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Abstract
As the use of machine learning continues to expand, the importance of ensuring its safety cannot be overstated. A key concern
in this regard is the ability to identify whether a given sample is from the training distribution, or is an "Out-Of-Distribution"
(OOD) sample. In addition, adversaries can manipulate OOD samples in ways that lead a classifier to make a confident
prediction. In this study, we present a novel approach for certifying the robustness of OOD detection within a ℓ2-norm
around the input, regardless of network architecture and without the need for specific components or additional training.
Further, we improve current techniques for detecting adversarial attacks on OOD samples, while providing high levels of
certified and adversarial robustness on in-distribution samples. The average of all OOD detection metrics on CIFAR10/100
shows an increase of ∼ 13%/5% relative to previous approaches. Code: https://github.com/FraunhoferIKS/distro
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1. Introduction & Related Work
Although recent advances in Machine Learning (ML)
demonstrate its validity in a wide range of applications,
its use in safety-critical conditions remains challenging.
Since the appearance of unexpected low robustness to
natural [1] and adversarial [2] perturbations to the in-
put data, several types of defenses have been proposed
along the years. Two main branches of defenses exist:
empirical [3] and certified [4], which aim at improving
or assuring the robustness of the prediction in the vicin-
ity of the input, respectively. Certified defenses might
give the inaccurate impression that robustness makes
ML systems ready for deployment in safety-critical ap-
plications. Unfortunately, further issues lie also beyond
robustness, including the lack of guarantees for Out-Of-
Distribution (OOD) data, the lack of fairness, or the lack
of explainability [5].

OOD Detection. With Maximum Softmax Probability
(MSP) [6] as a baseline method, OOD detection aims to
identify inputs that fall outside the scope of the training
distribution. Outlier Exposure (OE) [7] trains models
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to differentiate between in-distribution (ID) and out-of-
distribution (OOD) samples. Recent approaches include
Virtual Outlier Synthesis (VOS) [8] and LogitNorm [9].
VOS adaptively synthesizes virtual outliers, while Log-
itNorm normalizes the logit vector to reduce overconfi-
dence, using thresholding for OOD detection.

Adversarial OOD Detection. Other lines of re-
search [10, 11, 12], focus on providing low confidence for
OOD data when perturbed with adversarial noise. Hein
et al. [10] show that ReLU networks can have arbitrarily
high confidence for data that is far enough from the train-
ing distribution. Additionally, they propose ACET [10],
an adversarial training method to enforce low confidence
on OOD data, but at the cost of decreased ID accuracy.
ATOM [12] addresses this issue by using outlier mining
techniques to automatically select a diverse set of OOD
samples from a large pool of potential OOD samples.

Guaranteed OOD Detection. Recent studies like Bit-
terwolf et al. [13], Meinke et al. [14] bring forth ℓ∞-norm
certified robustness for OOD data with a simple but ef-
fective method: Interval Bound Propagation (IBP) [15].
GOOD [13] proposes a training approach using IBP, but
it produce loose bounds, impacting accuracy. While
ProoD [14] combines a certified discriminator and OE
model, achieving state-of-the-art performance but with
practical limitations: low certified accuracy, reliance on
external datasets, and reduced scalability due to IBP’s
impact on larger models.

In this study, we propose a novel technique for certify-
ing OOD detection within the ℓ2-norm of the input sam-
ple, without requiring the use of binary discriminators
or specific training. This enables us to establish a guar-
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Table 1
Comparison between this work and previous methods in terms of ID and OOD robustness properties. In this case, the
✓indicates that property was provided in the work. While (✓) indicates that the property is actually lower than expected.

Methods
In-Distribution (ID) Accuracy Out-Of-Distribution (OOD) Detection

Clean Adversarial Certified Clean Adversarial Certified Asymptotic
ℓ∞ ℓ2 ℓ∞ ℓ∞ ℓ2 underconfidence

- Standard
OE [7] ✓ ✓
VOS [8] ✓ ✓
LogitNorm [9] ✓ ✓
- Adversarial
ACET [10] (✓) ✓ ✓ (✓)
ATOM [12] (✓) ✓ (✓)
- Guaranteed
GOOD [13] ✓ ✓ ✓
ProoD [14] ✓ ✓ ✓ ✓ ✓
DISTRO (Our) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

anteed upper bound on the classifier’s confidence within
a defined region surrounding the input. Unlike before,
certified robust OOD detection can now be computed for
standard OOD detection approaches. Additionally, we
incorporate a diffusion denoiser [16, 17], which recovers
the perturbed images and returns high quality denoised
inputs. This leads to better levels of both adversarial and
certified robustness for ID and OOD data. This work and
previous methods are compared in Table 1.

In summary, our contributions are:

• A novel technique to robustly certify the con-
fidence of any classifier within an ℓ2-norm on
OOD data. This technique can be applied to any
architecture and does not require additional com-
ponents, even though it has higher computational
costs compared to previous approaches.

• A method named DISTRO: DIffusion denoised
SmooThing for Robust OOD detection. This
method incorporates a diffusion denoiser model
to improve the detection of adversarial and cer-
tified OOD samples, while providing high adver-
sarial and certified accuracy for ID data.

2. Background

We define a hard classifier as a function 𝑓 : R𝑑 → 𝒴
which maps input samples 𝑥 ∈ R𝑑 to output 𝑦 ∈ 𝒴 ,
where 𝒴 = {1, . . . ,𝐾} is the discrete set of 𝐾 classes.
Additionally, we introduce a soft version 𝐹 : R𝑑 →
P(𝒴) of 𝑓 , where P(𝒴) is the set of probability distri-
butions over 𝒴 . It is possible to convert any soft clas-
sifier 𝐹 into a hard classifier 𝑓 by mapping 𝑓(𝑥) =
argmax𝑦∈𝒴 𝐹 (𝑥)𝑦 . Additionally, we define as 𝒩 (0, 1)
the standard Gaussian distribution, as Φ(𝑥) the Gaussian
CDF and as Φ−1(𝑥) its inverse (or quantile).

