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Abstract
Failure detection (FD) in AI systems is a crucial safeguard for the deployment for safety-critical tasks. The common evaluation
method of FD performance is the Risk-coverage (RC) curve, which reveals the trade-off between the data coverage rate and
the performance on accepted data. One common way to quantify the RC curve by calculating the area under the RC curve.
However, this metric does not inform on how suited any method is for FD, or what the optimal coverage rate should be. As FD
aims to achieve higher performance with fewer data discarded, evaluating with partial coverage excluding the most uncertain
samples is more intuitive and meaningful than full coverage. In addition, there is an optimal point in the coverage where the
model could achieve ideal performance theoretically. We propose the Excess Area Under the Optimal RC Curve (E-AUoptRC),
with the area in coverage from the optimal point to the full coverage. Further, the model performance at this optimal point
can represent both model learning ability and calibration. We propose it as the Trust Index (TI), a complementary evaluation
metric to the overall model accuracy. We report extensive experiments on three benchmark image datasets with ten variants
of transformer and CNN models. Our results show that our proposed methods can better reflect the model trustworthiness
than existing evaluation metrics. We further observe that the model with high overall accuracy does not always yield the
high TI, which indicates the necessity of the proposed Trust Index as a complementary metric to the model overall accuracy.
The code are available at https://github.com/AoShuang92/optimal_risk.
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1. Introduction
The deployment of deep neural networks (DNNs) in
safety-critical applications such as autonomous driv-
ing [1] and medical diagnosing [2, 3] requires high trust-
worthiness and reliability, as mistakes can be expensive
and raise serious concerns. To reduce mispredictions,
a model should be equipped with a safeguard for auto-
matic failure detection [4, 5, 6] or a reject option [7],
where samples with high uncertainty or low confidence
can be discarded or sent to an expert or the third sys-
tem. Specifically, failure detection (FD) determines the
portion of coverage over the entire dataset deemed to
be safe predictions and discards data using a threshold
on model confidence or uncertainty. If the confidence or
uncertainty is below or above the threshold, the model re-
jects samples and defers them to human experts or third
systems to re-evaluate. Otherwise, the model considers
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these samples in a coverage range for safe and trusted
prediction. FD is beneficial for gaining higher trust from
users and for time and cost savings by only requiring
human interventions for a small percentage of data.

One of the criteria for FD is for the model to achieve
better performance with fewer instances removed; hence
the evaluation is about the trade-off between the cover-
age of data and model accuracy or risk (error). Popular
visualisation methods of FD performance such as risk-
coverage (RC) curve [8] and accuracy-rejection curves
(ARCs) [9, 10] plot model risk or accuracy against cov-
erage of data. However, the quantification of FD perfor-
mance is a less explored domain. Recent studies attempt
to quantify FD by using the area under the RC-curve
(AURC) [11] and the area under the ARCs [10]. Never-
theless, both methods include the full coverage of data,
ignoring the selection of thresholds and the FD perfor-
mance under and above thresholds.

Theoretically, a perfectly calibrated model should
achieve the ideal performance (i.e., accuracy of 1) after re-
moving the most uncertain samples in numbers equal to
the error percentage. In other words, the perfect perfor-
mance takes place hypothetically by covering the portion
of samples equivalent to model accuracy. Therefore, the
model risk is supposed to be 0 at this very coverage point,
which is denoted as the optimal point in work on uncer-
tainty estimation [12] as shown in Figure 1. A perfectly
calibrated model should not contain any risk before the
optimal point, whereas the risk increases monotonically
until the model error after the optimal point. This risk
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is naturally inherited from the model as DNNs cannot
obtain the perfect performance in practice, thus, should
perhaps be discounted in FD evaluations. Based on this
hypothesis, Geifman et.al [12] exclude the area under the
optimal risk (grey part in Figure 1) for the AURC and pro-
pose the metric of Excess-AURC (E-AURC) (yellow part
in Figure 1). However, this still evaluates FD based on
the whole dataset even though some data are supposed
to be safe and trusted predictions.

