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Abstract
Shielding methods for Reinforcement Learning agents show potential for safety-critical industrial applications. However, they
still lack robustness on nominal safety, a key property for safety control systems. In the case of a significant change in the
environment dynamic, shielding methods cannot guarantee safety until their inherent dynamics model is updated to the new
scenario. The agent could reach risky states because the model cannot predict well. These situations could lead to catastrophic
outcomes, such as damage to the cyber-physical system or loss of human lives, which are not allowed on safety-critical
applications. The novel method presented in this paper, Fear Field, replicates human behaviour in those scenarios, adapting
safety constraints whenever a drastic environmental change is introduced. Fear Field reduces safety violations by one order
of magnitude compared to an RL agent implementing only a shield.
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1. Introduction
The design of controllers for autonomous systems has
emerged in a new era with the remarkable evolution
of Machine Learning (ML). Techniques such as Super-
vised Learning, Unsupervised Learning and Reinforce-
ment Learning have shown extraordinary value both for
their great adaptability to highly complex problems and
reduced computational cost in inference.

One of the emerging techniques within ML is Rein-
forcement Learning (RL), linked to optimal control the-
ory [4]. In RL, an agent interacts with its environment
through the paradigm of trial and error, and exploration
and exploitation [20]. Depending on the performance
shown by the agent in a given task, it receives a reward.
During a series of trial and error, the agent learns how
to maximise the accumulated discounted reward. The
resulting agent is expected to be able to select the optimal
action for a given state, which will be called the policy.
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to minimise unsafe situations that can be risky for the
cyber-physical system, during the exploration process
carried out during learning and subsequent execution
process [1, 5, 7]. Among the different methods proposed
for this purpose is Shielded Reinforcement Learning.
In this method, each action proposed by the agent is
checked, so the Shield only allows the action to be ex-
ecuted if the environment transit to a safe state. For
this, most of the proposed methods use a model of the
environment.

The shielded RL algorithms proposed in the literature
focus mainly on nominal safety, while functional safety is
relegated to a second level. The nominal safety focuses on
making safe logical decisions, and it is part of the wider
functional safety considerations that must also consider
underlying hardware and software failures. This work
focuses on nominal safety, and the complete functional
safety considerations must be studied in future research
work.

A drawback of the Shielded RL methodology is that
an eventual change in the dynamics of the environment
can make its transition model obsolete; therefore, the
Shield would not act correctly until the model is updated
to the new environment. Another scenario where the
agent may take risky actions due to an outdated model
is transferring a policy trained in the simulator to the
target or real scenario, known as the Sim2real gap [9, 13].

In order to improve the safety of Shielded RL meth-
ods, this paper presents the Fear Field (FF) framework,
which aims to reduce the number of unsafe states reached
when a significant modification is produced in the en-
vironment dynamic. As humans do, when faced with
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previously unknown scenarios, Fear Field acts cautiously
by dynamically adapting the constraints to the situation.

OpenAI Gym’s [3] slightly modified Frozen Lake
benchmark and the open-source Skrl library [19] are
used for testing and validating the Fear Field framework.
Frozen Lake benchmark consists of a tile-based discrete
environment, where a robot has to learn the path to
reach the goal while avoiding holes (unsafe states) in
its way. Initially, the RL agent is trained with normal
environment conditions, where each action makes the
robot move only one tile. When the environment’s dy-
namic changes, an action taken leads the robot to move
an additional tile following the same direction. The agent
has been trained using tabular Q-Learning, a temporal-
difference-based algorithm. It has been observed that
an agent trained with only Shielded RL avoids the holes
while there are no changes in the environment dynamic,
but it fails just when the environment dynamic changes.
After some episodes, it adapts to the new situation. Thus,
an agent trained with shielded RL does not guarantee to
fulfil safety constraints after the environment dynamic
changes.

The contributions of this work can be summarised as
follows:

• The Fear Field framework is proposed, which
identifies the change in the environment, adapts
the imposed safety constraints to the new sce-
nario and acts accordingly.

