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Abstract
Current research in machine learning (ML) and safety focuses on safety assurance of ML. We, however, show how to
interpret results of explainable ML approaches for safety. We investigate how individual evaluation of data clusters in specific
explainable, outside-model estimators can be analyzed to identify insufficiencies at different levels, such as (1) input feature,
(2) data or (3) the ML model itself. Additionally, we link our finding to required artifacts of safety within the automotive
domain, such as unknown unknowns from ISO 21448 or equivalence class as mentioned in ISO/TR 4804. In our case study
we analyze and evaluate the results from an explainable, outside-model estimator (i.e., white-box model) by performance
evaluation, decision tree visualization, data distribution and input feature correlation. As explainability is key for safety
analyses, the utilized model is a random forest, with extensions via boosting and multi-output regression. The model training
is based on an introspective data set, optimized for reliable safety estimation. Our results show that technical limitations can
be identified via homogeneous data clusters and assigned to a corresponding equivalence class. For unknown unknowns, each
level of insufficiency (input, data and model) must be analyzed separately and systematically narrowed down by process of
elimination. In our case study we identify “Fog density” as an unknown unknown input feature for the introspective model.
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1. Introduction
The use of artificial intelligence (AI) and especially ma-
chine learning (ML) in safety critical applications, such
as autonomous driving (AD), is still a vivid research area,
as many state-of-the-art ML methodologies create end-
to-end trained (i.e., black-box) models for object detec-
tion and localization [1]. Encoded into these black-box
models are performance and specification insufficiencies
that cause epistemic and/or aleatoric uncertainties [2].
Identifying, estimating and, if possible, mitigating uncer-
tainties is required for a convincing safety assurance [3].
Figure 1 provides an overview of different uncertainty
manifestations typical for ML:

• Input feature: Is the ML model’s decision pro-
cess based on the correct input factors from the
complex environment?

• Data: Does the collected data (training & test)
include enough and proper samples with an ap-
propriate distribution?

• ML model: Is the selected ML methodology ap-
propriate for the desired task?

Finding and understanding the root cause(s) of uncer-
tainty and identify the corresponding insufficiency is not
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Figure 1: Uncertainties associated with ML. Adapted from [3].

a trivial task, as typical results from quantitative tests of
the ML model do not allow a straightforward mapping
between a measured lack of performance to a specific
insufficiency, due to complex interdependence and corre-
lations between the causes.

The main contribution of this paper is an approach to
identify specific insufficiencies and eventually link the
analysis results to required artifacts of automotive safety
standards, for example related to unknown unknowns
from ISO 21448 - Safety of the intended functionality (SO-
TIF) [2] or equivalence class for validation from ISO/TR
4804 [4]. In doing so, we present a solution to address
open issues in ML safety assurance regarding safety tests,
such as how many tests have to be performed within
which operational design domain (ODD) [5].

In previous work we presented a conceptual frame-
work to create an explainable, introspective model (i.e.,
white-box) from a deep neural network (i.e., black-box),
cf. Fig 2. In a case study, we used the approach to estimate
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Figure 2: From Black-box to White-box. Adapted from [6].

the safety and reliability of the black-box via the white-
box for object detection in the automotive domain. While
the developed white-box models showed some promis-
ing results, such as providing estimated distributions for
successful and failed defections, their unrestricted usage
for safety assessment is currently not possible, details
see [6]. In this contribution we use the developed models
for safety analyses to identify specific insufficiencies. We
leverage the fact that random forests (RFs) contain inter-
pretable decision trees (DTs) and analyze the obtained
DTs with regards to split criteria and data clustering.

This paper is organized as follows. Section 2 provides
an overview of relevant and related works. We continue
by introducing our approach and its basic premise in
Section 3. Next, in Section 4, we demonstrate our ap-
proach and perform corresponding analyses. Finally, in
Section 5, we conclude the paper by summarizing our
results and discussing future work.

2. Related Works
Currently, most research on AI for AD focuses on improv-
ing the safety related aspects of ML models itself. Either
by means of conventional (i.e., non-ML) analysis meth-
ods [7] or methods directly enhancing the ML model [8].
These conventional safety methods include hazard and
risk analysis [9], simulation [10, 11], (stochastic) fault
tree analysis [12] etc., while ML specific methods for
safety cover uncertainty quantification [8] and robustifi-
cation [13] among others. However, conventional safety
methods are not particularly well suited for safety con-
siderations regarding AI, such as the definition of equiv-
alence classes of safe or unsafe behavior or discovering
unknown unknowns, as these characteristics manifest
themselves differently in ML-based systems, due to cor-
relation of input to output instead of causality of data
processing. Enhancing ML models requires modification
of the base network, without providing traceable safety
artifacts. Therefore, new safety analysis methods are
needed, including approaches leveraging ML itself. Sim-
ilar to [14], which uses a Bayesian network to identify
novel triggering conditions, as required by SOTIF.

