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Abstract
Unknown unknowns in machine learning signify data points outside the distribution of known data and constitute blindspots
of traditional machine learning models. As these data points typically involve rare and unexpected scenarios, the models
may make wrong predictions, potentially leading to catastrophic situations. Detecting “unknown unknowns" is essential
to ensure machine learning systems’ reliability and robustness and avoid unexpected failures in real-world safety-critical
applications. This paper proposes an Unsupervised Unknown Unknown Detection in Active Learning (U3DAL) to detect
“unknown unknowns" in a stream-based data setting using active learning data selection mechanisms that rely on uncertainty
and diversity. The effectiveness of the proposed approach is validated on the Imagenet-A dataset and across different metrics,
demonstrating that it outperforms existing methods for detecting “unknown unknowns".
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1. Introduction

1.1. Motivation
Thanks to its ability to make accurate predictions based
on patterns and trends in data, machine learning has
become a popular tool across various industries and
use cases. However, regarding the use of such models
in safety critical applications, there are some potential
downsides such as distribution shift, adversarial exam-
ples, lack of explainability, out of distribution examples,
anomalies, unknown unknowns and more. Unknown
unknowns refer to data points that are outside the dis-
tribution of known data and, therefore, represent blind
spots of traditional machine learning models[1]. These
data points typically involve rare and unexpected scenar-
ios, and if a model is not able to detect them, it may make
wrong predictions, potentially leading to catastrophic
situations. Model monitoring mechanisms such as purely
uncertainty based techniques fail in this regard, because
the model is highly confident about its misprediction.

Detecting unknown unknowns in machine learning
can be challenging because these are unanticipated issues
that have not been previously encountered or accounted
for in the design phase[2, 3, 4]. Some of the simpler, yet

The IJCAI-2023 AISafety and SafeRL Joint Workshop, August 21, 2023,
Macau, SAR, China
*Corresponding author.
$ Prajit.THAZHURAZHIKATH@cea.fr (P. T. Rajendran);
Huascar.Espinoza@kdt-ju.europa.eu (H. Espinoza);
agnes.delaborde@lne.fr (A. Delaborde); Chokri.MRAIDHA@cea.fr
(C. Mraidha)

© 2023 Copyright © 2023 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

not fully sufficient ways to deal with them are discussed
below:

• Anomaly detection: Anomalies maybe present
in the data, which may confuse the model to make
confident mispredictions[5]. During testing or de-
ployment, anomaly detectors could be deployed
to identify potentially anomalous inputs or states.
In training time, it is possible to analyze the data
thoroughly to determine biases and irregularities
so that these anomalies are not passed on to the
model. This is harder when we have no access
to what the true data is and what the anomaly is,
which is typical in stream-based data settings.

• Out-of-distribution detection: Machine learn-
ing models perform poorly when shown data
points which are very different from previously
seen data points[6]. Detecting potential out-of-
distribution samples that may not belong to any
known classes or categories could also help in
identifying potential unknown unknowns. Note
that out-of-distribution samples is a subset of un-
known unknowns, which includes all data points
which are high-confidence mispredictions by the
model.

• Adversarial Attack Detection: Adversarial in-
puts may confuse the model to make highly confi-
dent mispredictions lead to unknown unknowns
[7]. There are various techniques to tackle adver-
sarial exampes, which could also help in mitigat-
ing some unknown unknowns.

• Human-in-the-Loop: Humans are equipped
with conceptual knowledge and hence can iden-
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Figure 1: Block diagram of proposed approach

tify potentially dangerous situations with their
expert knowledge. If a human is present in the
loop, they can assist the model by covering its
blindspots, hence mitigating some of the un-
known unknowns [8].

• Robustness testing: If it is possible to test the
model under different scenarios, data distribu-
tions and perturbations, some dangers of un-
known unknowns could be mitigated. However,
in a stream-based active learning setting wherein
the data arrives one by one, it is not possible to
mitigate the danger of unknown unknowns in
advance; it is necessary to detect these unknown
unknowns in real time.

The above methods can assisting in identifying safety
issues to some extent, but it is not possible to detect or
account for all unknown unknowns.

To ensure the reliability and robustness of machine
learning systems, it is crucial to detect unknown un-
knowns. In this paper, we propose a new approach called
Unsupervised Unknown Unknown Detection in Active
Learning (U3DAL) to detect unknown unknowns in a
stream-based data setting using active learning data se-
lection mechanisms that rely on uncertainty and diversity
thresholds.

