Distribution-restrained Softmax Loss for the Model Robustness

Hao Wang1, Chen Li2,3,4*, Jinzhe Jiang2,3,4, Xin Zhang2,3,4, Yaqian Zhao2,3,4 and Weifeng Gong2,5

1 School of Computer and Artificial Intelligence, Zhengzhou University, 100 Science Rd., Zhengzhou, China
2 Inspur Electronic Information Industry Co., Ltd, 1036 Langchao Rd., Jinan, China
3 State Key Laboratory of High-End Server & Storage Technology, 1036 Langchao Rd., Jinan, China
4 Shandong Hailiang Information Technology Institutes, 1768 Xinli St., Jinan, China
5 Zhengzhou Yunhai Information Technology Co., Ltd, 278 Xinyi Rd., Zhengzhou, China

Abstract

Recently, the issue of robustness in deep learning models has garnered considerable attention, prompting the development of diverse methods aimed at enhancing model robustness. These approaches encompass adversarial training, architectural modifications, the design of novel loss functions, as well as certified defenses, among others. Despite these efforts, a comprehensive understanding of the underlying principles governing robustness against attacks remains elusive. Here, we have identified a significant fact that affects the robustness of models: the distribution characteristics of softmax values for non-real label samples. We found that the results after an attack are highly correlated with the distribution characteristics. Leveraging this observation, we introduce a novel loss function that effectively mitigates the diversity in softmax distribution. Extensive experimental evaluations demonstrate that our proposed method significantly enhances model robustness without significant time consumption. These findings are poised to contribute valuable insights to the realm of AI safety.

Keywords

Loss function, Adversarial attack, model robustness, AI safety

1. Introduction

While deep neural networks (DNNs) have demonstrated remarkable performance in a variety of applications including computer vision [1], speech recognition [2], and natural language processing [3], they are vulnerable to adversarial attacks, which involve the addition of small perturbations to input examples resulting in incorrect results with high confidence [4]-[8]. As DNNs are being widely used in various domains, ensuring their security by improving their robustness against adversarial attacks has become a critical research area.

Lots of defense techniques have been developed to enhance the adversarial robustness of DNNs [9]-[15]. A recent trend in adversarial defense is the use of certified defenses [16][17], which attempt to provide a guarantee that the model will not be fooled within a norm ball radius around original images. Nevertheless, this type of certified defense have some limitations, such as high computational cost, lower robustness and higher requirements for data distribution. Adversarial training has been identified as the most effective approach [9][10]. Nonetheless, it is important to acknowledge that the adversarial training techniques is time-consuming and entails significant computational resources, often resulting in an adverse impact on standard accuracy metrics [18]. Numerous investigations have observed the existence of a trade-off relationship between standard accuracy and robust accuracy for adversarial training [10],[18]-[20].
Conversely, a number of studies show the evidence indicating that the insights derived solely from adversarial training are not universally reliable or infallible [21]-[22]. Gillmer et al. [21] pointed out that under the given setting, even small standard errors imply that most points can be proven to have misclassified points in their neighbouring region. In this setting, achieving perfect standard accuracy, which can be easily implemented with a simple classifier, is sufficient to achieve perfect adversarial robustness. Starting from Gaussian mixture model, Hu et al. [22] revealed two distinct effects: the first effect is a direct consequence of the constraint of adversarial robustness, which results in a degradation of the standard accuracy due to the optimizing direction change. The second effect is related to the class imbalance ratio between the two classes being considered, which leads to an increase in the difference of accuracy compared to standard training due to a reduction of “norm”.

Hence, to overcome the standard accuracy problems, other methods have been proposed [4]-[11]-[15]. Goodfellow et al. [4] demonstrated that radial basis activation functions are more resistant to perturbations, but their deployment requires significant modifications to existing architectures. Papernot et al. [12] proposed a method to enhance the DNN perturbation robustness using distilled models. However, this method exhibits certain limitations: (1) it requires dual training, which is costly, and (2) theoretically, the second model cannot be more accurate than the first model, which means that it will inevitably lead to some destroy of accuracy (although the test in the paper shows that the accuracy actually improved after distillation on CIFAR10, possibly because the baseline accuracy was not high, only 81.39%).