Robustness Certificates. Even though an
adversarially-trained network is resilient to attacks

created during training, it can still be susceptible
to unseen new attacks. To overcome this problem,
certified defenses formally guarantee the stability of the
prediction in a neighbourhood of the input. In other
words, a neural network 𝑓 is certifiably robust for the
input 𝑥 ∈ R𝑑, if the prediction for all perturbed versions
�̃� remains unchanged such that ‖�̃�− 𝑥‖𝑝 ≤ 𝜖, where
‖·‖𝑝 is the ℓ𝑝-norm around 𝑥 of size 𝜖 > 0.

Randomized Smoothing. This robustness verifica-
tion method [4] computes the ℓ2-norm certificates around
an input sample 𝑥 by counting which class is most likely
to be returned when 𝑥 is perturbed by isotropic Gaussian
noise. Formally, given a soft classifier 𝐹 , randomized
smoothing considers a smooth version of 𝐹 defined as:

𝐺(𝑥)
def
= E

𝛿∼𝒩 (0,𝜎2𝐼)
[𝐹 (𝑥+ 𝛿)] , (1)

where 𝜎 > 0 represents the standard deviation. As pre-
viously, we define the hard version of 𝐺(𝑥) as 𝑔(𝑥) =
argmax𝑦∈𝒴 𝐺(𝑥)𝑦 . Cohen et al. [4] demonstrated that
𝐺 is robust to perturbations of radius 𝑅, where the radius
𝑅 is defined as the difference in probabilities between
the most likely class and the second most likely class. A
more general interpretation is given by Yang et al. [18].

Lemma 2.1. [Yang et al. [18]] Given a smoothed clas-
sifier 𝐺 defined as in Equation 1, such that 𝐺(𝑥) =
(𝐺(𝑥)1, . . . , 𝐺(𝑥)𝐾) is a vector of probabilities that 𝐺
assigns to each class 1, . . . ,𝐾 . Suppose 𝐺 predicts class 𝑐
on input 𝑥, and the probability is 𝑝 = 𝑚𝑎𝑥𝑦∈𝒴𝐺(𝑥)𝑦 >
1/2, then 𝐺 continues to predict class 𝑐 when 𝑥 is perturbed
by any 𝛿 with:

‖𝛿‖2 < 𝜎Φ−1(𝑝).

One should consider 𝑝 as the probability that the
smoothed classifier will assign to the predicted class
rather than any other. As a consequence, if 𝑝 > 1/2,



it will continue to do so even if the input is perturbed
by Gaussian noise of magnitude smaller than the radius
𝑅 = 𝜎Φ−1(𝑝).

Salman et al. [19] show that randomized smoothing
can postprocess the network to make it locally Lips-
chitz continuous. The connection between randomized
smoothing and Lipschitz continuity is provided in the
following lemma, which offers an analytical form of the
gradient of a smooth function.

Lemma 2.2. [Stein [20]] Let 𝜎 > 0, let ℎ : R𝑑 → R
be measurable, and let 𝐻(𝑥) = E𝛿∼𝒩 (0,𝜎2𝐼)[ℎ(𝑥 + 𝛿)].
Then 𝐻 is differentiable, and moreover:

∇𝐻(𝑥) =
1

𝜎2 E
𝛿∼𝒩 (0,𝜎2𝐼)

[𝛿 · ℎ(𝑥+ 𝛿)] .

The smoothed function 𝐻 is also known as the Weier-
strass transform ofℎ, and a classical property of the Weier-
strass transform is its induced smoothness.

Diffusion Denoised Smoothing. In a nutshell, for-
ward diffusion involves adding Gaussian noise to an im-
age until it produces an isotropic Gaussian distribution
with a large variance. Denoising diffusion probabilistic
models work by learning how to reverse this process. In
formal terms, given an input sample 𝑥 ∈ R𝑑, a diffu-
sion model selects a predetermined timestep 𝑡 ∈ N+ and
samples a noisy image 𝑥𝑡 as follows:

𝑥𝑡
def
=

√
𝛼𝑡 · 𝑥+

√
1− 𝛼𝑡 · 𝒩 (0, 𝐼), (2)

where the amount of noise to be added to the image is
determined by a constant called 𝛼𝑡 derived from 𝑡.

As Salman et al. [21] suggested, denoising Gaussian
pertubed images leads to out-of-the-box certified robust-
ness for plain models. Following this trend Carlini et al.
[17] make use of a diffusion model as one-shot denoiser
achieving state-of-the-art performances. The minor pro-
posed adjustment held in the estimation of 𝑡, computed
such that 1−𝛼𝑡

𝛼𝑡
= 𝜎2. Additionally, the perturbed ver-

sion �̃� = 𝑥 + 𝛿 is scaled by
√
𝛼𝑡, to match the noise

model of Equation 2.

3. Certified Robust OOD Detection
This section explains how using local Lipschitz conti-
nuity, achieved through smoothing the classifier with
Gaussian noise, can guarantee the detection of OOD sam-
ples within a ℓ2-sphere around the input.

Preliminaries. To determine how well a classifier
distinguishes between ID and OOD samples, it is common
to threshold the confidence level and to calculate the
area under the receiver operating characteristic curve
(AUROC or AUC). Formally, let us consider a function1

1e.g. the Maximum Softmax Probability [6], or the Energy func-
tion [22].