In active learning, a model is trained with a subset
of initial labeled data. Based on a predefined function
called the acquisition function, the remaining data points

are analyzed to determine which of them are complex or
interesting enough to be labelled by the human [9]. Some
of the common functions include uncertainty, which is
a measure of how confident the model is in its predic-
tions [10] and diversity, measuring how the distance of
the instances in the stream from those already in the
training set[11]. The acquisition function is designed
to select the most informative or diverse data points to
be labeled, within the constraint of the budget, without
compromising on performance[8].

Stream-based active learning is a type of active learn-
ing wherein the data arrives in a continuous stream [12].
Learning in real-time is essential in applications where
the data distribution is time variant. A challenging as-
pect of the stream-based learning approach is that it is
not possible to access future data points, and therefore
the decision of whether or not to choose a data point for
querying to the human oracle has to be made as the data
arrives.

In this paper, we aim to solve the problem of detecting
unknown unknowns in stream-based active learning set-
ting in an unsupervised manner without access to what
constitutes a "good" data point or "bad" data point before-
hand. As the model has no access to future data points
and needs to make a decision to query the current data
point one by one, it is interesting to determine which
points could be potentially unsafe as they arrive. Since
stream-based active learning methods have thresholds



for data selection by design, we hypothesize that these
thresholds can help us determine unknown unknown
data points. Moreover, through our empirical experi-
ments, we aim to explore the link between the unknown
unknown detection capability and the threshold levels.

Contributions: This paper proposes an unknown un-
known detection mechanism in a stream-based active
learning application, making use of the thresholds for
uncertainty and diversity. The contributions of this paper
are listed as follows:

• Defined a novel unknown unknown detection
algorithm which uses the thresholds for uncer-
tainty and diversity to determine low entropy and
high diversity points.

• Conducted an empirical study with the datasets
Mini Imagenet and Imagenet-A, comparing with
state-of-the-art approaches in anomaly detection.

• Studied the impact of the uncertainty and diver-
sity thresholds over several acquisition functions
in terms of the unknown unknown detection ca-
pability.

2. Related works
Detection of unknown unknowns and anomalies in ma-
chine learning is of paramount importance in the case of
deployment in safety critical applications. Several studies
have researched about effective techniques to tackle these
problems. Isolation Forest, proposed by Liu et al. [13], is
a powerful anomaly detection algorithm capable of effi-
ciently handling high-dimensional data, and is a popular
choice in the industry. It utilizes the principle of isolating
anomalies, making it potentially suitable for detecting
unknown unknowns efficiently. The Isolation Forest al-
gorithm constructs a random forest of isolation trees,
where anomalies are expected to have shorter average
path lengths. Studies such as Liu et al. [13] have demon-
strated the effectiveness of Isolation Forest in identifying
anomalies in diverse applications, including network in-
trusion detection and fraud detection. Isolation forest is
marked by its ability to handle high-dimensional data
and its resistance to outliers and this makes it a popular
choice in anomaly detection tasks.

Local Outlier Factor (LOF), introduced by Breunig et al.
[14] is another widely studied anomaly detection tech-
nique. LOF measures the degree of local deviation of
a data point with respect to its neighboring points, en-
abling it to identify anomalies based on the concept of
differing densities. Various studies have focussed the
application of LOF in anomaly detection tasks such as Pa-
padimitriou et al. [15], where LOF was applied for outlier
detection in sensor networks. Schubert et al. [16] used
LOF for detecting anomalies in spatial databases. LOF

has been shown to be effective in various domains, in-
cluding cybersecurity and finance, where the detection of
unknown unknowns is crucial for identifying emerging
threats or fraud.

Apart from Isolation Forest and LOF, several other
techniques have also been introduced for anomaly detec-
tion. Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm is one such algorithm
proposed by Ester et al. [17]. DBSCAN groups together
densely connected data points and identifies outliers as
points that do not belong to any cluster. Studies such as
Tang et al. [18] have applied DBSCAN for anomaly detec-
tion in computer networks, reporting its ability to detect
unknown unknowns. In some works such as Hodge and
Austin [19] proposed an ensemble approach that com-
bines Isolation Forest, LOF, and other techniques to en-
hance the overall detection performance, ensemble-based
methods such as the combination of multiple anomaly
detection algorithms, have been explored.