As the percentage of rejected samples is generally cus-
tomised during deployment of a model, there is a lack of
common ground for a fair comparison of failure detection
among models with varying accuracies. In addition, most
of the existing evaluation metrics (i.e., AURC, E-AURC)
measure the entire area under the curve, which cannot
reveal the FD performance for a specific coverage. For
example, the performance of a model at very low cov-
erage is not of interest to real applications. To address
the above issues, we propose the Excess area under the
optimal RC curve (E-AUoptRC) as an alternative metric
for failure detection that considers the risk in the range
from the optimal point to the full coverage (shown as
pink area in Figure 2). We emphasise this area for reasons
as follows: (1) with a perfectly calibrated model, samples
falling into the coverage from 0 to optimal point (yellow
area in Figure 2) are already highly trusted ones; (2) we
argue that it is more important to compare models in the
region that errors are made, for instance, samples in the
E-AUoptRC include the high uncertainty ones, and the
corresponding risk here should be primarily utilised to
determine the trustworthiness of the model. (3) Further-
more, with our precise method of FD quantification, a
model with lower accuracy may yield higher trustworthi-
ness and vice versa, capturing the intuition that a model
with higher accuracy may not be the most trusted one.
Finally, we propose a Trust Index (TI) as a novel evalua-
tion metric, which measures the accuracy of the model at
the optimal point, mimics the behaviour of E-AUoptRC,
and is easier to compute. The Trust Index combines the
performance and calibration of the model into a single
metric. A higher TI suggests better model performance
and calibration and higher trust and reliability of the
model predictions.

Our contributions and findings are summarized as be-
low:

1. We propose the E-AUoptRC to quantify the RC
curve with the coverage from the optimal point
to the full coverage.

2. We propose Trust Index as an evaluation metric.
3. With extensive experiments and observations we

find that: (i) a model with higher AURC or E-
AURC can obtain lower E-AUoptRC ; (ii) A model
with a high overall accuracy does not necessar-
ily yield higher Trust Index; (iii) Our proposed

methods can better evaluate failure detection for
model trustworthiness.

2. Related Work

2.1. Failure Detection
In the deployment of safety-critical scenarios, DNNs tend
to fail silently by providing high-confidence in woefully
incorrect predictions, which makes the uncertainty es-
timation a great concern to AI safety [13, 14]. These
high-confidence predictions are often produced by the
softmax function as it is computed with a fast-growing
exponential function. It is clearly necessary to identify
potentially wrong predictions. Hendrycks et al. [4] pro-
posed to detect misclassified samples by enlarging the
softmax probabilities between correct and incorrect sam-
ples. Meanwhile, utilizing true class probability instead
of maximum class probability has been shown to be more
reliable in the context of failure detection [5]. In addition,
training the model with data that can reflect the com-
plexity of real-world scenario can improve the reliability
in prediction, such as curating diabetic retinopathy for
training Bayesian DNNs [6].

To make the model more cautious when it is uncertain,
a rejection option allows it to abstain from making a pre-
diction when it is likely to be a mistake. Geifman and
El-Yaniv [15] designed a selective classifier that allows
users to set a desired risk level. They further proposed
a selective network with a shared classifier of dedicated
prediction and ambiguity rejection layer [16]. What’s
more, Geifman et.al [12] developed a selective mecha-
nism by using early snapshots for samples with high
confidence in model training.

Besides training classifiers with a rejection option,
studies also shed light on post-hoc approaches for fail-
ure detection. Setting thresholds based on confidence or
uncertainty ranking of samples is widely used to distin-
guish correct and incorrect predictions, such as AI for
breast cancer screening [17] and decision-making mod-
els for low-power Internet of Things (IoT) devices [18].
The threshold needs to be tuned as its value trades off
the predictor’s coverage rate and the performance on
accepted examples [8, 7]. In our work, we will provide
an insightful reference for such threshold selection.

2.2. Evaluation Metrics
The quantification of failure detection (FD) performance
shares the same characteristic as selective prediction (SP).
FD focuses on the model performance after rejecting
worst predicted samples under coverage, while SP high-
lights the model accuracy or error with partial input.
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Figure 1: Risk-coverage curve for the ImageNet dataset with SwinTran model. The entire AURC is the yellow plus grey area,
with the E-AURC shown as yellow area and the area under the optimal risk (AUOR) as the optimal-risk area. The optimal-risk
point is at the coverage of model accuracy (in this case, 0.84).