The German Federal Ministry for Economic Affairs and
Climate Protection initiated the project “KI-Absicherung”
(KI-A), consisting of 24 partners from industry and
academia, to address the complex topic of AI and safety
in the mobility market [15]. The main focus of KI-A was

the development of a methodology for safety assurance
for ML algorithms, in particular for object detection and
instance segmentation. Most of the used approaches for
safety included conventional methods, such as visual
analytics [16], combinatorial testing [17], data augmen-
tation [13] and others. All these methods work within a
well defined, limited semantic space. A couple of methods
in KI-A used ML techniques, such as principal compo-
nent analysis (PCA) [15] and search-based testing [18], to
specifically analyze and search for insufficiencies in data.
However, all of these methods require some insights or
a-priori knowledge about the root cause of the specific in-
sufficiency to be applied successfully. Our approach does
not assume any specific insufficiency from the outset,
instead each layer of uncertainty (cf. Fig. 1) is analyzed
by itself and by process of elimination the root cause is
identified.

Besides KI-A and beyond AD, ML has successfully been
used for data clustering and analysis, such as PCA, k-
means or Latin hypercube sampling, to define relevant
sceneries to reduce the effort of verification and valida-
tion [19]. Again, none of the mentioned methods explores
all the different possible insufficiencies due to input, data
or model, but instead already know where to look.

3. Methodology
In [6] we introduced a framework to create explainable,
introspective white-box models, derived from black-box
model test evaluation, to predict different safety related
aspects of the deep neural network (DNN) object detec-
tor. Unfortunately, the measured performance of the
white-box models did not allow for an unrestricted use
as reliable safety monitors. In this contribution we inves-
tigate if we can use the white-box models themselves to
analyze certain safety properties and link the obtained
result to insufficiencies within different layers, cf. Fig. 1.
Put differently, can we use the semantic input of the
white-box to characterize the black-box regarding safe,
unsafe and unknown behavior.

On the one hand, we examine the single DTs of the RF
white-box models to identify possible equivalence classes.
This enables us to possibly define an efficient test strat-
egy for verification and validation further down the ML
development-cycle. On the other hand, we investigate
if contradictory samples within DT leafs indicate un-
known unknowns. Here unknown unknowns represent
previously unconsidered parameter from the complex
environment, not part of the initial problem space.

Regarding results, the analysis of DT leafs might not
end conclusively for either equivalence classes or un-
known unknowns. This does not mean there are defi-
nitely no such cases to be found, but instead that, given
the input space, equivalence classes or unknown un-



knowns are unlikely to be found within these data.
In principle the proposed approach can be applied to

any kind of ML data, however, it greatly benefits from
certain restrictions to be usable in safety. Firstly, the input
dimensions should have a semantic description, meaning
they have an humanly interpretable representation in
the real world. For instance, a semantic dimension may
refer to an object’s attribute (e.g. size) or environmental
conditions (e.g. rain), whereas non-semantic descriptions
include technical aspects (such as pixel intensity, blur,
etc.). Secondly, the input space should be limited. The
aggregation and interpretation of multiple and different
input parameters may result in too complex cases to be
analyzed and used in safety argumentation.

The basic concept of DTs is data partitioning [20]. To
this end, the input space of data is repeatedly partitioned
into disjoint, smaller subsets, such that each subset is
consistent with regards to the desired output. A visu-
alization of a simple DT is given in Fig. 3. As can be
seen, the input data is partitioned into subsets by split-
ting at each node, using the most suitable input feature
(in conjunction with a specified error function, details
in section 3.1). The final data clusters, i.e., the leafs of
DTs (from now, we will use the terms interchangeably)
represent the “most consistent” partitioning given the
defined hyperparameters and provided data. The collec-
tion of multiple DTs together is RF and this ensemble
provides its final output by aggregating the prediction
of each single DT. There are different versions of RFs,
such as bagging and boosting extensions, that differ in
way the DTs are created from the provided data (see sec-
tion 4.2). The mathematical fundamentals to create DTs,
such suitable split criteria 𝑠, and their interpretation for
safety analyses are given in following sections.

≤≤ >>≤ >≤ >
split criterion s

nodes n

leafs

Figure 3: Simple decision tree (DT) with visualized data par-
titions.