By making use of intrinsic data characteristics, unsu-
pervised anomaly detection methods has the potential to
be applied in various domains such as fraud detection,
cyber security and safety critical applications, where the
identification of unknown unknowns is of paramount im-
portance to improve safety. In this work, U3DAL, a novel
unsupervised anomaly detection method is proposed.

3. U3DAL Method
Figure 2 demonstrates the quadrant of knowledge in ma-
chine learning [8]. In the top left are the known knowns.
These are the data points which the model is confident
about, and makes correct predictions. Therefore these
data points have a low predictive entropy and are familiar,
hence are not too distant from what is already seen by the
model. Here, we trust the model to make the correct deci-
sions. Known unknowns are data points which the model
is underconfident about and makes wrong predictions.
The dangerous situations arising from these data points
can be captured easily using uncertainty based monitors.
Here, we know that the model should not be trusted.
Unknown knowns are human blindspots, such as latent
features, but they are rich features in the model’s per-
spective and facilitates better prediction capabilities. The
last category in the quadrant consists of the unknown
unknowns. These are the data points which the model
makes mispredictions with a high confidence. Therefore
they are categorized by a low predictive entropy (high
confidence) and high diversity (different from data seen
previously) score.

Figure 1 shows the block diagram of the proposed ap-
proach. As in a typical stream-based learning setting,
there is a prediction model M trained on the initially
available labelled data. The data stream is passed into the



prediction model, and the acquisition function decides
whether the data point should be selected to be labelled
by the human annotator or not. This selection is based on
a preset criterion such as uncertainty or threshold, and
requires thresholds for each of the criteria. Data points
exceeding the threshold are passed on to the annotator to
provide labels. The human oracle can only provide labels
until the budget B is exhausted. The label and data point
are passed to a stream buffer. When the buffer is full, the
data is appended to the previously used training data and
the prediction model M is re-trained. This process con-
tinues till either the budget B runs out, the data stream D
stops or the prediction model reaches a sufficient level of
performance. After each training of the model, it is pos-
sible for the model to be used as an unknown unknown
detector as well, apart from its original functionality of
classification, regression etc. This is the core idea of
U3DAL- making use of the thresholds U, D and the pre-
diction model M to determine whether a given data point
is an unknown unknown data point or not. If the nor-
malized (min-max, for instance) predictive entropy of a
given data point is lower than the threshold U, and if its
distance score is greater than the threshold D, U3DAL
classifies that point as an unknown unknown. To eval-
uate the efficacy of this approach, U3DAL is compared
with other state of the art approaches such as Isolation
forest and LOF on the same anomaly set (all data points
of which are curated to be very complex anti-examples)
to compare how many of the unknown unknowns are de-
tected accurately. Note that the approach is unsupervised
because the model is not provided any prior information
regarding which samples constitute unknown unknowns.
The labelling that takes place in this pipeline refers to the
human oracle providing class labels to the correspond-
ing data points, which only influences the classification
performance of the model on the trained task of classi-
fication and not on unknown unknown detection. The
unknown unknown detection model is based on the un-
certainty and diversity thresholds of selection and are
not dependent on the class labels provided by the human
oracle.

In U3DAL, the measurement of uncertainty is entropy,
which is a well-established measure in the active learning
domain. Predictive entropy is a measure of the spread of
the probability distribution over all the possible classes.
High entropy indicates increased randomness, which
means that the model is unsure about the true class,
whereas low entropy indicates that the model is confident
in its prediction, regardless of its accuracy. High entropy
data points are usually close to the decision boundary and
therefore can be categorized as the known unknowns of
the model. Identifying these data points which are close
to the boundary and labelling them selectively results in
an improved performance without the need to label all
instances.