• The Fear Field framework is defined and validated
in the OpenAI Gym’s Frozen Lake environment.

• The robustness of the Fear Field to significant en-
vironmental changes and the improvement over
a Shielded RL-based control system safety is eval-
uated in an experimental setup.

The rest of the paper proceeds as follows. Section 2
briefly defines the Markov Decision Process, Q-Learning
and Shielded Reinforcement Learning. In section 3, re-
lated works to the problem studied in this work are re-
sumed. In section 4, constraints and Shield implemen-
tation are defined. The Fear Field framework is defined
in section 5. In section 6, the experimentation methodol-
ogy is given. Following, results obtained in testing are
discussed in section 7. Finally, in section 8, the main
conclusions and future work are summarised.

2. Preliminaries
Reinforcement Learning is one of the most popular tech-
niques of Machine Learning, where an agent that inter-
acts with its environment learns through the paradigm of
trial-error and exploration-exploitation [23]. The math-
ematical idealisation of Reinforcement Learning algo-
rithms is the Markov Decision Process (MDP).

2.1. Markov Decision Process
A Markov Decision Process is called a sequential decision-
making system, in which the action 𝑎 taken in the state
𝑠 determines the immediate reward 𝑟, the next states
to transit, and the future rewards to receive. Let it be
a tuple ⟨𝑆,𝐴, 𝑃,𝑅, 𝛾⟩, where 𝑆 is the space of states,
𝐴 is the space of actions, 𝑃 : 𝑆 × 𝐴 × 𝑆 → [0, 1]
is the probabilistic transition function associated to the
environment, 𝑅 : 𝑆×𝐴×𝑆 → R determines the reward
function and the discount factor 𝛾 determines the present
value of future rewards [1].

2.2. Reinforcement Learning
Several learning techniques are found within Machine
Learning, such as Supervised Learning, Unsupervised
Learning, Imitation Learning and Dimensionality Reduc-
tion [4]. One technique that has recently been showing
potential is Reinforcement Learning (RL). RL differs from
other subfields of ML in that it does not require a su-
pervisor or complete models of the environment [20]. It
is, therefore, of interest in complex problems that span
different engineering domains and where the only way
to learn the properties of the environment is to interact
with it. RL algorithms are primarily linked to optimal con-
trol theory [4], as they are based on the interaction of an
agent with its environment through the paradigm of trial-
error and exploitation-exploration [23]. Reinforcement
Learning use ranges from object manipulation control
problems to the compression of search-based schedulers
or optimal controllers, where neural networks reduce
their computational cost [2].

The learning process of the agent over the environ-
ment, i.e. mapping the states to the actions [16], is carried
out because the agent receives a reward for each action
performed and ultimately tries to maximise the sum of
the rewards received [8, 23]. Such interaction allows
the agent to learn and ideally generalise the knowledge
gained to deal with inexperienced situations, obtaining
a policy determining the agent’s behaviour. The policy
can range from a simple relationship, such as a lookup
table, to complex relationships that require high com-
putation, being in general stochastic relationships. The
policy can be identified as the core of an RL agent because
it determines the behaviour of the agent [20].

While the reward is a short-term indication of how
good an action performed by the agent is, the Q-value
function 𝑄𝜋(𝑠, 𝑎) defines the expected discounted accu-
mulated reward following policy 𝜋 after taking action 𝑎
in state 𝑠. Because this long-term estimation is computa-
tionally expensive, the correct method choice is consid-
ered a key component of most RL algorithms [20].
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2.3. Q-Learning
Q-Learning is a temporal-difference-based control algo-
rithm in which the Q-value function 𝑄(𝑠, 𝑎) directly ap-
proximates its optimal value 𝑞*, maximising it regardless
of the policy (off-policy) being applied. It should be noted
that, even so, the policy determines which action-state
is visited and updated at each instant [23]. For a time
instant 𝑡 the Q-Learning algorithm is defined as follows:

(1)
𝑄(𝑠𝑡, 𝑎𝑡)← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼

[︁
𝑟𝑡+1 + 𝛾

·max
𝑎

𝑄(𝑠𝑡+1, 𝑎)−𝑄(𝑠𝑡, 𝑎𝑡)
]︁

2.4. Shielded RL
The reactive Shielded RL methods are among the various
methods proposed to ensure the safety of the controlled
cyber-physical system. Shielded RL was proposed by
Alshiek et al. [1]; it defines the use of a shield, which
acts as a filter to block those actions that transit the
environment to an unsafe state (See Figure 1).