ℎ ∈ R𝑑 → R, the AUC is defined as:

AUCℎ(𝒟𝑖𝑛,𝒟𝑜𝑢𝑡) = E
𝑥∼𝒟𝑖𝑛,
𝑧∼𝒟𝑜𝑢𝑡

[︀
1ℎ(𝑥)>ℎ(𝑧)

]︀
,

where 𝒟𝑖𝑛,𝒟𝑜𝑢𝑡 are ID and OOD data sets, respectively,
and 1 returns 1 if the argument is true and 0 otherwise.
A number of prior works [11, 13, 12, 14] also investigated
the worst-case AUC (WCAUC), which is defined as the
lowest AUC attainable when every OOD sample is per-
turbed so that the highest level of confidence is achieved
within a specific threat model. Specifically, the WCAUC
is defined as:

WCAUCℎ(𝒟𝑖𝑛,𝒟𝑜𝑢𝑡) = E
𝑥∼𝒟𝑖𝑛,
𝑧∼𝒟𝑜𝑢𝑡

[︂
1ℎ(𝑥)> max

‖𝑧−𝑧‖𝑝≤𝜖
ℎ(𝑧)

]︂
.

Due to the intractable nature of the maximization
problem, we can compute upper or lower bounds only,
i.e. ℎ(𝑧) ≤ max‖𝑧−𝑧‖𝑝≤𝜖 ℎ(𝑧) ≤ ℎ̄(𝑧). The lower
bound ℎ(𝑧) is typically calculated using projected gradi-
ent methods [2, 23] and named Adversarial AUC (AAUC)
(upper bound of WCAUC). In the context of ℓ∞-norm,
the upper bound ℎ̄(𝑧), called Guaranteed AUC (GAUC)
(lower bound of WCAUC), is computed using IBP in Bit-
terwolf et al. [13] and Meinke et al. [14].

Here, we propose a method for computing the upper
bound of any classifier without the need for special train-
ing or modifications. Thus, the main theorem for an
ℓ2-norm robustly certified upper bound is stated.

Theorem 3.1. Let 𝐹 : R𝑑 → P(𝒴) be any soft classi-
fier and 𝐺 be its associated smooth classifier as defined in
Equation 1, with 𝜎 > 0. If 𝑝 = max𝑦∈𝒴 𝐺(𝑥)𝑦 > 1/2,
then, we have that:

max
𝑦∈𝒴

𝐺(𝑥+ 𝛿)𝑦 ≤
√︂

2

𝜋
Φ−1(𝑝) + 𝑝, (3)

for every ‖𝛿‖2 < 𝜎Φ−1(𝑝).

Proof. As a prerequisite to proving the theorem, we need
to know the analytic form of the gradient of a smoothed
function given in Lemma 2.2. Let us consider the soft
classifier 𝐹 (𝑥) : R𝑑 → P(𝒴), and its smooth version
𝐺(𝑥) = E𝛿∼𝒩 (0,𝜎2𝐼)[𝐹 (𝑥 + 𝛿)], with 𝜎 > 0. Since 𝐹
its a measurable function, we consider the Weierstrauss
transform of 𝐹 (which coincide with the smooth version
of 𝐹 ):

E
𝛿∼𝒩 (0,𝜎2𝐼)

[𝐹 (𝑥+ 𝛿)] =
(︀
𝐹 * 𝒩 (0, 𝜎2𝐼)

)︀
(𝑥),

where * denotes the convolution operator. Thus, 𝐺(𝑥)
is differentiable and from Lemma 2.2 we have:

∇𝐺(𝑥) =
1

𝜎2 E
𝛿∼𝒩 (0,𝜎2𝐼)

[𝛿 · ℎ(𝑥+ 𝛿)] .



Since 𝐹 : R𝑑 → [0, 1] and ℓ2 is self-dual, it is sufficient
to show that the gradients of 𝐺 are bounded in ℓ2. From
Lemma 2.2, for any unit vector 𝑣 ∈ R𝑑 we have that
|⟨𝑣,∇𝐺(𝑥)⟩| is equal to:⃒⃒⃒⃒

1

(2𝜋𝜎2)𝑑/2

∫︁
R𝑑

𝐹 (𝑡)

⟨
𝑣,

𝑡− 𝑥

𝜎2

⟩
𝑒

(︁
− 1

2𝜎2 ‖𝑥−𝑡‖22
)︁
𝑑𝑡

⃒⃒⃒⃒
,

≤ 1

(2𝜋𝜎2)𝑑/2

∫︁
R𝑑

⃒⃒⃒⃒⟨
𝑣,

𝑡− 𝑥

𝜎2

⟩⃒⃒⃒⃒
𝑒

(︁
− 1

2𝜎2 ‖𝑥−𝑡‖22
)︁
𝑑𝑡,

where we make use of the triangle inequality and know
that 𝐹 is bounded by 1. Given that projections of Gaus-
sians are Gaussians and from the classical integration of
the Gaussian density, we obtain:

1

(2𝜋𝜎2)𝑑/2

∫︁
R𝑑

⃒⃒⃒⃒⟨
𝑣,

𝑡− 𝑥

𝜎2

⟩⃒⃒⃒⃒
𝑒

(︁
− 1

2𝜎2 ‖𝑥−𝑡‖22
)︁
𝑑𝑡,

=
1

𝜎2 E
𝑍∼𝒩 (0,𝜎2)

[|𝑍|] =
√︂

2

𝜋𝜎2
,

where we consider the supremum over all unit vectors

𝑣. Since, we know that 𝐺(𝑥) is
√︁

2
𝜋𝜎2 -Lipschitz in ℓ2,

it is possible to use the Lipschitz constant to bound the
difference between 𝐺(𝑥+ 𝛿) and 𝐺(𝑥) for any value of
𝛿, with ‖𝛿‖2 < 𝜎Φ−1(𝑝), where 𝑝 = max𝑦∈𝒴 𝐺(𝑥)𝑦 .
Formally:

|𝐺(𝑥+ 𝛿)| ≤
√︂

2

𝜋𝜎2
‖𝛿‖2 + |𝐺(𝑥)|,

where we make use of the reverse triangle inequality.
Since 𝐺(𝑥) : R𝑑 → [0, 1], we can assume |𝐺(𝑥)| =
𝐺(𝑥), and moreover:

max
𝑦∈𝒴

𝐺(𝑥+ 𝛿)𝑦 ≤
√︂

2

𝜋
Φ−1(𝑝) + max

𝑦∈𝒴
𝐺(𝑥)𝑦.