Figure 2: Image of a ladybug from the Mini Imagenet dataset

Figure 3: Confusing image of a ladybug from the Imagenet-A
dataset

The diversity measurement is performed using the Z-
score, which is a distance metric which considers the data
distribution. The Z-score distance measures the distance
of a data point from the centroid of the instances from the
training set. A high Z-score indicates that the datapoint
is not similar to the training data points seen by the
model, whereas a low Z-score distance indicates that the
data point is similar to those seen before[20]. Every time
the model is re-trained, the mean and standard deviation
vectors of the distribution of all data points of the training
set encountered thus far are calculated. These vectors are
then used to calculate the distance of novel data points
from the distribution of the data previously seen. The
Z-score of a value x with mean 𝜇 and standard deviation
𝜎 is defined as:

𝑧 =
𝑥− 𝜇

𝜎
(1)



Table 1
Classification accuracy over the train set and anomaly set for different acquisition functions (15-class problem)

No. of data points Random Uncertainty Diversity
used for training Validation set Anomaly set Validation set Anomaly set Validation set Anomaly set
1000 0.261 0.052 0.261 0.052 0.261 0.052
2000 0.387 0.085 0.417 0.076 0.385 0.088
3000 0.449 0.105 0.432 0.081 0.404 0.096
4000 0.516 0.118 0.506 0.098 0.428 0.113

Figure 4: Link between unknown unknowns, predictive en-
tropy and feature diversity

4. Evaluation
This section introduces the test methodology used in this
work and presents the experimental results.

4.1. Test methodology
The proposed algorithm was tested on the classification
problem on the Imagenet-A dataset, which is a challeng-
ing dataset that causes machine learning model perfor-
mance to degrade substantially. The authors of [21] re-
port that on this dataset, well known CNN models ex-
hibit an accuracy drop of approximately 90%. The data
points are chosen to be those with limited spurious cues,
collected with a simple adversarial filtration technique.
The Imagenet-A dataset contains images belonging to
fifteen classes; 759 of them constitute the anomaly set in
this work. Each image is resized to the dimension 224 x
224 x 3, which is a standard input shape for most well
known CNN models used in transfer learning. Note that
the anomaly set shall not be seen by the model at any
stage of training, and will only be used as the dataset

Algorithm 1 U3DAL algorithm
Require: Data stream: 𝑑 = 𝑥0, 𝑥1, ...𝑥𝑛,

Budget: 𝐵, Uncertainty selection threshold: 𝑈 ∈ [0, 1],
Diversity selection threshold: 𝐷 ∈ [0, 1], Stream
buffer: 𝑆, Current uncertainty range: 𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥,
Current diversity range: 𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥, Training vec-
tor mean: 𝜇, Training vector standard deviation: 𝜎,
Classification model: 𝑀 , trained on initially labeled
data
Initialize 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = 0
while 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 < 𝐵 do

𝐸𝑛𝑜𝑟𝑚← (𝐸−𝐸𝑚𝑖𝑛)
(𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛)

𝐷𝑛𝑜𝑟𝑚← (𝐷−𝐷𝑚𝑖𝑛)
(𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛)

if selected by acquisition function then
append 𝑑𝑖𝑛𝑑𝑒𝑥 to stream buffer 𝑆
𝑙𝑎𝑏𝑒𝑙𝑒𝑑← 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 + 1

end if
if stream buffer 𝑆 full then

Re-train model, empty buffer
Initialize 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑜𝑢𝑛𝑡 = 0
for data point in anomaly set do

if 𝐸𝑛𝑜𝑟𝑚 < 𝑈 and 𝐷𝑛𝑜𝑟𝑚 > 𝐷 then
𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑜𝑢𝑛𝑡+ = 1

end if
end for

end if
end while
Output: 𝑎𝑛𝑜𝑚𝑎𝑙𝑦𝐶𝑜𝑢𝑛𝑡: Number of detected un-
known unknown data samples in anomaly set

to assess the number of anomalies detected after each
round of training. The training set for the classification
task consists of images from the same fifteen classes,
taken from the Mini Imagenet dataset [22]. These im-
ages are also resized to the dimension 224 x 224 x 3 and
are 9000 in number, 600 from each class. 1000 images
are selected to be the initial labelled points in the active
learning pipeline, and a further 1000 points are set aside
to be the validation set. Data points from Mini Imagenet
dataset, fed in a stream to simulate a stream-based active
learning setting, are used to train the model to perform
image classification. Unknown unknown detection is
not the trained task of the model, and is instead accom-



plished using the selection thresholds for entropy and
diversity achieved during the training process. Note that
the Imagenet-A data samples are the anomalous samples
used solely for testing the performance of the unknown
unknown detection model and are not seen by the model
during test time. Figures 2 and 3 demonstrate how the
Mini Imagenet dataset consists of normal data points
use for training whereas Imagenet-A consists of more
complex and confusing data points.