Through safety specifications a safety automaton𝜙𝑠 =
(𝑆, 𝑠0, 𝑃, 𝑆𝑠𝑎𝑓𝑒) is defined where 𝑠0 correspond to the
initial state and 𝑆𝑠𝑎𝑓𝑒 is the set of safe states [1, 12].

The Shield monitors the action 𝑎𝑡 proposed by the
agent at each time step. It checks the expected state 𝑠𝑡+1

after applying an action 𝑎𝑡 in state 𝑠𝑡. If the expected
state 𝑠𝑡+1 is unsafe with respect to 𝜙𝑠, the Shield will
block the action and offer another safe action using the
safe policy 𝜋𝑠. This safe policy 𝜋𝑠 is defined in advance
using particularly severe constraints.

Another aspect to consider is whether the Shield
should penalise the agent’s proposal of an unsafe action
in the reward. As summarised by Odriozola-Olalde [17],
several authors [6, 11] see favourable to introducing a
penalty so that a bias is generated in the agent’s policy
that reduces the need for shield intervention in the future.
Still, other authors [1, 2, 14, 21] find the introduction of
the penalty mentioned above detrimental.

3. Related Work
Although Shielded RL is a relatively recently developed
framework, many studies [1, 2, 21] propose different
methodologies for implementing shielding in decision-
making control systems. These methodologies show
promising results for ensuring nominal safety but lack
experimentation in environments that may suffer drastic
dynamic changes [17]. This situation emphasises the
analysis of the robustness of proposed controllers in en-
vironments that may suffer dynamic changes.

Zhu et al. [22] consider the effectiveness of their pro-
posed method in different environments. Starting from

Environment

Learning 
Agent

Shield

Shield

State Reward

Action

Safe 
action

Reward

Figure 1: Shielded Reinforcement Learning schematic.

the shield defined for an initial environment, they pro-
pose the synthesis of a new shield for a modified environ-
ment. But they do not analyse what happens to the agent
during the time needed to synthesise the new Shield, as
the agent is partially safe or not guaranteed to be safe.

Bastani [2] modifies the cart-pole environment increas-
ing the time horizon of the controller to demonstrate
that Model Predictive Shielding (MPS) still fulfils the
safety guarantees obtained on the initial environment.
Although, the cumulative reward obtained decreases sig-
nificantly, reducing the performance of the controller at
the cost of assuring safety.

Thumm and Althoff [21] proposed method, Failsafe
Planner, is the only one that considers Functional Safety
standards in the Shielded RL field. They propose a frame-
work to guarantee the speed and separation monitoring
for human-robot interaction environments defined in
DIN EN ISO 10218-1 2021, 5.10.3. A combination of a low-
frequency RL agent and a formal high-frequency safety
verification algorithm is used to synthesise a safety shield.
Even though Failsafe Planner is able to avoid all human-
robot collisions, it has a goal-reaching success rate of
65%. Modelled human movements on experimentation
are quite limited, so safety is not guaranteed in more
complex environments. Also, they do not study how
Failsafe Planner could behave in a dynamic changing
environment, thus the robustness of Failsafe Planner is
not assured.

Lazarus et al. [15] propose a similar approach to Fear
Field for Runtime Safety Assurance (RTSA) in order to
ensure the nominal safety of an Unmanned Aerial Vehicle
(UAV). Using Safety Envelopes, a subspace of the state
space defined through safety constraints, they shrink
it specifying a distance 𝛿. While the UAV is inside the
shrunk subspace, a 𝜋𝑛 black-box nominal policy is used.
But once the UAV exits the shrunk subspace, a 𝜋𝑟 simple
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and safe recovery policy is deployed. A Reinforcement
Learning agent is trained in order to choose when to
swipe from one policy to another. The drawbacks of this
proposition are that 𝛿 is a hyperparameter that may be
difficult to tune, it has no adaptability at all and that the
recovery policy 𝜋𝑟 consists of turning off the UAV rotors
and deploying a parachute.