3.1. Equivalence classes of equal behavior
The underlying methodology of DTs creates disjoint sub-
sets of inputs that produce the same output (while min-
imizing variance) [21]. This is very similar to the defi-
nition of equivalence class from ISO/TR 4804 [4], which
states that, equivalence classes are based on the division
of inputs and outputs, such that a (single) representative
test can be defined. Therefore we use the leafs of DTs
to define an equivalence class. In addition, we use the
quantitative split criteria {𝑠1, ..., 𝑠𝑛} of the DTs node’s,
to define the boundaries (i.e., limits) of the corresponding
equivalence class, cf. Fig. 3.

The foundation of DTs is data partitioning by (binary)
splits, to uncover complex patterns. For each possible
binary split value 𝑠 at node 𝑛 the resulting decrease in
impurity ∆(𝑠, 𝑛) is being determined by [21]:

∆(𝑠, 𝑛) = 𝑓𝑖(𝑛)−
𝑆𝑛𝐿

𝑆𝑛
*𝑓𝑖(𝑛𝐿)−

𝑆𝑛𝑅

𝑆𝑛
*𝑓𝑖(𝑛𝑅), (1)

with 𝑆𝑛 denoting the size of the training data for node 𝑛,
𝑆𝑛𝐿 and 𝑆𝑛𝑅 representing the samples from the whole
training data assigned to the left child and right child
respectively, and 𝑓𝑖 as the impurity function. The maxi-
mization of decrease in impurity can be understood as
best possible split 𝑠 for node 𝑛 into two children (𝑛𝐿 and
𝑛𝑅). For regression tasks, typically the squared error loss
is being computed with Eq. (1), to determine the error
during training. Therefore, 𝑓𝑖(𝑛) calculates the local, i.e.
for a specific node 𝑛, squared error loss via [21]:

𝑓𝑖(𝑛) =
1

𝑆𝑛

∑︁
𝑥,𝑦∈𝐿𝑛

(𝑦𝑀 − 𝑦𝑇 )
2. (2)

In Eq. (2), 𝑥 denotes a specific input feature and 𝑦 the
corresponding model output from the subset of learning
samples 𝐿𝑛. 𝑦𝑀 and 𝑦𝑇 are the model output and desired
output respectively. Both equations, (1) and (2), essen-
tially split the data into clusters that produce the most
similar output. Figure 4 shows an example for data split-
ting, containing measurement samples for object distance
(input feature 𝑥) and corresponding softmax confidence
(𝑦𝑇 ). The best split 𝑠 divides 𝐿𝑛 into two clusters, 𝑆𝑛𝐿

and 𝑆𝑛𝑅, that have the highest decrease in impurity. The
horizontal lines within the left (𝑆𝑛𝐿) and right cluster
(𝑆𝑛𝑅) indicate the arithmetic mean for each of them. Any
other split, for instance 𝑠* (cf. Fig. 4), yields:

∆(𝑠, 𝑛) > ∆(𝑠*, 𝑛). (3)

Using DTs and input features with semantic meaning,
that can be measured quantitatively, all splits {𝑠1, ..., 𝑠𝑛}
along one path, from upper parent to lower child, define
the limits of a potential equivalence class.

It is important to note, that simply aggregating all split
values {𝑠1, ..., 𝑠𝑛} along one branch within a DT does
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Figure 4: Example of split 𝑠 partitioning the data into 𝑆𝑛𝐿

and 𝑆𝑛𝑅.

not guarantee an equivalence class. The methodology of
RFs and DTs requires some hyperparameters to be set
that influence the splitting and, therefore, the resulting
clusters. Most important for our considerations are:

• Threshold 𝜃 for the minimum decrease in impu-
rity, i.e., ∆(𝑠, 𝑛) < 𝜃,

• The minimum amount of samples 𝑆𝑚𝑖𝑛 to allow
further splits, i.e., 𝑆𝑛 > 𝑆𝑚𝑖𝑛.

The first threshold 𝜃 prevents an overfitting, as no thresh-
old allows the splitting of virtually identical values as
long as there is any decrease in impurity. Refer to Fig. 4,
nearly all measured softmax confidence values will be
different after 𝑟 decimal places (dependent on the preci-
sion of the data). Therefore, even splitting samples that
vary after 𝑟 digits will decrease impurity, eventually cre-
ating DTs with one single data point per leaf. The second
parameter 𝑆𝑚𝑖𝑛 also prevents overfitting. Lets assume
that 𝑆𝑚𝑖𝑛 is set to the smallest possible value, which is 2.
Given a small enough 𝜃, each single leaf will converge at
single data points. Therefore, both, 𝜃 and 𝑆𝑚𝑖𝑛 together,
influence the resulting clusters and if meaningful equiva-
lence classes can be defined. Please note, that there are
more hyperparameters to prevent overfitting, but they
are not relevant for this contribution. Please also note,
during our analyses (Section 4) we did inspect all of the
possible hyperparameters that could in principle provide
an explanation for the seen results, e.g. tree_depth, to
make sure they are not responsible for it.