In other words, if the smooth classifier assigns the
most likely class more than half the time, it is locally
Lipschitz continuous in 𝑥, and its maximum prediction is

bounded within a radius smaller than 𝑅 =
√︁

2
𝜋
Φ−1(𝑝).

Discussion

While this theorem provides some advantages, it is im-
portant to note a couple of its limitations. One of the
main limitations is that the upper bound of the smooth
classifier 𝐺 only applies to 𝐺 and not to the original clas-
sifier 𝐹 . As a result, the guarantee only applies to 𝐺, and
its robustness at a given input point 𝑥 cannot be precisely
evaluated or certified. To overcome this, Monte Carlo
algorithms can be used to approximate these evaluations
with high probability [4].

Another limitation is that the guarantees provided by
this theorem are only probabilistic in practice. Therefore,
a hypothesis test [24] should be used to avoid making
predictions with low confidence. As with randomized
smoothing [4], a large number of samples must be gener-
ated in order to achieve high levels of confidence in the
certification radius. However, generating these samples
can be computationally expensive for complex models.

Despite these limitations, the theorem provides a novel
way of calculating the upper bound of any classifier, with-
out the need for special training or modification. Addi-
tionally, we provide a tighter certificate compared to pre-
vious approaches [13, 14], as they used IBP. This can be
useful for evaluating the certified robustness of a broader
category of standard OOD detection methods as well as
larger models, where IBP bounds explode in size and
make them unusable [25].

4. DISTRO: DIffusion denoised
SmooThing for Robust OOD
detection

In this section, we present our method. Essentially, it
combines three techniques: (i) a diffusion denoiser, (ii)
a standard OOD detector, and (iii) a certified binary dis-
criminator. Each component of this method is designed
to overcome a specific problem of ordinary classifiers, as
they are not robust to adversarial attacks, either ID or
OOD, and do not detect OOD inputs well.

Denoiser
denoiseonce(𝑥+ 𝛿; 𝑡)

P(𝑦|𝑥)

Classifier
ℎ(�̃�)

Discriminator
𝑔(𝑥)

𝑥 �̃� P(𝑦|𝑥, 𝑖)

P(𝑖|𝑥)

Figure 1: Overview of DISTRO.

In Figure 1, we show an overview of DISTRO. First, a
diffusion denoiser is employed before the classifier itself
to provide robustness against ID attacks. As a result,
adversarial noise introduced by the attack is mitigated by
the denoiser. This technique has already been proven to
be very efficient and does not affect clean accuracy [17].

Secondly, numerous post-hoc OOD detection methods
exist. The most straightforward being MSP [6], which
can be added to the image classifier without retraining
or fine-tuning. Alternatively, standard OOD detection
methods, such as OE [7], VOS [8] or LogitNorm [9], could
also replace the classifier. Thirdly, to make the model
more robust to OOD adversarial attacks, we add a binary
discriminator to the model that is trained to be certifiably
robust against OOD attacks. Additionally, this discrimi-
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Figure 2: Asymptotic confidence as: (a) MSP [6] and (b) Energy [22], for several OOD detection models divided into two
categories: standard (continuous line) and guaranteed (dashed line).

nator is combined with the OOD detection method from
(ii) which is necessary to have the property of asymptotic
underconfidence for far-OOD inputs.

Configuration. This method does not require any
new technical knowledge. We begin by making the as-
sumption that OOD samples are unrelated and thus max-
imally un-informative to the ID data. Thus, for every
class 𝑦 ∈ 𝒴 , the conditional distribution on the input 𝑥
is given as:

P(𝑦|𝑥) = P(𝑦|𝑥, 𝑖)P(𝑖|𝑥) + 1

𝐾
(1− P(𝑖|𝑥)), (4)

where P(𝑖|𝑥) is the conditional distribution representing
the probability that 𝑥 is part of the ID, while P(𝑦|𝑥, 𝑖) is
the conditional distribution representing the ID. Similarly
to Meinke et al. [14], we assign independent models to
each distribution:

• P(𝑦|𝑥, 𝑖) = ℎ(denoiseonce(𝑥 + 𝛿; 𝑡)), where
ℎ : R𝑑 → [0, 1] is the confidence of the main
classifier 𝐹 (𝑥), and �̃� = denoiseonce(𝑥 + 𝛿; 𝑡)
represents one single step of denoising operation
with 𝛿 ∼ 𝒩 (0, 𝜎2𝐼).

• P(𝑖|𝑥) = 1

1+𝑒−𝑔(𝑥) , where 𝑔 : R𝑑 → R refers
to a binary discriminator trained in a certified
robust manner based on an ℓ∞-threat model as
in Bitterwolf et al. [13], Meinke et al. [14].

As can be seen, the denoiser is the main addition. The
one-step denoiser denoiseonce estimates the fully de-
noised image 𝑥 from the current timestep 𝑡. Then it
computes the average between the denoised image and
the noisy image from the previous timestep. As discussed
in Carlini et al. [17], multiple applications of the denoiser
will only destroy information about 𝑥. Denoising with
iterative steps essentially transfers the classification task
to the denoiser, which can determine how the image
should be filled. For these reason, we apply only a single
step of denoising.