Therefore, most works do not study how they perform
in significantly changing environments, so it is neces-
sary to study the lack of safety guarantees that could
be shown when the environment dynamic changes and,
thus, during the time the new shield becomes available.
Also, the verifiability of the proposed algorithms must
be studied in order to obtain formal safety guarantees.

4. Problem Setup
This section defines the techniques used to define the
constraints and the methodologies used to synthesise the
Shield.

4.1. Constraints
In this work, it has been decided to establish the safety
constraints using a tabular table or constraint table (4).
The table has the exact dimensions as the GridWorld used
in the experimentation.

(2)𝒯 (𝑠) =
{︂
0 𝑠 /∈ 𝑆𝑠𝑎𝑓𝑒

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝒯 (𝑠) is the constraint table, 𝑠 is the state and
𝑆𝑠𝑎𝑓𝑒 is the aforementioned set of safe states.

This implies that it is necessary to know in advance the
constraints of the environment, which sometimes cannot
be known due to the complexity of the cyber-physical
system to be controlled and changes in the environment’s
dynamics. In this work, it is assumed that 𝑆𝑠𝑎𝑓𝑒 and
𝑆𝑢𝑛𝑠𝑎𝑓𝑒 are known, as it is a reach-avoid problem.

4.2. Shield
The shield implementation contains a model of the dy-
namics of the environment 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) [2, 6, 11, 14,
21]. The model input is the proposed action, and the
output is the predicted state that the robot will reach on
the next state.

Each time a deviation further than a predefined thresh-
old 𝜆 is detected between the next state prediction and

the real one
⃒⃒⃒
𝑠𝑡 − 𝑠𝑝𝑟𝑒𝑑𝑡

⃒⃒⃒
> 𝜆, the environment dynamic

model is updated. This threshold𝜆 is defined to avoid that
insignificant deviation that the model can have relative to
the real environment dynamic will affect in runtime. New
data 𝑃 (𝑠′|𝑠, 𝑎) is first collected in 𝑛𝑏𝑢𝑓𝑓𝑒𝑟 , and then it is
used to update the model. This process is repeated until

the predicted state deviation is lower than the thresh-

old
⃒⃒⃒
𝑠𝑡 − 𝑠𝑝𝑟𝑒𝑑𝑡

⃒⃒⃒
≤ 𝜆 in all steps of 𝑇𝑡𝑟𝑎𝑖𝑛 period, i.e.

until no meaningful difference between the movement
predicted by the model and the actual movement of the
agent is found.

At each step, the shield studies the feasibility of each
possible action, predicting the next state 𝑠𝑡+1 using the
dynamics model and observing if it belongs to the ensem-
ble of safe states 𝑆𝑠𝑎𝑓𝑒. Following, it orders the actions
by its expected reward. The selected action to be applied
𝑎𝑡 is selected if and only if it is safe and its expected re-
ward is the highest of all safe actions. The environment
transition is predicted over a finite time horizon ℎ:

𝑠𝑝𝑟𝑒𝑑𝑡+ℎ ← 𝑃 (𝑠𝑡+ℎ|𝑠𝑡, 𝑠𝑡+1, ..., 𝑠𝑡+ℎ−1, 𝑎𝑡) (3)

5. Fear Field
As humans adapt the caution measures taken in our ac-
tivities according to our confidence and knowledge of the
environment at a specific moment, Fear Field proposes
adapting the safety constraints depending on the Shield’s
confidence in the environment’s model accuracy. The
difference between the model’s predicted state and the
real one quantifies the model’s accuracy.