In order to define an equivalence class, the DT leaf
must contain more samples than 𝑆𝑚𝑖𝑛, i.e., 𝑆𝑛 > 𝑆𝑚𝑖𝑛.
The basic reasoning is the following, if a leaf contains
more samples than 𝑆𝑚𝑖𝑛 a split could have been possible,
however, it was not necessary as 𝜃 has not been exceeded.
To put it differently, there are no more disjoint subsets
within these data, cf. Fig. 5(a). The only other possibility
is that a further split was not possible although 𝜃 allowed
for it, given the model, data and input features. Such a
leaf can indicate unknown unknowns, cf. Fig. 5(b).

(a) (b)

Figure 5: (a) Leaf that shows a potential equivalence class,
(b) Leaf that contains inconsistent data points.

3.2. Unknown unknowns
The goal of SOTIF is to identify potential unknown haz-
ardous scenarios, arising from the interaction between
the system and its complex environment, and mitigate
their effects. To archive this, SOTIF recommends to
search for triggering conditions that lead to potential
hazardous scenarios. Unfortunately, there is no estab-
lished approach or method to identify such triggering
conditions for all possible systems and environments.
Furthermore, the nature of some of these triggering con-
ditions can be defined as unknown unknowns, i.e., some-
thing we are not even aware that we do not know. In
our context it refers to a feature of the input space that
was not considered when approximating the factors that
influence the performance of the black-model.

The key idea is to identify and use inconclusive, yet
interpretable data clusters and, by process of elimina-
tion, show that the only possible explanation for their
existence is an unknown unknown. In the previous sec-
tion 3.1, we examined the mathematical foundation for
data clustering via DTs. In particular equations (1) and
(2) partition the available data into the best possible dis-
joint and coherent clusters. However, in some cases the
resulting, final clusters still have high impurity, although
further splitting, in principle, is allowed. Simply put,
the cluster contains contradictory data, which cannot be
split meaningfully anymore within the defined scope, cf.
Fig. 5(b).

How can this be interpreted? Given that the hyperpa-
rameters 𝜃 and 𝑆𝑚𝑖𝑛 are not exceeded, either the input,
data or model did not allow for any further optimization.
Now each single layer (cf. Fig. 1) and potential insuffi-
ciency must be analyzed on its own to identify the root
cause. To clearly uncover an unknown unknown, nei-
ther data nor model shall be the root cause of the impure
data clustering. Only if a “seemingly” new input feature
can resolve the contradiction, a unknown unknown is
plausible. “Seemingly”, as it is yet unknown, even by the
process of elimination, if such a semantic feature can be
identified and if so, which one it is specifically. Regarding
the modelling, only explainable or interpretable models
are useful for the presented approach, as only those al-
low to define comprehensible equivalence classes. To



investigate whether the modelling itself is responsible
for the inhomogeneous clustering of data, alternative or
modified approaches for model 𝑦𝑀 should be deployed
and compared. For data, the corresponding distributions
of the input features {𝑥1, ..., 𝑥𝑗 } within the boundaries of
the potential unknown unknown must be investigated.

Do note, that there are numerous leafs per DT that
are endpoints due to the thresholds of 𝜃 or 𝑆𝑚𝑖𝑛 being
reached. These clusters cannot be interpreted as neither
equivalence class nor unknown unknowns. Remember
that 𝜃 and 𝑆𝑚𝑖𝑛 primarily prevent overfitting. On the
one hand, smaller and smaller values for 𝜃 and 𝑆𝑚𝑖𝑛

will converge on clusters with single data points. Conse-
quently, creating equivalence classes which are correct
from a safety point of view, but carry no useful informa-
tion. On the other hand, larger values will always serve
as limits for the clusters, and it is impossible to know if ad-
ditional clusters where not necessary or not possible, and
as such offer no information about potential unknown
unknowns.