More broadly, they are techniques for uncertainty esti-
mation [11]. Therefore, the evaluation metrics for SP
should also be applicable for FD, such as Area Under the
Receiver Operating Characteristic curve (AUROC) [19]
and Area Under the Precision-Recall Curve (AUPR) [20].
Despite the wide use of these metrics for such threshold-
independent performance evaluation [21, 22, 17], [11]
point out that AUROC and AUPR can cause misleading
and meaningless results for classification tasks with soft-
max function. The main reason lies in the assumption
that the numbers of correct and wrong predictions are the
same. To mitigate this issue, Risk-Coverage (RC) curve
is applied for SP in terms of the multi-class classification
tasks[12, 11, 15, 23]. Hence, this paper utilises the RC
curve for the following experiments and analysis.

2.3. Model Calibration
To measure the performance of calibration methods, the
Expected Calibration Error (ECE) [24] was proposed and
is widely applied in various tasks, such as image clas-
sification [12, 23] and sentiment analysis [25, 26]. ECE
splits the data into bins , calculates for each bin the av-
erage confidence and average accuracy, and averages
over all bins. To alleviate the miscalibration issue for
DNNs, calibration techniques have been proposed and
then widely applied. Label Smoothing (LS) [27] reduces
over-confidence by computing the cross-entropy loss
with uniformly squeezed labels instead of one-hot labels.
Extensions of LS such as Margin-based Label Smooth-
ing (MBLS) [28] further provides a unifying constrained-
optimization perspective of calibration losses. Focal Loss
(FL) [29] adds a focusing factor to the standard cross-
entropy loss to deal with an imbalanced dataset. Recent
work on sample-dependent focal loss (FLSD) [30] inves-
tigated the effect of the loss on the training data and

achieved impressive performance in calibration. How-
ever, it is arguable to what extent calibration techniques
can improve the model trustworthiness [23]. Our work
will provide a more comprehensive evaluation method
regarding this issue.

3. Methodology
The issue we address in this paper is the quantification
of the failure detection performance for supervised clas-
sification models with the utilization of softmax function.
Let 𝑋 be the input space and 𝑌 = {1, 2, 3, . . . , 𝑘} be
the set of class labels. Given 𝐷(𝑋,𝑌 ) as the data distri-
bution over 𝑋 × 𝑌 , a classifier is the function 𝑓 where
the error (true risk) 𝑒𝑟𝑟 and accuracy 𝑎𝑐𝑐 is obtained
by 𝑓 : 𝑋 → 𝑌 . For each input 𝑥 ∈ 𝑋 and its corre-
sponding true label 𝑦, the probability distribution of the
model prediction is 𝑃 (𝑦 | 𝑥), and the predicted label is
𝑦 = argmax𝑦∈𝑌 𝑃 (𝑦 | 𝑥).

3.1. Problem Setting
In the Risk-Coverage (RC) curve, the coverage 𝑐 is the
percentage of covered set over the entire data, which is
written as 𝑐 = |𝑋𝑐|

|𝑋| . For each coverage, the risk is the
corresponding error in model prediction. A model with
better FD performance should obtain less risk/ higher
accuracy with fewer samples rejected.

To efficiently quantify the FD performance of a model,
we first need to construct the reject function ℛ to decide
whether to reject samples or not under different thresh-
olds. By adopting settings in [31, 5, 12], we utilize the
predictive uncertainty 𝑢 to rank samples. A sample with
low uncertainty indicates high confidence and better re-
liability of the model prediction; whereas a sample with
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Figure 2: Our proposed method in the RC-curve for ImageNet with SwinTran model. Our proposed E-AUoptRC is shown as
the pink area while the E-AURC is the yellow plus pink area. The empirical optimal risk shows the real performance at the
optimal point.

high 𝑢 is more likely to be rejected when narrowing the
coverage. Given a fixed or adaptive threshold 𝑡, the reject
function ℛ is written as follows:

ℛ(𝑥) =

{︃
cover, 𝑥 ∈ 𝑋𝑐, if 𝑢 <= 𝑡

reject, 𝑥 ∈ 𝑋𝑟, if 𝑢 > 𝑡
(1)

where 𝑋𝑐 is the covered input set and 𝑋𝑟 is the reject
set.