In an initial environment, for an agent with a shield
and where there is an accurate model of the environment,
an action 𝑎𝑡 taken in the state 𝑠𝑡 transits the environ-
ment to state 𝑠𝑡+1. In this case, the Shield can predict
whether this transition is safe since the associated model
matches the initial environment. Suppose now that the
dynamics of the environment have changed so that the
model associated with the Shield does not match reality.

Figure 2: Fear Field: Adaptive constraints for variable envi-
ronments.
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In the second case, the same action 𝑎𝑡, let’s call 𝑎′
𝑡, taken

in state 𝑠𝑡 causes the environment to transit to a state
𝑠′𝑡+1 which can be an unsafe or a hidden unsafe state
[17].

Therefore, the use of the Fear Field (See Figure 2) is
proposed, which is reflected as an extension of the safety
constraints defined in the problem. Fear Field has been
designed in order to support the Shield when the model
predictions are not accurate. For this purpose, a new
constraint table is defined such that:

(4)𝒯 ′(𝑠) =

⎧⎨⎩ 0 𝑠 /∈ 𝑆𝑠𝑎𝑓𝑒

0.5 𝑠 ∈ 𝐹𝑒𝑎𝑟𝐹 𝑖𝑒𝑙𝑑
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The width of the Fear Field 𝛿𝑡(𝑠) ∝
⃒⃒⃒
𝑠𝑡−1 − 𝑠𝑝𝑟𝑒𝑑𝑡−1

⃒⃒⃒
is directly proportional to the distance between the pre-
dicted state 𝑠𝑝𝑟𝑒𝑑𝑡 and the real state 𝑠𝑡. Thus, the width
𝛿(𝑠) is a dynamic variable linked to the difference be-
tween the predicted state and the real one. In the case
of 𝛿(𝑠) having different values through timesteps, the
highest value is taken as the worst-case scenario. Fear
Field states 𝑆𝐹𝐹 is the set of states where each state 𝑠𝐹𝐹

is within a maximum Euclidean distance 𝛿(𝑠) from each
unsafe state such that:

𝑠 ∈ 𝑆𝐹𝐹 ⇔ ∃𝑠𝑢𝑛𝑠𝑎𝑓𝑒 : |𝑠− 𝑠𝑢𝑛𝑠𝑎𝑓𝑒| ≤ 𝛿(𝑠) (5)

Once the new constraints have been defined, the shield
analyses if the action 𝑎‘𝑡 would transit the environment
to either an unsafe state or a state that is part of the Fear
Field𝒯 ′(𝑠𝑡+1) = 0.5. Even though the model is outdated
due to that the environment dynamic has changed, the
Shield will predict the transition to the state 𝑠𝑡+1 which
is now within Fear Field so that it will block that action
𝑎′
𝑡 and will look for an action 𝑎′′

𝑡 that does not lead to
an unsafe state or a state within the Fear Field, i.e. it
will look for 𝒯 ′(𝑠′′𝑡+1) = 1, and has the highest Q-Value
Q(s,a).

Only when the model is retrained, and the difference
between the model and the reality is non-existent af-
ter 𝑛𝑆𝑡𝑒𝑝𝑠 steps, the width 𝛿 of the Fear Field will be
zero again. It is necessary to be noted that during the
Fear Field intervention, the agent keeps following the
same previous policy and gathers 𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡 steps data as
a retraining dataset. The algorithm used for Fear Field
implementation is shown on Algorithm 1, which is exe-
cuted continuously, and the schematic representation is
shown in Figure 3.

The Fear Field algorithm works as follows: In every
iteration, the previous timestep state reached and the
predicted state are compared (Line 2). If they are not
equal, Fear Field’s width 𝛿𝑡+1(𝑠𝑡) is calculated using the
difference existing between the state reached and the
predicted state (Line 3). Using 𝛿𝑡+1(𝑠𝑡), a new constraint