4. Safety Analyses
Based on the results from [6], we conduct our safety anal-
yses and demonstrate the presented methodology via a
case study. In our previous contribution we recognized
that the reliability of the RFs models is not sufficient for
an unrestricted usage for safety. Therefore, we specifi-
cally analyzed the model 𝑅𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥 regarding its single
DTs, including their split criteria and leaf clusters, to
explain the mixed performance results. 𝑅𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥 esti-
mates the reliability of the provided softmax confidence
from a DNN object detector. Please note, that in order
to use model 𝑅𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥 as a safety predictor, specific
input features from the complex environment, which are
arguably safety-relevant, have been pre-selected.

To create 𝑅𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥 the implementation from scikit-
learn was used, with thresholds 𝑆𝑚𝑖𝑛 = 10 and 𝜃 =
0.001. For other hyperparameters, please refer to [6]. An
investigation of 𝑅𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥 revealed strong similarities
between the single DTs within the model. Additionally,
the DTs occasionally expressed leafs cluster similar to
the ones shown in Fig. 5(a) and (b). A further analysis of
all leafs from the DTs revealed three basic cases:

1. Leafs that show little variance in data and fulfill
𝑆𝑛 = 𝑆𝑚𝑖𝑛,

2. Leafs that show little variance in data and fulfill
𝑆𝑛 > 𝑆𝑚𝑖𝑛,

3. Leafs that show high variance in data and fulfill
𝑆𝑛 > 𝑆𝑚𝑖𝑛.

The first case is the most common one. According to equa-
tions (1) and (2), together with a suitable 𝜃 and 𝑆𝑚𝑖𝑛, the
RF methodology created the best possible leafs, while

preventing overfitting. These clusters represent a rea-
sonable model, but no useful information for safety can
be extracted. The second case is an interesting abnor-
mality, as it signifies an early stopping. Given 𝜃, it was
not necessary to create additional child clusters, as the
decrease in impurity is insignificant. In brief, all data
expressed the same output behavior without colliding
with the hyperparameter thresholds. This case will be
discussed in detail in Section 4.1. The last case shows
impure clusters, although the defined hyperparameters
did not account for this. Therefore, the root cause for this
inhomogeneous data must lie within one of the different
layers, as shown in Fig. 1. This is the object of Section 4.2.

With these analyses we try to identify insufficiencies
and link our finding to safety artifacts from ISO 21448
and ISO/TR 4804.

4.1. Equivalence class of equal DNN
behavior

Following the identification of the three basic cases, the
most promising leafs for both, overall 𝑅𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥 perfor-
mance and safety significance, are leafs that accumulate
many similar data points without surpassing any of the
defined limits of the hyperparameters 𝜃 and 𝑆𝑚𝑖𝑛. There-
fore, if 𝑆𝑛 > 𝑆𝑚𝑖𝑛 is true, at least one input feature 𝑥
is a coherent predictor. These clusters can be identified
by searching the final number of samples per leaf and
comparing them to 𝑆𝑚𝑖𝑛.

The methodology of RFs creates each DT from a sub-
set of the complete training data. Therefore, all DTs are
based on slightly different data sets and identified, poten-
tial equivalence classes may only exist within one single
DT and not represent an overall equivalence class. In
order to to verify a potential equivalence class, the aggre-
gated split criteria {𝑠1, ..., 𝑠𝑛} should be applied to the
complete data set. If all the samples show a similar out-
put, an equivalence class can, in principle, be defined. For
our presented analysis we selected the most promising
equivalence class, i.e. the least restrictive one regarding
its split criteria {𝑠1, ..., 𝑠𝑛}, out of all potential candidates.
Table 1 shows an identified equivalence class that also
represents a technical limitation of the trained black-box
object detector. All objects with an detection area smaller
than 3.6233𝑚2, at a noise level of at least of 74%, do not

Table 1
Example of an identified equivalence class.

Input feature 𝑥 Interval 𝑠𝑛 Unit

Object distance all [ m]
Object area 𝑥 ≤ 3.6233 [ m2]

Object occlusion all [ %]
Noise variance 74 ≤ 𝑥 [ %]



have a softmax confidence higher than 0.1, cf. Fig. 6.
Effectively, none of such objects are being detected by
the black-box object detector, independent of distance
or occlusion. In terms of ISO/TR 4804 equivalence class,
this means, that for all samples fulfilling Table 1 one sin-
gular test is sufficient to verify the black-box system’s
response.

Apart from such a successful equivalence class, some
of the potential clusters do not exhibit the same behav-
ior over all corresponding samples. The split criteria
{𝑠1, ..., 𝑠𝑛} do not represent an equivalence class, if they
are only true within specific DTs, but not for the complete
data. Figure 5 shows a verification of two potential equiv-
alence classes. The first plot (eq. class) visualizes the
softmax confidence for all samples complying to Table 1.
This equivalence class has been derived from multiple
DTs, on average with 𝑆𝑛 = 15. In contrast, an exam-
ple of a plot (invalid cluster) for a potential equivalence
class that is not homogeneous for all samples within the
identified {𝑠1, ..., 𝑠𝑛}.