There are two types of risks namely empirical risk and
optimal risk [12]. The empirical risk 𝑒𝑟𝑖𝑠𝑘 is the pre-
dicted error of the model under different coverage, as
shown in the solid green line in Figure 1. As the aleatory
uncertainty inherits from the data, some risks inevitably
exist in certain coverage regardless of the model perfor-
mance. For a model with perfect uncertainty estimation,
if we discard the error percentage of high uncertainty
samples, the risk in the remaining coverage input should
be zero. This specific coverage point of 1− 𝑒𝑟𝑟 (or 𝑎𝑐𝑐)
was proposed by [12] as the optimal point 𝑜𝑝 and shown
as the red star in Figure 1. Specifically, the risk between
coverage of 𝑜𝑝 to 1 monotonically increases until the
error of the model. For optimal calibration, the above
risks are called optimal risk 𝑜𝑝𝑡𝑟𝑖𝑠𝑘 illustrated as the
blue dotted line in the figure. For example, the model
error in the figure is 0.16 and the 𝑜𝑝 is 0.84. Therefore,
the optimal risk 𝑜𝑝𝑡𝑟𝑖𝑠𝑘 under coverage 0 to 𝑜𝑝 is sup-
posed to be 0; while it increases from 0 to 0.16 under 𝑜𝑝
to full coverage. It is worth-noticing that the monotonic
increment of 𝑜𝑝𝑡𝑟𝑖𝑠𝑘 is not exactly in the linear way.

Both 𝑒𝑟𝑖𝑠𝑘 and 𝑜𝑝𝑡𝑟𝑖𝑠𝑘 can be calculated by Area
Under the RC-curve (AURC) [12, 11], named 𝑒𝑚𝑝𝐴𝑈𝑅𝐶
(yellow plus grey area in Figure 1) and 𝐴𝑈𝑂𝑅 (grey
area in Figure 1) respectively. The difference between
𝑒𝑚𝑝𝐴𝑈𝑅𝐶 and 𝐴𝑈𝑂𝑅 is the real FD area, shown as
the yellow area in Figure 1. [12] propose this specific

area as the Excess-AURC (E-AURC), where E-AURC =
𝑒𝑚𝑝𝐴𝑈𝑅𝐶 −𝐴𝑈𝑂𝑅.

3.2. E-AUoptRC
The E-AURC reveals the total risk in coverage range from
0 to 1. However, in real-world applications, the coverage
is mainly customised due to specific deployment require-
ments, making it challenging to compare the failure de-
tection (FD) performance for various models. In addition,
the E-AURC cannot reveal the failure detection (FD) per-
formance in a specific coverage range. To mitigate the
above issues, we propose E-AUoptRC with the coverage
from 𝑜𝑝 to 1 (E-AUoptRC, shown as pink in Figure 2).
We emphasise the E-AUoptRC for the following reasons:
(1) it is more practical for deployment, as it is unlikely
to discard more than half of data in applications; (2) the
smaller E-AUoptRC indicates more samples with high
uncertainty are successfully removed so that the model
prediction on the remaining data will be more reliable.

3.3. Trust Index
Model accuracy 𝑎𝑐𝑐 should track the confidence of the
model prediction. For example, a model with 80% ac-
curacy suggests 80% confidence in its own predictions,
which also defines the perfect confidence score in cali-
bration. As the risk at the optimal point (𝑜𝑝) is supposed
to be 0, the accuracy at 𝑜𝑝 should be 1, indicating the
prediction’s highest model confidence and trustworthi-
ness. In other words, after removing 𝑒𝑟𝑟% data with
high uncertainty, the correctly predicted samples in the
remaining data are most trusted. The accuracy at 𝑜𝑝 also
reveals the model calibration, as the discarded 𝑒𝑟𝑟% data
can be misclassified. To represent the model performance
in terms of accuracy and calibration, we propose the ac-



Table 1
Main Results of AURC, E-AURC, E-AUoptRC, accuracy(ACC) and trust index (TI) on the ImageNet (IN) and Cifar100 (CF100)
dataset with CNNs and variants of transformers models. AURC, E-AURC, fE-AURC and lE-AURC are shown as multiply with
103 for clarity.