Wang et al. [23] proposed to use dropout during inference to introduce stochasticity and defend against adversarial attacks. On the other hand, Gu et al. [24] argued that the key issue of adversarial defense is to propose a suitable training process and objective function that can effectively enable the network to learn invariant regions around the training data. To this end, they proposed a deep contractive network to explicitly learn invariant features at each layer and restrict the change of dy with respect to dx by adding a term $\|dy/dx\|2$ to the loss function, ensuring that the perturbations on x have little impact on y. They showed some promising preliminary results [24]. However, this penalty limits the ability of the deep contractive network compared to traditional DNNs [12].

It is worth noting that Rice et al. [25] argued that currently no method in isolation improves distinctly than early stopping. Additionally, Wu et al. [26] pointed out that early stopping can lead to a flatter weight loss landscape, which can result in a smaller robust generalization gap. But only if the training process is sufficiently, it can be beneficial to the test robustness.

In this paper, we present a novel approach for enhancing adversarial robustness through the introduction of a distribution-restrained softmax loss. Through extensive experiments involving adversarial attack tests, we find that pre- and post-attack softmax are highly correlated. Leveraging this observed relationship, we propose a loss function designed to mitigate the diversity in softmax distribution. Leveraging this observed relationship, we propose a loss function designed to mitigate the diversity in softmax distribution. Although our research shares certain similarities with previous studies [12]-[26], we believe that our loss function serves as a valuable complement to address distinct scenarios. Further comparative discussion will be conducted later.

2. Method

In this section, we introduce the method of iterative optimization to generate a transformation robust visualization images. In general, the input image is transformed by a certain operation, and the optimization is performed on this transformed image. Following, the transformation invariance is tested on the concerned model. The process is carried out iteratively until the convergence condition is achieved.

Previous versions of optimization with the zero image produced less recognizable images, while our method can give more informational visualization results.

2.1. Adversarial Attack

The target for adversary is to find an adversarial example x'_i that can fool DNNs to make incorrect predictions. To make it unconspicuous for human, x'_i should not be far away from x_i, by $\|x'_i - x_i\|_p \leq \epsilon$. There are many types of attacks have been proposed [27]-[30]. To verify our method, Iterative Fast Gradient Sign Method (I-FGSM) and Projected Gradient
Descent (PGD) method are used. Only the I-FGSM is shown in the main text for brevity.

Fast Gradient Sign Method (FGSM). FGSM perturbs the natural example x_i by the step size of ϵ along the gradient direction:

$$x_i' = x_i + \epsilon \cdot \text{sign}(\nabla_{x_i} \text{loss}(f(x_i), y_i))$$

(1)

where f is the function of DNN model.

I-FGSM. Also, FGSM can be extended to an iterative version [30], which has been proposed by Kurakin et al.:

$$x_i^{N+1} = \text{Clip}_{x_i, \epsilon} \{x_i^N + \alpha \cdot \text{sign}(\nabla_{x_i} \text{loss}(f(x_i), y_i))\}$$

(2)

where N is the N-th iteration, $\text{Clip}_{x_i, \epsilon}$ indicates the attacked image is clipped within the ϵ-ball of the last step, α is the value of perturbation.

Projected Gradient Descent (PGD). PGD is an iterative method that perturbs the natural example x_i by the certain value of η, and after each step of perturbation, it projects the adversarial example back to the adjacent of x_i:

$$x_i^{(k+1)} = \prod_{k} (x_i^{(k)} + \eta \cdot \text{sign} (\nabla_{x_i} L(f(x_i^{(k)}), y_i)))$$

(3)

where L is the loss function, $\prod_{k} (\cdot)$ is the projection operation, and $x_i^{(k)}$ is the k-th step of the adversarial attack.