Besides the verification via sample outliers, the equiv-
alence classes that showed homogeneous output in all
data have also been “qualitatively” verified by testing the
black-box detector. In this context qualitatively means,
that the simulation environment of CARLA [22] does
not allow a specific object size to be set, instead prede-
fined assets can be selected and deployed, however, the
precise object area (within a frame) needs to be derived
and transformed (incl. rounding and translation errors)
to fit the developed safety framework [23]. Therefore,
the exact object area of 3.6233m2 as limit could not be
verified beyond any doubt.

For the equivalence class provided by Table 1 a set of
test cases have been created. One such scenario, with
multiple objects and detection areas smaller and larger
than ∼3.6233m2, has been generated and tested, cf. Fig. 7.
Indeed, the verification result of the different test cases
confirm this combination of noise variance and object
area as credible detection limit. However, the verification
also revealed that this equivalence class represent the
upper (or lower) limit. For instance, objects are some-

0 10 20 30 40 50 60 70
0

0.5

1

Figure 6: Examples of (un)successful equivalence classes.

Figure 7: (left) Detection of multiple objects under ideal con-
ditions. (right) The noise level has been increased to 74%, only
the object with area 3.753m2 is still detected.

times lost before the limits have been reached. Within
this contribution we did not investigate, whether these
results could be used to refine the limits of the identified
equivalence class into fine-grained subcategories (cf. Ta-
ble 1). Especially, since transformation and translation
errors could not be ruled out entirely.

During the safety analysis to positively identify equiv-
alence classes, almost all of results converged on a com-
bination of factors representing a technical limitation of
the system. Such as robustness against noise and area of
the object or maximum detection distance. The remain-
ing cases that are seemingly not technical limitations,
but do show convergence, are still under investigation
regarding their meaning (as they require very accurate
CARLA simulation and transformation).

Due to the abstraction of the input space by the
methodology of [6], the identified equivalence class can
be used as logical scenario, see [24], for ISO/TR 4804 vali-
dation efforts.

4.2. Unknown unknowns (of white-box)
Another anomaly within the DT structure are leafs that
show high variance in data, but seem to not gain anything
from additional splits, i.e., 𝑆𝑛 > 𝑆𝑚𝑖𝑛. Equations (1) and
(2) ensure that the best possible data clusters are being
created, except if this is impossible, given either model,
data or input. One such instance is shown in Fig. 5(b).
Regarding this cluster, we selected it specifically, as it
appears to be most suitable, due to its comparatively
broad limits {𝑠1, ..., 𝑠𝑛} for the input features. Similar
leafs has been identified as reoccurring pattern across
multiple DTs. After aggregation of split criteria, the leafs
in question converge on the criteria presented in Table 2.
The appearance of such clusters is one explanation for
the mixed performance results of the model 𝑅𝐹𝑠𝑜𝑓𝑡𝑚𝑎𝑥,
as reported in [6].

According to Fig. 1, the first layer to investigate a per-
formance insufficiency is the ML model itself. In order to
determine if the modelling approach itself is responsible
for this, modified approaches have been implemented
and analyzed. Specifically, we used the RF extensions
of boosting (via LightGBM) and multi-output regression
(via XGBoost) for python. Boosting (by weighing) uses a
combination of bootstrap and evaluated test data to train



Table 2
Inhomogeneous cluster of a DT and its boundaries.

Input feature 𝑥 Interval 𝑠𝑛 Unit

Object distance 18.85 ≤ 𝑥 ≤ 31.25 [ m]
Object area 2.018 ≤ 𝑥 [ m2]

Object occlusion all [ %]
Noise variance 62 ≤ 𝑥 ≤ 78 [ %]

the successive DT [25]. The idea is, that this methodol-
ogy explicitly tackles high variance leafs, as it penalizes
misclassification by weighing the entire training set 𝐿𝑛

accordingly. With multi-output regression, several out-
put variables are simultaneously predicted [21]. In [6] we
trained three different models for three different target
variables. Via multi-output regression we hope to lever-
age some dependencies between these output variables,
such as a correlation between softmax confidence and
bounding box size shifts. The minimization of impurity,
Eq. (1), via the squared error (2) is fundamental to all of
the extensions. Please remember, the selection of suitable
approaches is limited by the necessity for explainability.