Dataset Model AURC E-AURC E-AUoptRC ACC(%) TI
IN DenseNet121 93.12 49.13 15.13 71.84 0.856

EfficientNet 108.34 75.71 14.81 75.57 0.847
ViT 40.2 25.34 6.45 83.26 0.906

SwinTran 53.9 41.03 6.53 84.39 0.901
CaiT 58.29 42.92 6.64 82.99 0.903

CrossViT 73.87 56.47 7.79 81.93 0.894
ConvNext 56.62 42.13 6.38 83.46 0.906

CF100 VGG13_bn 75.22 38.96 12.49 74.31 0.873
VGG19_bn 83.38 45.25 11.77 73.69 0.886
ResNet56 90.52 47.8 15.02 72.23 0.857

MobileNetV2 96.06 48.37 16.41 70.75 0.851

curacy at the 𝑜𝑝 as a Trust Index (TI), a complementary
evaluation to the accuracy metric to indicate the model’s
trustworthiness. For example, in Figure 2, with the model
accuracy of 84%, the model is 0.84 trust of the prediction.
After removing 16% samples with high uncertainty (the
𝑜𝑝 is 0.84), the risk is approximately 0.08. The 𝑇𝐼 , the
accuracy over the most confident 84% of samples is 0.92.
The higher TI suggests the better trustworthiness of the
model predictions, and we next present empirical data to
substantiate this.

4. Experimental Setup

4.1. Datasets and Baselines
We validate the proposed method with three bench-
mark image datasets: ImageNet 2012 (IN) [32], CI-
FAR100 (C100) [33] and Tiny-ImageNet [34]. For
baselines, we use state-of-the-art (SOTA) Vision Trans-
former (ViT) [35] and its variants such as Swin-
Transformer (SwinT) [36], Class-Attention in Image
Transformers (CaiT) [37], Cross-Attention Multi-Scale
Vision Transformer (CrossViT) [38], ConvNext [39]
with the ImageNet pretrained weights from TIMM 1

library. To report comprehensive results on various
models architectures, we also use the Convolutional
neural networks (CNNs) in our experiments, namely
DenseNet121 [40], ResNet56 [41], variants of VGG [42]
and MobileNetV2 [43]. All models are with pretrained
weights of ImageNet dataset. For recent SOTA calibration
techniques label smoothing (LS) [27], focal loss (FL) [29],
MBLS [28] and FLSD [30], we utilize the pre-trained
model and official implementation from the repository 2.

As the evaluation of failure detection is a post-
processing approach, we primarily utilize each dataset’s

1https://github.com/rwightman/pytorch-image-models
2https://github.com/by-liu/MbLS

test set. For the ImageNet dataset, we equally divide its
original test set of 50,000 images into validation and test
sets for a fair comparison. For Tiny-ImageNet and CI-
FAR100 dataset, an 80/10/10 for training/validation/test
split is applied.

4.2. Implementation Details
For a fair comparison and replicability of experimenta-
tion, we utilized publicly available existing pre-trained
weights for our investigation and experimentation. The
GPU of the Nvidia Tesla P40 was used for all experiments.
The bins number for ECE was set as 𝑀 = 15.

5. Results
We conducted extensive experiments on benchmark
datasets ImageNet and Cifar100 with various CNNs and
variants of transformers to compare the AURC, E-AURC
and our proposed E-AUoptRC. We further observed the
limitation of the conventional overall model accuracy
and how our proposed Trust Index (TI) mitigates it. Fi-
nally, to validate the efficacy of our method, we applied
it to SOTA calibration techniques with Tiny_ImageNet
on ResNet50 dataset. All the experiments and results are
shown in Tables 1 and 2, and Figure 3.

Table 1 shows the results for image classification with
the benchmark datasets. For AURC, E-AURC and E-
AUoptRC in the ImageNet dataset, the variants of trans-
formers outperform CNNs model. The E-AURC for ViT
is about half of the E-AURC of SwinTran, CaiT and Con-
vNext, indicating that ViT greatly outperforms the other
three models in failure detection. However, regarding the
E-AUoptRC, the difference is almost ignorable and the
ConvNext is slightly better than the other three models.
The risk-coverage (RC) curve (Left in Figure 3) also shows
that at the coverage of 0.84 (near the optimal point) to 1,



Table 2
Results for SOTA calibration techniques on failure detection with Tiny_ImageNet dataset with ResNet50 model. AURC,
E-AURC, fE-AURC and lE-AURC are shown as multiply with 103 for clarity. ECE_OP denots the ECE at the optimal point.
ECE and ECE_OP are shown in percentage.