Algorithm 1 Fear Field algorithm
1: Given (Environment Dynamic Model, 𝒯 (𝑠),

𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡, 𝑛𝑆𝑡𝑒𝑝𝑠)
2: if 𝑠𝑡 ̸= 𝑠𝑝𝑟𝑒𝑑𝑡 then
3: Calculate 𝛿𝑡(𝑠𝑡) value
4: Generate 𝒯 ′(𝑠) s.t. 𝛿𝑡(𝑠𝑡)
5: if 𝑡 = 𝑡𝐿𝑎𝑠𝑡𝑇𝑟𝑎𝑖𝑛 + 𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡 then
6: Update environment dynamic model
7: 𝑡𝐿𝑎𝑠𝑡𝑇𝑟𝑎𝑖𝑛 = 𝑡
8: end if
9: else if (𝑠𝑡−𝑛𝑆𝑡𝑒𝑝𝑠−1, ..., 𝑠𝑡−1) =

(𝑠𝑝𝑟𝑒𝑑𝑡−𝑛𝑆𝑡𝑒𝑝𝑠−1, ..., 𝑠
𝑝𝑟𝑒𝑑
𝑡−1 ) then

10: Load 𝒯 (𝑠)
11: end if
12: Check the safety of all actions
13: Take highest Q(s,a) safe action
14: Apply the action 𝑎𝑡 to the environment
15: Save last 𝑛𝑆𝑡𝑒𝑝𝑠 steps data on buffer

table 𝒯 ′(𝑠) is generated (Line 4). Since the predicted
state does not match the state reached, the environment
dynamic model is outdated. If 𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡 number of steps
has been passed from the last timestep 𝑡𝐿𝑎𝑠𝑡𝑇𝑟𝑎𝑖𝑛 that
the model was updated (Line 5), then, the model is up-
dated with the new dataset (Line 6) and 𝑡𝐿𝑎𝑠𝑡𝑇𝑟𝑎𝑖𝑛 is
restored to the current timestep (Line 7).

Only when the model is updated such that it is capable
of matching all last 𝑛𝑆𝑡𝑒𝑝𝑠 steps of state reached and
predicted states (Line 9), the initial constraint table 𝒯 (𝑠)
is loaded again. This allows the shield to check the safety
of the actions proposed by the agent (Line 12) and choose
the action that has the highest Q-value and is safe (Line
13). Finally, once the action is applied to the environment
and it transits to the new state 𝑠𝑡+1 (Line 14), the last
𝑛𝑆𝑡𝑒𝑝𝑠 of states reached and predicted states are saved
in a buffer (Line 15).

Note that the Fear Field algorithm is being executed
when the RL agent is trained, and also when it is in
execution; thus, the model updating process is conducted
independently of the agent’s learning process.

6. Experiments
As mentioned above, the benchmark environment used
for validating the Fear Field method was an OpenAI Grid-
World [3]. Specifically, a modified version of Frozen
Lake was used. This benchmark environment consists
of a robot that starts in a box in one corner of the two-
dimensional state space and must reach the goal in the
opposite corner. If the robot falls into a hole (𝑆𝑢𝑛𝑠𝑎𝑓𝑒), it
has to start the episode again. So, the Frozen Lake envi-
ronment is a reach-avoid problem. The environment grid
size is 10x10 blocks, with 16 of them being holes. The
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Figure 3: Schematic of Fear Field implementation on Shielded RL.

unique feature of the modified version of Frozen Lake
is that periodically, the world is slippery, meaning that
the robots will move one additional square for the same
action. It is necessary to be noted that the environment
used for experimentation is deterministic.

The open-source modular library Skrl, which inte-
grates several RL algorithms and supports OpenAI Gym,
has been used to implement the benchmark [19]. The
software code provided by Skrl has been modified to in-
corporate both the Shield and the Fear Field. Q-Learning
algorithm has been used as an RL learning algorithm,
specifically a tabular Q-learning algorithm, as it matches
the discrete nature of the benchmark environment.

In order to the environment dynamic model, a Neu-
ral Network (NN) based model has been chosen due to
its capacity to adapt to the changes in the dynamics of
the environment, its accuracy and the reduced compu-
tational cost in inference. Also, training over the past
model reduces the computational cost associated with
the relearning process [22].