Asymptotic Underconfidence. Here, we show that
by coupling a classifier trained to be OOD aware with a
diffusion denoiser and running a certified discriminator
in parallel, we can guarantee asymptotic underconfidence
for data far enough from the training distribution.

To obtain asymptotic underconfidence of the joint clas-
sifier, we consider P(𝑦|𝑥, 𝑖) ≤ 1 and rewrite Equation 4
as follows:

P(𝑦|𝑥) ≤ 𝐾 − 1

𝐾
P(𝑖|𝑥) + 1

𝐾
. (5)

Since the right term only depends on P(𝑖|𝑥), we just
need to assure that lim𝛽→∞ P(𝑖|𝛽𝑥) → 0. If we employ
a certified binary discriminator, trained with IBP on OOD
data, as descibed in Meinke et al. [14], to compute P(𝑖|𝑥),
we achieve asymptotic underconfidence independently
of the main classifier. Readers are referred to Meinke
et al. [14] for a more detailed explanation.

Empirical Evaluation. In Figure 2, we show an em-
pirical evaluation of the asymptotic confidence for stan-
dard and robust OOD detection methods2. In this test, we
consider a single ID sample 𝑥 and multiply by a scalar 𝛽.
In Figure 2a we plot the MSP [6] as confidence, while in
Figure 2b we plot the Energy [22] for increasing values of
𝛽 > 0. In the context of MSP, we observe that standard
OOD detection methods are asymptotically overconfi-
dent, after a small drop, whereas certified methods such
as GOOD [13], ProoD [14] and DISTRO converge to 1/𝐾 .
On the other hand, for Energy as 𝛽 increases, VOS [8],
LogitNorm [9], and Plain models asymptotically decrease,
whereas GOOD [13], ProoD (Meinke at al., 2022), and
DISTRO remain stable.

As a result, underconfidence can be easily obtained
when using an energy score instead of MSP, regardless of
whether it is on a plain or OOD aware model. However,
asymptotic underconfidence does not necessarily imply
that the model will perform better in detecting OOD
2the models are described in section 5.



samples since all inputs are usually normalized to some
range (e.g. [0, 1] or [-1, 1]). Thus the choice of MSP over
the energy function is directly related to the possibility
of certified robustness for OOD samples.

5. Experiments
In this section, DISTRO is evaluated for a variety of
robust ID and OOD tests and is compared to previous
approaches. As baseline, we consider the pre-trained
models3 from Meinke et al. [14]. The normal trained
(Plain) and outlier exposure (OE) [7] models share the
same ResNet18 [26] architecture and hyperparameters
as ProoD [14]. GOOD [13] uses a ’XL’ convolutional
neural network. Additionally, we evaluate the pretrained
DenseNet101 [27] models for ATOM [12] and ACET [10];
and the standard OOD detection methods: VOS4 [8] and
LogitNorm5 [9] with the pretrained WideResNet40 [28]
models provided in the respective works. We consider
DDS [17] with a pre-trained diffusion model6 from Nichol
and Dhariwal [16] in front of the OE classifier. With
DISTRO, we incorporate the same pre-trained diffusion
model of DDS before the main classifier of ProoD, and
maintain its discriminator. The diffusion models have
been used with the settings described in Carlini et al. [17].
In the context of ℓ∞, we set 𝜎 =

√
𝑑 · 𝜖.

We evaluate all methods on the standard datasets
CIFAR10/100 [29] as ID. For the OOD detection
evaluation we consider the following set of datasets:
CIFAR100/10, SVHN [30], LSUN [31] cropped
(LSUN_CR) and resized (LSUN_RS), TinyImageNet [32]
cropped (TinyImageNet_CR), Textures [33] and
synthetic (Gaussian and Uniform) noise distributions.
We use a random but fixed subset of 1000 images for
all datasets considered as a test for OOD. For ID, we
consider the entire dataset. We run all our experiments
on a single NVIDIA A100.

5.1. In-Distribution Results
Here, we compare clean, adversarial, and certified ac-
curacy for ID samples. Adversarial accuracy is evalu-
ated with AutoAttack [23] for ℓ∞-norm attacks of budget
𝜖 ∈ {2/255, 8/255}. We ran the standard version of Au-
toAttack without additional hyper-parameters. Certified
accuracy is evaluated for ℓ2-norm robustness of deviation
𝜎 ∈ {0.12, 0.25}. To this end, random smoothing is per-
formed on 10’000 Gaussian distributed samples around
the input with a failure probability of 0.001. All 𝑅 > 0
are considered for the certified accuracy. In the context of

3https://github.com/AlexMeinke/Provable-OOD-Detection
4https://github.com/deeplearning-wisc/vos
5https://github.com/hongxin001/logitnorm_ood
6https://github.com/openai/improved-diffusion

DISTRO and DDS we run 100 evaluation of the entire test
set of CIFAR10 to estimate the clean accuracy and report
the average. Further, we ran AutoAttack in both rand
and standard modes, and considered the lowest results
for DISTRO and DDS.

Table 2
ID Accuracy: Results of clean, adversarial and certified ac-
curacy (%) on the CIFAR10 test set. The grayed-out models
have an accuracy drop greater than 3% relative to the model
with the highest accuracy.

Method Clean
Adversarial (ℓ∞) Certified (ℓ2)

𝜖 = 2/255 𝜖 = 8/255 𝜎 = 0.12 𝜎 = 0.25

Plain* 95.01 2.16 0.00 28.14 14.17
OE* 95.53 1.97 0.00 31.48 10.88
VOS† 94.62 2.24 0.00 13.13 10.02
LogitNorm‡ 94.48 2.65 0.00 12.53 10.25
ATOM* 92.33 0.00 0.00 0.00 0.00
ACET* 91.49 69.01 6.04 57.13 12.48
GOOD*

80 90.13 11.65 0.23 17.33 10.31
ProoD* Δ = 3 95.46 2.69 0.00 33.92 13.50
DDS 95.55 72.97 24.09 82.26 64.58
DISTRO (our) 95.47 73.34 27.14 82.77 65.63
* Pre-trained models from Meinke et al. [14], † Pre-trained from Du et al. [8],

‡ Pre-trained from Wei et al. [9].