Since the goal of the work is to evaluate unknown un-
known detection in a stream-based setting, the remaining
data points are fed into the active learning pipeline one
by one. The order of the data points to be fed to the
pipeline is shuffled, but the random seed is fixed in order
to facilitate comparison between different settings. In
the following experiments, the maximum budget 𝐵 is set
to be 4000 data points, meaning that at most 4000 data
points out of the dataset are fed to the human oracle for
labeling.

Transfer learning based on the Mobilenet backbone
[23] is used as the prediction model. As the onus of the
paper is on unknown unknown detection, multiple archi-
tectures were not tested for the prediction model. How-
ever, as the proposed approach is model agnostic, there
are no limitations to apply the same for other model archi-
tectures. The architecture used is: Mobilenet backbone +
GlobalAveragePooling2D + Dense(1024) + Dense(512) +
Dense(100) + Dense(15). The penultimate fully connected
(Dense) layer acts as the base to extract the intermediate
features, in order to compute the diversity score, as well
as input to the baselines of Local Outlier Factor (LOF)[14]
and Isolation forest[13]. The other parameters are as fol-
lows: 𝐵 = 4000, Buffer size = 1000. Since the 15-class
classification problem in Mini Imagenet included a total
of 9000 images, the total budget 𝐵 was set to be 4000
(<50% of all images) to simulate a realistic active learning
setting with limited time and resources. The buffer size
was selected to be 1000 to ensure that the model is not
re-trained too often, to follow time constraints of train-
ing. The Mobilenet backbone was selected because it is
a very popular CNN model used for image classification
tasks. Ablation studies are possible with different archi-
tectures, budget values, buffer sizes and thresholds and
this is deferred to future work.

The algorithms used for unknown unknown detection
in this work are as follows:

• Local Outlier Factor (Baseline): Identifies
anomalies with the concept that outliers have
different densities compared to their neighboring
data points.

• Isolation forest (Baseline): Measures the
anomaly score based on the average path length
required to isolate instances.

• U3DAL (Our approach): Detects anomalous

points as those having a low entropy and high
diversity, in a stream-based setting.

LOF is a flexible algorithm, and it can handle different
types of data and adapt to various data distributions. It
is particularly useful in situations where the normal data
points exhibit complex patterns. Isolation forest is effi-
cient and is capable of dealing with high-dimensional
data, and is thus useful for detecting anomalies in var-
ious applications. The above algorithms are extremely
popular in the world of anomaly detection, and they form
a good baseline to evaluate the efficacy of the proposed
method because of their extensive use in the industry.

Threshold D=0.5 D=0.6 D=0.7
U=0.5 91 69 56
U=0.6 116 85 68
U=0.7 122 88 70

Table 2
Variation of number of unknown unknown data points de-
tected as a function of the uncertainty threshold (U) and
diversity threshold (D), acquisition function = Random

Threshold D=0.5 D=0.6 D=0.7
U=0.5 84 62 46
U=0.6 96 69 52
U=0.7 108 77 58

Table 3
Variation of number of unknown unknown data points de-
tected as a function of the uncertainty threshold (U) and
diversity threshold (D), acquisition function = Uncertainty

Threshold D=0.5 D=0.6 D=0.7
U=0.5 90 69 55
U=0.6 100 76 57
U=0.7 104 78 59

Table 4
Variation of number of unknown unknown data points de-
tected as a function of the uncertainty threshold (U) and
diversity threshold (D), acquisition function = Diversity

The proposed method is evaluated with the following
acquisition functions:

• Random selection: Data points from the stream
are selected at random to be queried to the anno-
tator.

• Entropy/uncertainty-based selection: Data
points are selected to be labeled if they have a
predictive entropy higher than a preset threshold.

• Distance/diversity-based selection: Data
points are selected to be labeled if they have a
Z-score higher than a preset threshold.