Method AURC E-AURC E-AUoptRC ACC(%) TI ECE(%) ECE_OP(%)
CE 128.71 57.94 22.13 64.82 0.821 3.76 4.25
LS 131.54 63.51 21.98 65.46 0.824 2.8 2.04

MBLS 135.39 64.27 22.78 64.74 0.817 1.87 0.92
FL 146.42 68.61 25.05 63.24 0.807 3.1 3.53

FLSD 139.72 64.85 23.91 63.89 0.812 2.8 2.49
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Figure 3: Risk-coverage curve for the visualization of failure detection performance. Left: ImageNet dataset with transformer
models of ViT, SwinTran and ConvNext; Middle: Cifar100 dataset with CNNs models of VGG13_bn, VGG19_bn, ResNet56
and MobileNetV2. Right: Tiny_ImageNet with ResNet50 model on SOTA calibration techniques. CE, LS, MBLS, FLSD denots
baseline, lable smoothing, margin-based label smoothing and sample-dependent focal loss respectively. The coverage starts
from 0.5 instead of 0 for the clarity of visualization.

the risk curve of ViT and ConvNext is nearly overlapping.
The lower risk for VIT occurs at very low coverage levels,
which are not of interest for most real world applica-
tions. For CF100 dataset with CNNs, VGG13_bn substan-
tially outperforms other models in terms of AURC and
E-AURC. However, the difference in E-AUoptRC between
VGG13_bn and VGG19_bn is much smaller. This can be
understood from the Middle plot in Figure 3, where the
curve for VGG13_bn and VGG19_bn overlaps at cover-
age between 0.74(near the optimal point) to 0.9. These
differences in the metrics provide empirical evidence that
our proposed E-AUoptRC more accurately reflects real
differences in failure detection performance than other
methods.

Similar to the results of AURC-related evaluation, the
variants of transformer models also outperform CNNs in
terms of overall model accuracy and trust index (TI). The
SwinTran obtains the highest overall model accuracy for
the ImageNet dataset, but it does not yield the highest
TI. For the Cifar100 dataset, the VGG13_bn achieves the
highest overall model accuracy, whereas the VGG19_bn
obtains the best TI. It indicates that the model with the
highest overall accuracy does not guarantee the highest
TI, which shows that our proposed TI is necessary for
model trustworthiness evaluation.

In Table 2, the baseline (CE) obtains better AURC and

E-AURC, but label smoothing outperforms other methods
and CE in terms of overall accuracy (improves by 0.6%)
and TI. MBLS nearly halves the overall ECE of baseline
and achieves the best ECE at the optimal point. In the
Right RC curve in Figure 3, LS is with the lowest risk at
the coverage of 0.65 to 1 (the likely operating range when
the model is deployed), and our proposed E-AUoptRC
and TI metrics are the only ones that capture this. Failure
detection performance should be a significant evaluation
for calibration techniques, and our methods provide a
more insightful view of the model trustworthiness.

6. Discussion & Conclusion
In this paper, we proposed the E-AUoptRC to more pre-
cisely quantify the failure detection performance in the
key region of interest, and the Trust Index (TI) that mea-
sures model accuracy at its optimal point. The empirical
results show that our methods can better reveal the model
trustworthiness under a fair comparison. In the real-
world deployment, a fixed threshold is often used due to
specific task requirements and simplicity of implementa-
tion. Our proposed TI can be utilized as the reference for
the threshold selection with following reasons: (1) the
accuracy should indicate the model confidence in its pre-
diction, suggesting the TI can interpret the confidence;



(2) TI is obtained at the optimal point, where the model
is supposed to achieve the ideal performance. This is an
objective method for the fair comparison of models with
different accuracy and calibration (as shown in Table 1
and 2); (3) TI is easy to calculate, which is a time and
computational cost saving. We have shown several ben-
efits of our proposed metrics over existing ones and in
our future work, we will further investigate the role of
TI in improving failure detection.
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