The evaluation of the overall performance for all mod-
els reveals that the measured performance converges, see
Fig. 8. All three models display a relatively high amount
of correct predictions for very low and high softmax con-
fidences. Be aware, that the model Multi-output has
a slightly smaller test set, as for its sequential models
building process the samples with false negatives can-
not be used. In terms of quantitative values, the Mean
Squared Error (MSE) and Mean Absolute Error (MAE)
show maximum improvements of ∆MSE ≤ 1.22e-2 and
∆MAE ≤ 2.32e-2 between the new models and RF base
(with MSE= 2.25e-2 and MAE= 8.00e-2). Unfortunately,
this means no model performs significantly better than
the others. Due to the different training approaches be-
tween the models, a detailed comparison of leafs and
structure is not possible without extensive effort. This
result either indicate, that these kind of models are in-
herently unable to predict the black-box behavior or that
there are specification insufficiencies in data and/or input
that cause this response. The outcome of all of this is,
changing the model does not seem to resolve inhomoge-
neous clustering, as outliers are apparent for all models
(cf. Fig. 8). On account of this, we continue by investi-
gating possible unknown unknowns by visualizing the
relevant data distribution.

By the process of elimination, to rule out implausible
root causes, we arrive at the collected data. We continue
by highlighting the data distribution given by Table 2.
Figure 9 displays the data points for the relevant input
features of Obj. distance and Noise variance, narrowed
down by the specific split criteria {𝑠1, ..., 𝑠4}. For a con-
venient visualization, the data points of 2.018m2 < Obj.

area have been filtered out. Also, the corresponding soft-
max score is divided into low and high. One distinctive
feature of Fig. 9 is the relative high amount of data points
that show high and low confidence at the same time for
Obj. distances of around 21 m. This contradiction can
seemingly not be resolved by recruiting additional input
features, such as Obj. occlusion. The existence of such
data points provides one plausible explanation why the
cluster is inhomogeneous, despite 𝑆𝑛 > 𝑆𝑚𝑖𝑛. Addition-
ally, there exists an almost straight line of low confidence
scores at 23 m. This is most likely indicating a technical
limit, but as this cluster could not be split further by avail-
able input dimensions, it must not be represented well in
the available data. On the whole the displayed section,
limited by Table 2, could not be split into homogeneous
clusters by any of the available input dimensions.

Taking into consideration the distribution of Fig. 5(b),
more data samples will most likely not enforce another
split into more homogeneous clusters, as 𝑆𝑛 > 𝑆𝑚𝑖𝑛

already indicates that this is not the root-cause. The only
case where additional samples help, is if the underlying
data distribution within the other input features are not
appropriate, i.e. imbalanced, as this represents skewed
information. An investigation of data revealed, that the
distributions for object occlusion and object area are not
entirely balanced. The reasons are, objects have fixed
sizes and for occlusion at least two objects are required,
one of which is definitely not occluded, while with three
or more objects multiple ones are fully occluded, thus
creating small biases. However, all in all the data distri-
bution is considered sufficiently good to rule it out as
root cause for the poor DT data clustering.

If great data imbalance is not evident, there are only
two possible impacts additional samples can have. Either,
(a) extra measurement samples skew the distribution into
a certain direction (basically creating a bias), but still, the
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Figure 8: Different explainable models and their performance
(diagonal line shows ideal behavior). None of them shows a
definitive advantage over the others, suggesting a root cause
independent of the selected ML methodology.



Figure 9: (left) Data distribution for features Obj. distance and Noise variance. Red crosses denote low softmax confidence
(softmax < 0.5), while blue circles show high softmax confidence (softmax ≥ 0.5). (right) Zoom in of the data under investigation
(cf. Table 2).

cluster would remain collectively inhomogeneous, or, (b)
the new samples alone can be partitioned into its own
cluster (split by the remaining, available input features).
Although investigating cases (a) and (b) could provide
additional information, no experiments have been car-
ried out within this contribution, as the expected results
would not impact the next analysis.

All the previous analyses lead us to the only plausible
conclusion: The introspective data set does not include
all the necessary data dimensions.

The next step involves reviewing the input features 𝑥.
In order to act as an explainable, introspective model, the
input space for the white-box model has been reduced
to certain input features, called safety features, in [6].
Following the process of elimination, neither the model
nor the data provide any convincing evidence that they
cause this observed inconsistency, cf. Fig. 5(b). Therefore,
only the input features remain as possible root cause.
The input features in [6] have carefully been selected
based on two principles that ensure safety-relevance and
redundancy:

1. The feature is safety-relevant, i.e., factors that
typically cause traffic accidents in human driving,

2. The feature must be measurable via a different
sensor, i.e., independent of the black-box predic-
tion.

These principles still apply, so possible new features must
adhere to these principles to be useful for a reliable safety
monitor.

