horizontal line on the coverage is the median.

gives the synthesis algorithm more leeway to find can-
didates from which to derive new inputs that hit tar-
get intervals that are not exercised by any test in 𝑋0.
For the PCA and ICA, there’s no apparent difference
between two methods, one exception for the Fashion-
MNIST, 𝑋0 = 100, BFCov metric, where PCA results in
much tighter distribution. As the same is not visible in
the BFxCov metric, the significance of this result cannot
be assessed. Both BFCov and BFxCov metric generally
agree with the level of improvement during the testing.
Considering runtime, the charts express that ICA method
is slightly more expensive in all situations.

Giving a deeper inspection to the all-finals coverage, a
query about 1.00 achieved coverage shows it only ob-
tained twice with the bfc criterion on the CIFAR-10
dataset. Both situations occurred with a 100 initial test
size using the ICA with two and three extracted fea-
tures per layer and the KDE discretisation method. This
implied a total of 254 combination traces out of 256
(64 per testing criteria per CNN model) did not satisfy
BFCov(ℬ𝒩 ,X) = 1 neither BFxCov(ℬ𝒩 ,X) = 1, after
100 iterations. Observe the final coverage in Figure 3,
with red and yellow colours, the average median final
coverage is around 0.87, which mean there are 0.13 of the
networks remain not tested. What if the not covered fea-
tures are the vital element of the neural network? There
are neither guarantees nor any information about the
untested elements. This issue will be evidenced in the
following experiments.

RQ2: Weight Features Coverage using Proposed
Metrics. The following experiments assess whether

the weight-based approach exhibits advantages in im-
proving the BN-based feature coverage. In particular, the
study examines whether the weight-based feature met-
rics will achieve higher coverage with less run time than
the original metrics.

Figure 4 shows the results for the weighted coverage,
in equivalent arrangement as the previous Figure 3. Com-
paring the two figures, as can be seen, the minimal start-
ing coverage in the majority of the plots is greater than
the value of 0.33, which occurred often in the previous
experiment. This expected increase in initial coverage
results from the fact that one coverage is being weighted
and the other is not. This small growth gives a greater
opportunity for the coverage to be improved during the
testing. An example from the weight coverage testing
experiment that gave 0.3895021093 initial coverage that
increased to 0.7261016195 final coverage with 51 new gen-
erated inputs. This is evident from the preceding finding,
which reported that starting testing with a higher initial
coverage has a better chance of increasing. Furthermore,
the initial coverage in all plots, except for the CIFAR-
10 with 𝑋0 = 100, are consistent with initial coverage
in Figure 3. That indicate most of features with higher
weights are not covered yet.

Considering the final coverage, the charts show a sig-
nificant improvement in the coverage for the WFCovTot
compared to the BFxCov for both datasets and PCA/ICA
methods. The reason for this is that the generation pro-
cess is led by the most important parts of the BN, which
have larger weights. A notable observation is that the
minimum final coverage increased considerably, which
indicates the higher-importance intervals were covered

Figure 4: Weight-based feature coverage evaluation with identical caption as Figure 3.

with the new input first. This trend is the same for all
coverages except for the F-MNIST model with 𝑋0 = 10.
Finally, considering runtime, weighted coverage takes
more time for the initial computation, which spend ad-
ditional time calculating feature weights. However, con-
vergence is reached slightly faster compared to the non-
weighted case. Improvement is of a few percent, thus not
so significant.

5.4. Further Results
The above experiments clearly demonstrated the effec-
tiveness of the weighted coverage compared with the ba-
sic coverage. Both metrics were able to generate new sets
of inputs that achieve high coverage. The plot in Figure 5
shows the growth of the generated test set with respect
to the testing iterations. Overall, between 10% to 60% of
iterations produce new test cases. However, the WFCov
and WFdCov enforced the higher coverage on the more
relevant training dataset features. Consider one testing
scenario illustrated in Table 1, with the bfc criterion, the
testing algorithm was able to generate 25 test inputs, of
which two hit desired intervals: the third interval of the
first feature extracted from max_pooling2d_1 layer and
the fourth interval of the second feature extracted from
the same layer. The coverage increased properly in the
same proportions. On the other hand, the wfc criterion
systemically picked out the interval from 𝑇𝑎𝑟_𝑖𝑛𝑣𝑎𝑙𝑠
set, and the algorithm was able to synthesise new tests
for three high-weight intervals before the 100 iterations
were over. Note that a full experiment document with
clear coverage numbers and feature weights presented in
a tabular manner will be uploaded to the arXiv database.

6. Conclusion
This paper introduced a weight-based semantic testing
approach that measures how well the DNN is tested by fo-
cusing on the important features of the DNN using its ab-
stracted Bayesian network. Investigating the high-level
feature weights revealed the network’s internal decision
mechanism and how it processes the input data. The
developed weighted feature metrics achieved higher test-
ing coverage than the original metrics, with an emphasis
on covering important learned representations. The test
generation algorithm is directed to synthesise new input
targeting features with higher importance scores. The
conducted experiments empirically validated the applica-
bility and effectiveness of the proposed weight metrics.
This serves as a strong argument in favour of increasing
the trustworthy performance of the DNN models.

References
[1] S. Yan, G. Tao, X. Liu, J. Zhai, S. Ma, L. Xu, X. Zhang,

Correlations between deep neural network model
coverage criteria and model quality, in: Proc. of the
28th ACM, 2020, pp. 775–787.