In Table 2, we show the results. As expected, Plain
and OE are not robust to adversarial attacks. This ap-
plies to ProoD as well, since OE is its primary classifier.
Similarly, standard OOD detection methods, as Logit-
Norm and VOS, show poor robustness for ID data. GOOD
demonstrates better results than ProoD for adversarial
attacks and worse in terms of certified accuracy. Supris-
ingly, ACET reveals strong adversarial and certified ac-
curacy despite of its reduced clean accuracy. Meanwhile,
ATOM results in zero for all tests since any slight per-
turbation of the input triggers the last neuron used for
OOD detection.

Discussion

It is clear that diffusion models can enhance adversarial
and certified robustness while maintaining high clean
accuracy. As diffusion introduces variance into gradient
estimators, standard attacks become much less effective.
Nevertheless, robustness accuracy of diffusion models
varies over different runs for the same input, so it should
be defined differently from deterministic accuracy, e.g. as
expectation. Luckily, one-shot diffusion introduces such
a tiny variance that throughout a few of runs, our results
were similar.

5.2. Evaluation Metrics
To discriminate between ID and OOD samples, we use
the confidence of the classifier, i.e. MSP [6]. Tradition-
ally, the following metrics are used to evaluate the OOD
detection performance: (i) false positive rate (FPR95) of
OODs when ID samples have a 95% true positive rate; (ii)
the area under the receiver operating characteristic curve

https://github.com/AlexMeinke/Provable-OOD-Detection
https://github.com/deeplearning-wisc/vos
https://github.com/hongxin001/logitnorm_ood
https://github.com/openai/improved-diffusion


(AUROC or AUC); and (iii) the area under the precision-
call curve (AUPR). In order to determine robustness, we
compare adversarial (AAUC, AAUPR, AFPR) and guar-
anteed (GAUC, GAUPR, GFPR) versions of the previous
metrics. For the adversarial metrics, we use the settings
in Meinke et al. [14] to ensure a fair comparison.
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Figure 3: Kernel density estimation (bandwidth = 1) of the
distribution of certified smooth (𝜎 = 0.12) scores for DISTRO
on ID (CIFAR10) and OOD (all other datasets) samples.

Guaranteed. The guaranteed metrics (GAUC, GAUPR
and GFPR) are computed for ℓ2 and ℓ∞ norms robustness
certificates. Similarly to Meinke et al. [14], the ℓ∞-norm
is obtained with IBP only on OOD data. On the other
hand, the ℓ2-norm is computed with Theorem 3.1 on both
ID and OOD data. Similarly to subsection 5.1, we sam-
pled 10’000 Gaussian data points around the input with
a deviation 𝜎 = 0.12. Since, the certified bound is only
probabilistic in practice, we ran a binomial proportion
confidence test [34] with failure probability of 0.001. We
have assigned a score of 0 to all samples that fail to be
certified, i.e. with 𝑝 ≤ 1/2. The Lipschitz continuity
does not hold in the case of non-certified samples, there-
fore we are unable to bound the score. To ensure a fair
comparison, we decided to compute the ℓ2-norm GAUC
on both ID and OOD datasets.

In Figure 3, we plot the normalized frequency of occur-
rences of the certified upper bound (

√︀
2/𝜋 ·Φ−1(𝑝)+𝑝)

for ID versus OOD data of DISTRO. We observe that OOD
data tend to peak close to zero, while ID data are spread
out with larger values. This suggests that a large radius
is more likely to be associated with ID data versus OOD
samples. As a result, robustly certifying the detection of
OOD samples becomes more feasible.

5.3. Out-Of-Distribution Results
Here, we describe the results shown in Table 3. As pre-
viously, we grayed-out models with an accuracy drop
greater than 3% with respect to the model with high-
est accuracy. The objective of this choice is to prioritize

clean ID accuracy over all other metrics. A comparison
of the remaining metrics is then made on an equal basis.
Despite this, there is no direct comparison between the
GAUC of ℓ2 and ℓ∞ norms. This is primarily due to the
fact that the guaranteed upper bound of ℓ∞ is computed
only for OOD data, whereas ℓ2 is computed for both (ID
& OOD). Additionally, we choose any radius 𝑅 > 0 for
ℓ2, while for ℓ∞, 𝜖 is fixed to 0.017.

We observe that the performances of LogitNorm and
VOS on clean AUC, AUPR and FPR are suboptimal. The
reason for this is that we are evaluating MSP [6] instead
of the suggested normalization [9] and energy [8] func-
tions for LogitNorm and VOS, respectively. To ensure
a fair comparison we decided to standardize the output
function across all models. On CIFAR100, only the most
effective methods of CIFAR10 have been tested.

Outcomes. In light of these considerations, we note
that OE achieved the highest clean AUC, AUPR, and
FPR. In case of AAUC, ACET shows the best results for
CIFAR10. While ATOM achieves close to optimal per-
formance for the guaranteed ℓ2-norm AUC, AUPR and
FPR. Both methods are trained adversarially on outliers,
which makes them more robust on OOD data, but at the
expense of a reduced clean accuracy.

Table 4: Overall average between
the metrics of Table 3
for CIFAR10/100 (C-10,
C-100).