It is common to use cross entropy as a loss function for DNN:

$$L(f(x; \theta), y) = -1_y^T \log(\text{softmax}(f(x; \theta)))$$

(4)

where θ is the set of parameters of the classifier, $f(\cdot)$ is the function defined by DNN, and 1_y denotes the one-hot encoding of y.

However, there are some studies indicate that the softmax cross entropy doesn’t guarantee a good robustness [26],[31],[37]-[40]. Following these works, we investigate the pre- and post-attack softmax probabilities on the MNIST dataset [35]. **Figure 1** shows the softmax probabilities on the MNIST dataset. Here, we compares two cases: (1) the probabilities of softmax outputs after attack, (2) the probabilities of second largest softmax outputs before attack. It is obvious to identify the pattern that they are roughly similar (except for the true label 1), which implies after attacks, the second largest softmax probabilities trends to be the largest one. This observation lead us to hypothesize that as the second largest softmax probabilities decrease, it becomes more difficult for an adversarial attack to manipulate them into becoming the largest one. Taking this hypothesis a step further, we posit that the distribution of softmax probabilities may affect the robustness of the model.

2.2. Distribution-restrained Softmax Loss Function (DRSL)

Figure 1: The softmax probabilities after attack and the second maximum softmax probabilities before attack on the MNIST dataset. (0)-(9) Corresponds to true labels of 0-9. The probability after attack is shown in green bar, and the second maximum softmax probabilities before attack is shown in red bar.
As we discussed before, trade-off between standard and robust accuracy is not a universal rule, especially for non-adversarial training method [21]-[24]. Gu et al. [24] argued that the sensitivity of neural networks to adversarial examples is more related to inherent flaws in the training process and objective function, rather than the model architecture.

To further consolidate our findings, a standard accuracy-softmax distribution experiment is performed. Here, we adopt distance as a metric for stochastic of softmax distribution.

Euclidean Distance. Euclidean Distance is a well-used distance measure in the multi-dimensions of space [41]. It is used to compare the absolute distances between two points in the dimensions of space:

\[d_E = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2} \]

where \(a \) and \(b \) are both \(n \) dimensional vectors.

In the metric for stochasticity of softmax distribution case, the vector \(a \) and \(b \) are the real distribution of the output softmax of models and the ideal distribution, respectively. Here, we define the ideal case as a totally average distribution (For example, if there is a four-category classification, the ideal average distribution of the output softmax should be \([0.25, 0.25, 0.25, 0.25]\)).

Two architectures of DNN are tested: regularized Convolutional neural network VGG [32] and multi-head attention based ViT [33]. All the models are established in a comparable size, which will be discussed in the Section 3. Figure 2 gives the distance metric for stochasticity of softmax distribution. It shows our method rise the stochasticity of softmax distribution exactly, both on VGG and ViT models. Also, the result reveals that there are no significant positive correlations between standard accuracy and softmax distribution, that is, with the model accuracy increase, the softmax distribution doesn’t become more sharpness. For cases of VGG, it shows even a negative correlation.

Inspired by the preliminary result above, we assume the softmax distribution is a key factor of adversarial robustness, which is perhaps orthogonal to the standard optimizing direction and will not harm the accuracy significantly. Here, we propose the distribution-restrained softmax loss function towards robust DNN models:

\[
L(f(x; \theta), y) = -1^T \log\text{softmax}(f(x; \theta)) + \tau \cdot d(\text{softmax}(f(x; \theta)), \text{avg})
\]

where \(d(\cdot, \cdot) \) is the distance function, \(\tau \) is the weight of the distance, \(\text{avg} \) is the average distribution.

3. Experiments

In this section, we show the analysis of softmax distribution. Then cases of the robustness results are shown. Different loss functions are compared by adversarial robustness in Section 3.1, respect to different models and datasets. Also, the random noise robustness is tested in Section 3.2.

All networks used ReLUs in the hidden layers and softmax layers at the output. All reported experiments were repeated five times with random initialization of neural network parameters. We compared the proposed functions with Cross Entropy loss (CE), Generalized Cross Entropy loss (GCE) [31] and ours.