Table 5
Comparison of the number of unknown unknown data points detected by LOF, Isolation forest, U3DAL

No. of data points Random Uncertainty Diversity
used for training IF LOF U3DAL IF LOF U3DAL IF LOF U3DAL
1000 4 17 35 5 18 55 15 17 48
2000 9 29 59 22 24 58 30 26 66
3000 16 30 82 27 29 93 37 31 82
4000 23 33 122 38 35 108 44 44 104

Uncertainty and diversity based methods are popular
acquisition functions in active learning applications. In
uncertainty-based techniques, the focus is on selecting in-
stances that the model is unsure about- dealing with the
model blindspots, whereas diversity-based techniques
aim to maximize the diversity of the data points in the
training set- dealing with the data blindspots. Both ap-
proaches possess different advantages, and are popular
choices because they improve the robustness and gener-
alization of the model. Random selection on the other
hand is a common baseline acquisition function in active
learning.

4.2. Experimental results
To demonstrate that the anomaly set is difficult for the
prediction model, we evaluate the classification accuracy
of the prediction model on the anomaly set over multiple
rounds of active learning. Table 1 shows the classifica-
tion accuracy on the anomaly set for each acquisition
function. Note that the initial 1000 data points are the
same in each of the acquisition functions. Subsequently,
due to the differing data selection mechanism, the pre-
diction performance differs for each acquisition function.
It can be seen that the classification accuracy over the
anomaly set is significantly lower than that for the val-
idation set. This illustrates that the samples from the
anomaly set are vastly more challenging than the ones
used for training and validation. It is an expected re-
sult because Imagenet-A was curated to be a challenging
dataset. Since the model confidently mispredicts the data
points, as expected Imagenet-A consists of unknown un-
known data points. Thus, in the following experiments,
the goal is to evaluate which algorithm can determine the
unknown unknown data points contained in the anomaly
set with a higher accuracy score.

In the first experiment, we compare the variation of
the anomaly detection capability of U3DAL for various
uncertainty and diversity thresholds. Note that in U3DAL
unknown unknown data points are defined to be the low
uncertainty-high diversity data points. This means that
the data points with an entropy lower than the current
threshold and with a diversity score higher than the cur-
rent threshold are predicted to be the unknown unknown

data points. Tables 2,3, and 4 illustrate how the uncer-
tainty and diversity thresholds influence the number of
unknown unknowns correctly detected for each acqui-
sition function. Combinations of 0.5, 0.6 and 0.7 were
tested for both the uncertainty and diversity thresholds.
It can be observed that the best configuration for this
anomaly set is U=0.7 and D=0.5. This implies that only
data points with a normalized prediction entropy of lower
than 0.7 and those with a normalized Z-score greater than
0.5 are classified as unknown unknown data points. This
configuration is shown to detect the highest number of
unknown unknown data points. The variation amongst
the acquisition functions seem to be insignificant for the
most part.

In the second experiment, we stack up the baseline
outlier detection methods of LOF and Isolation forest
against U3DAL in this use case. We observed that in
the stream-based setting with a challenging anomaly set,
U3DAL outperformed both LOF and Isolation forest in
detecting the unknown unknown data points contained
in the anomaly set. Table 5 reports the number of un-
known unknown data points detected by the methods
LOF, Isolation forest and the proposed method U3DAL. It
can be seen that U3DAL, making use of the uncertainty
and diversity thresholds, is able to detect more number
of unknown unknowns than the baseline methods. As
the active learning cycle proceeds and more data points
are labelled by the oracle, we can see an improvement in
the unknown unknown detection in all of the algorithms.
This is expected because as the model is trained further,
the predictive performance (influencing the uncertainty
score) and the richness of the features (influencing the
diversity score) improves drastically. As the model also
comes across more data points, it learns the distribu-
tion of the data better and when the normalized entropy
scores and diversity scores are computed, the thresholds
become a better filter for detecting unknown unknowns.
In an adaptive threshold setting wherein the threshold
changes to adapt for data distribution shift, the perfor-
mance could be expected to be even better, although it is
out of the scope of this work.



5. Conclusion
In this paper, we proposed a novel method titled U3DAL
to detect unknown unknowns in an unsupervised manner
in a stream-based active learning setting. In order to eval-
uate the effectiveness of our approach, we conducted ex-
periments on the Imagenet-A dataset, and compared the
performance of our approach with existing methods for
detecting unknown unknowns. Our results demonstrate
that U3DAL outperforms existing methods across differ-
ent metrics. By detecting unknown unknowns in real-
time, our approach can help prevent unexpected failures
and ensure the safety and reliability of machine learning
systems in real-world safety-critical applications.
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