Method Average
C-10 C-100

Plain 44.02 34.48
OE 50.12 40.42
VOS 38.60 -
LogitNorm 46.31 -
ACET 59.64 41.86
ATOM 64.79 54.38
GOOD80 64.74 -
ProoD ∆ = 3 64.09 52.51
DISTRO (our) 77.08 59.95

Similarly to the
ID results, DISTRO
demonstrates the po-
tential benefits of
diffusion models to
augment the model
robustness in terms
of ℓ2-norm guaran-
teed and adversar-
ial AUCs. Although
there is a slight de-
crease in ℓ∞-norm
GAUC, GAUPR and
GFPR, which could
likely be suppressed
by fine tuning the

classifier in conjunction with the denoiser. In Table 4, we
average all the metrics of Table 3 for CIFAR10 (including
clean ID accuracy). Surprisingly, ATOM shows similar
results as ProoD and GOOD. This can be related to the
high certification radius obtained for GAUC of ℓ2-norm.

5.3.1. Similar Model Capacity

Here, we outline the configurations and results of Ta-
ble 5. Each technique is evaluated using the same ar-
chitecture, acknowledging that the results from Table 3
do not depend just on the performance of the method,
but also on the robustness of the model and the specific

7This problem can be addressed by considering 𝑅 ≥
√
𝑑 · 𝜖.



Table 3
Robust OOD detection. We consider the following metrics: clean top-1 accuracy on CIFAR10/100 test sets, clean AUC,
guaranteed (GAUC), adversarial AUC (AAUC), clean AUPR, guaranteed AUPR (GAUPR), adversarial AUPR (AAUPR), clean
FPR95% (FPR), guaranteed FPR95% (GFPR) and adversarial FPR95% (AFPR). Averaging was performed on a variety of OOD
datasets. We consider MSP [6] for all methods and metrics (with temperature 𝑇 = 1). The guaranteed ℓ2-norm is computed
for 𝜎 = 0.12 for all𝑅 > 0, while the adversarial and guaranteed ℓ∞-norm are computed for 𝜖 = 0.01. The grayed-out models
have an accuracy drop greater than 3% relative to the model with the highest accuracy. Bold numbers are superior results.

ID: CIFAR10 Acc. AUC↑ GAUC↑ AAUC↑ AUPR↑ GAUPR↑ AAUPR↑ FPR↓ GFPR↓ AFPR↓
ℓ2 ℓ∞ ℓ∞ ℓ2 ℓ∞ ℓ∞ ℓ2 ℓ∞ ℓ∞

- Standard
Plain* 95.01 94.56 48.86 0.00 24.52 99.42 60.05 0.00 82.30 35.72 100.0 100.0 96.72
OE* 95.53 98.78 46.88 0.00 37.91 99.87 63.08 0.00 84.49 4.71 100.0 100.0 70.26
VOS† 94.62 90.82 30.13 0.00 20.62 99.15 41.62 0.00 81.80 61.66 94.10 100.0 100.0
LogitNorm‡ 94.48 96.71 40.73 0.00 39.76 99.64 49.31 0.00 86.47 13.95 100.0 100.0 91.10
- Adversarial
ACET* 91.48 97.24 60.21 0.00 93.01 99.68 76.22 0.00 99.16 13.82 95.65 100.0 32.15
ATOM* 92.33 98.82 97.15 0.00 44.65 99.86 95.51 0.00 85.74 4.14 5.04 100.0 62.65
- Guaranteed
GOOD*

80 90.13 93.12 36.45 57.52 78.11 99.22 52.31 89.54 95.19 30.00 100.0 72.45 47.55
ProoD*Δ = 3 95.46 98.72 52.36 59.56 64.22 99.87 66.53 93.89 94.52 5.49 100.0 100.0 86.49
DISTRO (our) 95.47 98.72 88.97 59.53 83.24 99.87 92.75 93.89 97.32 5.29 67.86 100.0 34.56

ID: CIFAR100 Acc. AUC↑ GAUC↑ AAUC↑ AUPR↑ GAUPR↑ AAUPR↑ FPR↓ GFPR↓ AFPR↓
ℓ2 ℓ∞ ℓ∞ ℓ2 ℓ∞ ℓ∞ ℓ2 ℓ∞ ℓ∞

- Standard
Plain* 77.38 81.60 30.63 0.00 16.98 97.84 45.10 0.00 81.27 82.52 100.0 100.0 100.0
OE* 77.28 90.41 39.87 0.00 22.79 98.90 49.46 0.00 81.96 47.49 100.0 100.0 87.74
- Adversarial
ACET* 74.47 90.27 36.36 0.00 27.68 98.84 43.50 0.00 82.60 44.11 90.41 100.0 74.99
ATOM* 71.73 91.72 84.38 0.00 31.52 98.88 79.95 0.00 83.36 30.81 30.09 100.0 73.69
- Guaranteed
ProoD*Δ = 1 76.79 90.90 42.83 37.67 43.81 98.91 50.90 89.66 90.46 42.12 100.0 100.0 97.11
DISTRO (our) 76.78 90.89 59.39 37.53 62.77 98.90 69.41 89.63 93.59 40.94 100.0 100.0 58.58

* Pre-trained models from Meinke et al. [14], † Pre-trained from Du et al. [8], ‡ Pre-trained from Wei et al. [9].

OOD dataset utilized. Therefore we retrain all presented
methods using a ResNet18 [26] architecture for CIFAR10
and CIFAR100 respectively. For methods that require
an additional OOD dataset for training, such as OE [7],
ACET [10], ATOM [12], ProoD [14] and DISTRO, we use
the same subset of OpenImages [35] containing 50’000
images. Furthermore, we consider an input normalization
of 0.5 across all dimensions for both mean and standard
deviation. In addition, we attempt to be as minimally in-
trusive as possible when it comes to the default training
procedure.