The basic strategy to discover possibly new, important
input features revolves around the idea to use the evalu-
ated analysis results from the previous tests. According
to the split criteria of Table 2, occlusion effects are unim-
portant and object’s area only requires a minimum value
for detection (given the noise level interval). Therefore,

the new input feature should not correlate with either
of these, as they do not carry any useful information to
disentangle the data, cf. Fig. 9. We also excluded biases.

During our initial inspection of the data we already
identified one irregularity, namely, data points that have
low softmax confidence at a specific Obj. distance
𝑥 = 23m across virtually all noise levels. Although this is
not completely uncommon, see areas outside the high-
lighted cluster in Fig. 9(left), in this particular case, how-
ever, none of the other input features could be recruited to
separate these outliers. Subsequently, we examined the
corresponding frames in order to determine a potential
effect that could cause such a hard limit.

Our review revealed, that for all these frames
the carla.WeatherParameters contained a nonzero
value for fog_density. In our initial setup to create an
explainable, introspective model we introduced “Noise
variance” as technical implementation for all environ-
mental disturbances, such as rain, fog or white-noise. So
these effects cannot be distinguished from each other
within the introspective data set. As a result, they act as
unknown unknowns within this system’s environment
(introspective model). Although rain and fog produce
similar visual effects in CARLA, fog acts as a limitation
for the maximum field-of-view distance and therefore
also limits the capabilities of the black-box object detec-
tor. With regards to the (safety) principles 1. and 2., the
feature “Fog density” can definitely be classified as safety-
relevant and also be detected via other sensors. A linear
correlation analysis has been carried out to determine
the dependence of Fog density with other input features,
see Fig. 10. As this table shows, a strong positive correla-
tion exists between noise and fog, as the basic simulation
effect is similar. It can also be seen, that both, noise and
fog, show minimal correlations with the other, remaining
input features. This indicates a good candidate for a now



Figure 10: Correlation heatmap for the features Noise vari-
ance and Fog density of the the introspective data.

(un)known unknown.
Based on these findings, we separated “Fog density”

from Noise variance and included the meta-data in the in-
trospective data set as new input feature. The preliminary
experiments indeed show an improvement. Since a new
input feature was introduced, the resulting DTs cannot
simply be compared. It is, however, possible to filter for
all the leafs that fall within the previous boundaries of Ta-
ble 2. This inspection showed that additional, improved
sub-clusters have been created, see Fig. 11. By identify-
ing and including a previously unknown unknown input
feature, the previously inconsistent data cluster could suc-
cessfully be subdivided into more balanced leafs, showing
the relevance of this input dimension for the introspec-
tive model. Please be aware that the new sub-clusters
can still result in any of the three basic cases for DT leafs
(cf. Section 4), so the analysis might not end conclusively
every time.

5. Conclusion and Future Work
The work presented in this paper shows how explain-
able ML can help and guide us to discover equivalence
classes (ISO/TR 4804) and unknown unknowns (SOTIF).
The developed approach makes use of the mathematical
foundation of DTs to identify leafs and interpret their
meaning, with respect to defined thresholds and their
degree of data variance. We successfully use the method-
ology to define an equivalence class (Table 1) and uncover
an unknown unknown (Fig. 11) for the application of a
explainable, outside-model estimator.

Some question, however, do remain. While some equiv-
alence classes can be identified and meaningfully inter-
preted, other cases beyond system (capability) limitations
are difficult to humanly comprehend. Within the de-
scribed use case we were able to identify one unknown
unknown by disentangling one inconsistent data cluster.

Figure 11: One set of sub-leafs for cluster Fig. 5(b), after
introduction of feature “Fog density”.

With typically multiple such data clusters this approach
might not scale particularly well. Additionally, the intro-
duction of another input feature requires the reevaluation
of the previously identified equivalence class. In our case
input feature “Noise variance” was changed after the suc-
cessful definition of the equivalence class. Besides, this
work benefits from the already limited input space from
the introspective model, identifying unknown unknowns
is probably not as straightforward for other use cases,
especially if many options are available. Moreover, the
defined problem space, in our case the reliability of the
softmax confidence, also defines the domain for potential
unknown unknowns. Other unknown unknowns, not
related to this model, may remain hidden and represent
a remaining residual risk that must be quantified beyond
our model. These aspects will be part of future research
for this approach.
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