![Figure 2](image-url): The distance metric for stochasticity of softmax distribution. (a) is the correlation between standard accuracy and the distance metric of different DNN models, (b) is the distance distribution of different models. CE is the abbreviation of standard cross entropy softmax, DRSL is our method.
All experiments were conducted with identical optimization procedures and architectures, changing only the loss functions. All the parameters size are restricted around 1.6M. And the accuracy deviation of models are restricted to 0.5% (most cases are less than 0.1%). We conducted experiments using VGG [32] and ViT [33] models optimized with the default setting of Adam [34] on the MNIST [35] and CIFAR-10 [36] datasets.

3.1. Adversarial Robustness with Different Loss Functions

Experimental results of adversarial robustness with different loss functions are shown in Figure 3. It reveals that the Distribution-restrained Softmax Loss outperform other loss functions in the VGG model. Besides MNIST dataset, CIFAR-10 are also used to train the models. In comparison, we also tested the loss functions for the ViT model. It can be observed that the advantage holds in the well-used ViT model.

3.2. The Label Noise Robustness with Different Loss Functions

Although our idea is based on analysis of adversarial perturbation, we are also curious about the effect of the noise. That’s because the perturbation can be regard as a kind of noise, many works have pay close attention to their relation [42]-[44]. In this part, we will show a case study of label noise robustness with different loss functions [45]. To visually view the effect of loss function, output dimensions of DNNs are reduced from 10 to 2. Here, several dimensionality reduction method are used [46]. Figure 4 shows the result in MNIST dataset by t-SNE method. As shown in Figure 4(c), with the noise intensity increase, the test accuracy of all the models decrease. While the DRSL maintains the accuracy better than others. To make a further understanding of this phenomenon, dimensionality reduction methods are applied to visualize the softmax distribution. As shown in Figure 4(d) we can find that after a dimensionality reduction, DRSL gives a distinctive structure on the softmax distribution compared to others.

![Figure 3](image1.png)

Figure 3: The Adversarial Robustness with Different Loss Functions for different models. First row is for the MNIST dataset and the second is for CIFAR-10. And first column is VGG and the second is ViT model.

![Figure 4](image2.png)
Figure 4: Dimensionality reduction perspective of different models. The first row is the classification cluster under dimensionality reduction after a standard training, the second row shows the result after attack of different models, and the third row shows the result after the label noise added. (a) is test accuracy with standard training, (b) is attack success rate, and (c) is the test accuracy with label noise $\eta=0.8$, respectively. (d) is the visualization after dimensionality reduction for three loss functions. Labels of category are shown in corresponding colors. And for the case of adversarial example, attacked data points are shown in black.

Difference to clusters of CE and GCE that are “caterpillar-like”, DRSL gives “nematode-like” clusters. After attacks, adversarial examples of other two models are distributed in the reduced space, while DRSL’s are concentrated at the tip of clusters (Shown in Figure 4(d), second row. Adversarial examples are shown as black dots). That makes our method promising to discriminate adversarial examples, which need a further study in future. And under a label noise disturbed, models with other loss functions show a scene of chaos, while DRSL maintain a curve segment shape in the reduced space, which is relatively easy to distinguish of different categories. Therefore, this analysis shows that the DRSL function is not only helpful to adversarial robustness, but can also capture the label noise robustness.

4. Conclusions

Robustness is a vital property for DNN models. In this paper, we have identified a significant factor that affects the robustness of models: the distribution characteristics of softmax values for non-real label samples. We found that the results after an attack are highly correlated with the distribution characteristics. And after the distribution diversity of softmax is suppressed in loss function, we find a significant improvement of model robustness. Although there are already some techniques to address model robustness, we believe that our loss function can serve as a valuable complement. For instance, after dimensionality reduction, DRSL show its potential to recognize the contaminated data. Also, DRSL can be applied not only to classification models but also to other softmax-inclusive models, such as generative models, which inspires us to further investigate and explore of the method.
5. References