The output of the model has been defined as the rel-
ative movement of the robot. This way, the required
minimum NN topology has been reduced to one hidden
layer with 12 neurons on it. Also, working with relative
movement helps to reduce the problem’s complexity and,
consequently, the needed data and training time. The
finite time horizon used is ℎ = 1. This way, the shield
is capable of predicting the next step state adding to the
actual state the predicted relative movement:

𝑠𝑝𝑟𝑒𝑑𝑡+1 = 𝑠𝑡 +𝑁𝑁(𝑎𝑡) (6)

It is necessary to be noted that grid world border states

movement is not taken into account for retraining the NN
model, and also while applying the relative movement
calculated by the NN to the current state, it is taken into
account if the predicted state will be out of the border.

The testing set, composed of 50 trials of 700 episodes
each, has been performed to obtain a significant number
of results in order to validate the algorithm presented
in this paper. Each episode is terminated if the agent
falls into a hole, reaches the goal or if it takes more than
100 steps. In the first 350 episodes (Non-slippery), the
robot moves only one square for each action. The follow-
ing 150 episodes correspond to the slippery world (Slip-
pery). Finally, in the last 150 episodes, the robot moves
only one square again for each action (Non-slippery).
The testing procedure consists of analysing the perfor-
mance and nominal safety level of the non-shield RL
algorithm, a shielded RL baseline, and the Fear Field inte-
grated shielded RL algorithm. The first one (Q-Learning)
is the tabular Q-Learning [20] without any safety mea-
sures. The second (Shield) corresponds to the previous
Q-Learning algorithm with a shield integrated. Finally,
the third one (FF) is based on the second one but incor-
porates the Fear Field framework.

The values of the hyperparameters are shown in Table
1. If a mismatch is detected between the state predicted
by the NN model and the actual state, 1000 samples are
collected, and the network is retrained using batches of
6 samples for 100 epochs. The equation used to calculate
the width 𝛿(𝑠) of Fear Field is the following one:

𝛿𝑡+1(𝑠) =
⃒⃒⃒
𝑠𝑡 − 𝑠𝑝𝑟𝑒𝑑𝑡

⃒⃒⃒
(7)
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Table 1
Hyperparameters values used in experimentation.

Hyperparameter Value
𝜖 0.4

Agent 𝜖 decay −5× 10−5 per timestep
𝛾 0.999
𝛼 0.4

Topology 1-12-1
Buffer size 1000
Batch size 6

NN training Epochs 100
Learning rate 0.001

Optimiser Adam
Activation function ReLU

Fear Field 𝑛𝐷𝑎𝑡𝑎𝑠𝑒𝑡 1000
𝑛𝑆𝑡𝑒𝑝𝑠 800

𝜆 0
Step taken -0.01
Hit a wall -1

Rewards Fall in hole -100
Reach goal 100

Action blocked by the shield -10
Action blocked by Fear Field -2

7. Results
The testing results are shown in Figure 4. Three phases
are shown in the x-axis, corresponding to the environ-
ment state: Slippery or non-slippery. Also, a pink interval
is shown on the y-axis, indicating an unsafe state has
been reached. It is observed that both the Shield and Fear
Field methods accelerate the convergence of the agent
by almost five times in the first training process. This
is because the Shield allows the agent to explore safely,
significantly improving the number of steps performed
in each episode, thus gaining more knowledge of the
environment per episode.

Another significant advantage of shield-assisted learn-
ing is that no safety breaches (red zone) are committed
during the initial (first 350 episodes) learning process.
In the Q-Learning test, the robot persists in an insecure
state for the first 150 episodes.

In the slippery period (episodes 350-550), it can be ob-
served that both Q-Learning and Shielded Q-Learning
suffer from reaching unsafe states in the episodes im-
mediately after the change made in the environment’s
dynamic (episode 350). As hypothesised in the shielded
reinforcement learning review [17], the prediction made
by the model does not match the actual movement made
by the agent, so it cannot predict the state to which the
agent will transit correctly, and the Shield will not block
the unsafe action; obtaining a 0.0156% probability of
reaching an unsafe state. As can be seen, the agent adapts
to the new environment over time because the model as-
sociated with the shield is updated. Despite this, the
average number of unsafe states reached compared to
Q-Learning without the Shield is approximately 50 times
lower (see Table 2).