[2] N. Berthier, A. Alshareef, J. Sharp, S. Schewe,
X. Huang, Abstraction and symbolic execution of
deep neural networks with bayesian approximation
of hidden features, arXiv preprint arXiv:2103.03704
(2021).

[3] A. Alshareef, N. Berthier, S. Schewe, X. Huang,
Quantifying the importance of latent features in
neural networks, in: CEUR Workshop Proceedings,
volume 3087, 2022.

Figure 5: New produced test inputs of up to 100 iterations of test case generation targeting BN-based coverage and weight-
based coverage for the Fashion-MNIST model, for two sizes of initial test sets {10, 100}. Each raw specifies the used criterion:
bfc, bfdc, wfc, and wfdc. Green and blue lines respectively indicate runs with ICA and PCA feature extractions.

BN specification criterion init_cov hit_interval invl_weight progs_cov #gen𝑡𝑒𝑠𝑡𝑠

PCA-X10-N3-U5

bfc 0.8095 l:max f:0 v:2 — 0.8254 25 + 1 adv.
l:max f:1 v:3 — 0.8413

wfc 0.8409 l:max f:2 v:4 0.0237 0.8646 27 + 3 adv.
l:act f:0 v:0 0.0159 0.88
l:act f:0 v:2 0.0159 0.8964

Table 1
Improvement of testing coverage (up to 100 iterations) for one BN specification scenario (PCA-X10-N3-U5), conducted on the
Fashion-MNIST model. PCA indicates the feature extraction method, X10 indicates |𝑋0| size, N3 is the number of extracted
features per DNN’s layer, and U5 is the uniform discretisation with five bins. Two criteria are compared: bfc and wfc.

[4] Y. Bengio, I. Goodfellow, A. Courville, Deep learn-
ing, volume 1, MIT press Cambridge, USA, 2017.

[5] K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Auto-
mated whitebox testing of deep learning systems,
in: proc. of the 26th SOSP, 2017, pp. 1–18.

[6] Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: Automated
testing of deep-neural-network-driven autonomous
cars, in: Proc. of the 40th ICSE, 2018, pp. 303–314.

[7] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, J. Sun, Dlfuzz:
Differential fuzzing testing of deep learning sys-
tems, in: Proc. of the 2018 26th ACM Joint Meeting
on ESE Conference and the FSE, 2018, pp. 739–743.

[8] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill,
R. Ashmore, Testing deep neural networks, arXiv
preprint arXiv:1803.04792 (2018).

[9] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li,
C. Chen, T. Su, L. Li, Y. Liu, et al., Deepgauge:
Multi-granularity testing criteria for deep learning
systems, in: Proceedings of the 33rd ACM/IEEE
ICASE, 2018, pp. 120–131.

[10] C.-H. Cheng, C.-H. Huang, H. Yasuoka, Quanti-
tative projection coverage for testing ml-enabled
autonomous systems, in: Automated Technology
for Verification and Analysis: 16th IS, ATVA 2018,
Los Angeles, USA, October 7-10, 2018, Proceedings
16, Springer, 2018, pp. 126–142.

[11] M. Wicker, X. Huang, M. Kwiatkowska, Feature-
guided black-box safety testing of deep neural net-
works, in: Tools and Algorithms for the Construc-
tion and Analysis of Systems: 24th IC, TACAS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceed-
ings, Part I 24, Springer, 2018, pp. 408–426.

[12] J. Kim, R. Feldt, S. Yoo, Guiding deep learning
system testing using surprise adequacy, in: 2019
IEEE/ACM 41st ICSE, IEEE, 2019, pp. 1039–1049.

[13] Z. Li, X. Ma, C. Xu, C. Cao, Structural coverage
criteria for neural networks could be misleading, in:
2019 IEEE/ACM 41st ICSE: New Ideas and Emerging
Results (ICSE-NIER), IEEE, 2019, pp. 89–92.

[14] Y. Dong, P. Zhang, J. Wang, S. Liu, J. Sun, J. Hao,
X. Wang, L. Wang, J. S. Dong, D. Ting, There is
limited correlation between coverage and robust-
ness for deep neural networks, arXiv preprint
arXiv:1911.05904 (2019).

[15] S. Gerasimou, H. F. Eniser, A. Sen, A. Cakan,
Importance-driven deep learning system testing,
in: Proceedings of the ACM/IEEE 42nd ICSE, 2020,
pp. 702–713.

[16] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska,
D. Kroening, Concolic testing for deep neural net-
works, in: Proceedings of the 33rd ACM/IEEE
ICASE, 2018, pp. 109–119.

	1 Introduction
	2 Existing Testing Techniques
	2.1 Testing Metrics and Coverage Criteria
	2.2 Test Cases Generation Algorithms
	2.3 Test Cases Evaluation

	3 The BN Weighted Feature Model
	4 Weight-based Testing
	4.1 Weight Feature Metric
	4.2 Weight Feature Dependence Metric.
	4.3 Generalised Weighted Feature Cov.
	4.4 Coverage Criteria
	4.5 Concolic Test Generation

	5 Evaluation
	5.1 Datasets and Models
	5.2 Experimental Setup
	5.3 Results and Discussion
	5.4 Further Results

	6 Conclusion