For Plain, OE and LogitNorm we run the implemen-
tation8 from Yang et al. [36] and leave the hyperpa-
rameters unchanged. Similarly for ACET and ATOM,
we only change the model architecture and normaliza-
tion and run both implementations from ATOM9. Lastly,
we train ProoD10 from Meinke et al. [14] using their
training configuration files, where the discriminator is
trained for 1000 epochs and the bias shift (∆) is 3/1 for
CIFAR10/100, respectively.

8https://github.com/Jingkang50/OpenOOD
9https://github.com/jfc43/informative-outlier-mining
10https://github.com/AlexMeinke/Provable-OOD-Detection

Discussion

It is evident that the ℓ2-norm GAUC (and GAUPR) di-
verge from zero when standard OOD detection models
are considered. This illustrates the potential of the ℓ2-
norm to provide certified OOD detection for any method
and architecture. Consequently, it facilitates the exper-
imental evaluation of new robust OOD detection algo-
rithms (both adversarial and certified).

As a side note, the one-shot denoiser appears to im-
prove robustness certification metrics while not compro-
mising clean metrics, such as AUC. In some cases, it also
appears to be slightly better, even though the denois-
ing process should produce images that are as similar
as possible to those considered during training. This is
because a single shot of denoising does not compromise
the OOD sample or generate an allucinated one. Addi-
tionally, one-shot denoising introduces so little variance
that in this benchmark, the results were similar across
multiple runs.

6. Conclusion
Current OOD robustness certification relies on external
discriminators or loose certification mechanisms [14].

https://github.com/Jingkang50/OpenOOD
https://github.com/jfc43/informative-outlier-mining
https://github.com/AlexMeinke/Provable-OOD-Detection


Table 5
Robust OOD detection with ResNet18. We consider the following metrics: clean top-1 accuracy on CIFAR10/100 test
sets, clean AUC, guaranteed (GAUC), adversarial AUC (AAUC), clean AUPR, guaranteed AUPR (GAUPR), adversarial AUPR
(AAUPR), clean FPR95% (FPR), guaranteed FPR95% (GFPR) and adversarial FPR95% (AFPR). Averaging was performed on
a variety of OOD datasets. We consider MSP [6] for all methods and metrics (with temperature 𝑇 = 1). The guaranteed
ℓ2-norm is computed for 𝜎 = 0.12 for all 𝑅 > 0, while the adversarial and guaranteed ℓ∞-norm are computed for 𝜖 = 0.01.
The grayed-out models have an accuracy drop greater than 3% relative to the model with the highest accuracy. Bold numbers
are superior results.

ID: CIFAR10 Acc. AUC↑ GAUC↑ AAUC↑ AUPR↑ GAUPR↑ AAUPR↑ FPR↓ GFPR↓ AFPR↓
ℓ2 ℓ∞ ℓ∞ ℓ2 ℓ∞ ℓ∞ ℓ2 ℓ∞ ℓ∞

Plain 94.32 92.28 35.81 0.00 23.71 99.00 46.83 0.00 82.00 40.21 93.56 100.0 98.88
LogitNorm 94.71 95.58 34.19 0.00 35.00 99.54 49.63 0.00 85.14 33.06 95.12 100.0 92.20
OE 92.41 97.35 50.56 0.00 37.95 99.71 62.25 0.00 85.51 13.44 100.0 100.0 74.91
ACET 93.66 97.86 37.45 0.00 65.21 99.75 50.26 0.00 91.99 8.94 100.0 100.0 50.29
ATOM 91.90 98.12 97.98 97.63 62.79 99.78 98.16 99.78 91.49 8.7 9.42 0.00 51.56
ProoD 95.20 96.91 44.95 63.44 64.61 99.63 60.27 94.37 94.42 16.03 100.0 91.90 78.22
DISTRO (our) 95.20 96.80 86.63 59.86 71.70 99.62 90.80 93.78 95.72 16.55 66.88 99.96 67.59

ID: CIFAR100 Acc. AUC↑ GAUC↑ AAUC↑ AUPR↑ GAUPR↑ AAUPR↑ FPR↓ GFPR↓ AFPR↓
ℓ2 ℓ∞ ℓ∞ ℓ2 ℓ∞ ℓ∞ ℓ2 ℓ∞ ℓ∞

Plain 77.54 84.50 38.11 0.00 24.17 98.16 44.96 0.00 82.32 67.61 100.0 100.0 98.04
LogitNorm 76.25 84.06 40.93 0.00 47.64 98.04 46.80 0.00 87.25 73.70 100.0 100.0 87.98
OE 75.84 88.96 38.90 0.00 17.90 98.72 48.82 0.00 81.43 49.61 100.0 100.0 99.41
ACET 73.71 95.65 42.03 0.00 52.49 99.44 48.54 0.00 89.23 13.96 100.0 100.0 60.39
ProoD 77.77 89.47 40.72 37.68 49.16 98.66 49.97 89.66 91.08 40.44 100.0 100.0 84.15
DISTRO (our) 77.73 88.90 55.57 29.71 51.89 98.60 67.62 87.44 91.71 43.24 100.0 100.0 79.34

We propose an alternative using randomized smooth-
ing [4] for ℓ2-norm certificates, applicable to any classi-
fier without specific requirements or training. In compar-
ison with previously proposed ℓ∞-norm GAUC, standard
approaches for OOD detection show non-zero results for
guaranteed ℓ2-norm AUC and AUPR. Unfortunately, a
large number of samples derived around the input must
be propagated through the network, increasing compu-
tational costs. Additionally, we propose a method com-
bining three techniques: diffusion denoising for noise
removal, an OOD detection method, and a certified bi-
nary discriminator. This combination improves OOD
robustness detection by around 13%/5% on CIFAR10/100
datasets compared to earlier approaches.
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