For the Fear Field method (FF), it can be observed that

the transition from the normal environment to the slip-
pery one is performed with a significant reduction of the
unsafe state visited. However, it should be noted that in
some trials, the Fear Field approach still encountered un-
safe states (see Table 2). Specifically, in 60% of the trials
performed, FF obtained a null number of unsafe states.
This is because sometimes the retrained NN model is not
accurate enough and therefore fails to predict the state
transition, obtaining a 0.00179% probability of reaching
an unsafe state in total. Thus, the reason behind visiting
unsafe states is the inaccuracies associated with the NN
model. Despite this, one order of magnitude is reduced
compared to the Shielded Q-Learning case.

One of the main shortcomings of the Fear Field is that
after transitioning to a previously unknown environment,
the convergence time of the policy is increased. This
behaviour is related to the agent being more constrained
in taking action and taking fewer risks. Due to that, the
previously learned path cannot be taken, so the agent
must learn a new path to reach the goal. The learning
process to obtain a safe path to the goal can take some
episodes to be learned.

Also, no policy convergence has been observed in 2 of
the 50 trials performed when the environment changes
to non-slippery after being slippery. This phenomenon
is due to the model not being updated properly, keeping
the robot transiting to an unsafe state constantly. Thus,
no useful dataset needed to update the model properly is
obtained, and the agent enters a non-ending cycle.

Thus, the dataset obtained does not

8. Conclusions and future work
Shielded Reinforcement Learning is a method of great
interest in control and decision-making fields because it
drastically reduces the number of unsafe states reached.
Since Shield uses a dynamic model of the environment
to predict future states that the environment will transit,
the Shield’s effectiveness is low when faced with changes
in the environment’s dynamics. This problem persists
until the model associated with the Shield adapts to the
new environment.

In order to reduce this impact, the Fear Field method
has been proposed and validated in this paper. Adapt-
ing the safety constraints in proportion to the difference
between the model prediction and the real transitions,
Fear Field is able to reduce the unsafe states reached by
order of magnitude when compared to the Shielded RL

Table 2
Mean unsafe state reached per test.

Q-Learning Shield FF
Mean unsafe states 0,77192% 0.0156% 0.00179%
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Non-slippery Non-slipperySlippery

Figure 4: Cumulative reward mean for each episode over 50 trials.

method.
Looking ahead, the retraining of the model needs to be

improved to reduce the number of unsafe states further
reached. Also, procedures must be developed to address
the observed increase in convergence time, such as in-
troducing a small value of exploration rate 𝜖 when the
robot cannot find a new path to the goal.

Regarding the applicability of the Fear Field frame-
work, a use case of an autonomous guided vehicle (AGV)
in a warehouse scenario is proposed as future work. The
behaviour of the AV will be observed in a scenario with
significant changes in the wheels grip, and therefore Fear
Field will be tested.

For the experimentation conducted in this paper, a
deterministic environment is used. In future work, the ef-
fects of the introduction of stochasticity must be studied.
the Fear Field framework shows potential for more com-
plex scenarios, where model capacity might be limited
in order to capture the environment dynamics perfectly.
In this case, the Fear Field framework could be helpful in
reducing safety constraint violations.

Shielded RL is an AI-based safety-focused algorithm
that must still be developed in compliance with applica-
ble safety standards (e.g., IEC 61508, ISO 5469). There-
fore, the integration of methodologies such as Safety
Envelopes, certified according to the required safety stan-
dard, may be interesting in order to provide the decision-
making controller with formal safety guarantees. For
many research areas, there are methodologies developed
to define the Safety Envelope through safety standards,

e.g. Responsibility-Sensitive Safety (RSS) for autonomous
driving vehicles [10, 18].

Finally, further research must be conducted to find
how the values of the hyperparameters regarding the
Shielded RL and Fear Field frameworks affect the safety
constraint violation rate.
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