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Abstract 
The advancement of interoperable digital technology has had remarkable impacts on society 

especially in the healthcare area. Ischemic heart disease is a major cause of disability and 

premature death in many parts of the world that can still be mitigated through lifestyle changes. 

While the existing mHealth solutions that encourage users to maintain healthy lifestyle habits 

do exist, they lack the reliable advice of healthcare professionals to monitor patient’s lifestyle 

habits remotely. The process of manually collecting patient data for analysis and clinical testing 

can also be time-consuming for healthcare professionals. Therefore, this study proposed a web-

based information system to monitor lifestyle habits and habit-change of people prone to heart 

disease. The system collects lifestyle habit data from a smartwatch and smartphone. Then, the 

system utilizes machine learning techniques to classify the patient’s lifestyle habit data such as 

diet, exercise, and sleep. Furthermore, the system is used to upload echocardiograms during the 

echocardiography test in the hospitals and receive the echocardiography results. The data 

analytical results are visualized on an intelligent dashboard that can be viewed by doctors using 

the web application. The system is expected to support doctors in decision-making for digital 

care pathways in order to provide timely intervention for lifestyle modifications. 
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1. Introduction 

Ischemic heart disease and stroke are 
considered as the global leading causes of long-

term disability and premature death [1]–[7]. The 

primary risk factors that contribute to heart 
disease and stroke are unhealthy diet, physical 

inactivity, and tobacco use [8]. The American 

Heart Association has defined ideal 
cardiovascular health based on a set of risk 

factors that can be mitigated through lifestyle 

changes such as eating a healthy diet and 
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engaging in consistent physical activity [9]. 
Practicing these habits to maintain good 

cardiovascular health could help to minimize 

medical care expenditures [10].  
Personnel in the healthcare sector have been 

utilizing wearable sensors to monitor the health of 

patients. Physical sensors are used to collect 

biomedical data which is pre-processed before 
being sent to a cloud infrastructure to be stored and 

analyzed through machine learning techniques to 

produce a diagnosis. These results are interpreted 
and visualized in the form of intelligent dashboards 

that can be easily understood by patients and health 

workers. However, the existing studies did not 



facilitate the change of lifestyle habits other than 
physical activity. Their main gap is related 

classifying patients’ lifestyle habits for 

providing timely advice from the doctor and for 

better decision making.  [11]–[13]. Therefore, 
this study proposed a web-based system based 

on Internet of Things (IoT) and big data 

analytics which speeds up the decision-making 
process for doctors so they can focus on 

prescribing advice for disease prevention and 

treatment. 
Studies have shown that healthy lifestyle 

changes can contribute to the risk reduction of 

developing heart disease [14]–[16].  Most 

telehealth solutions that use machine learning 
and big data analytics to facilitate the adoption 

of healthy lifestyle habits focus on exercise and 

physical activity, but not other lifestyle habits 
like maintaining a healthy diet or regulating 

blood pressure [17], [18]. While mHealth 

solutions like Samsung Health and Google Fit 
that encourage users to maintain healthy habits 

do exist, they lack the reliable advice of a health 

professional to guide them to take care of their 

heart health. 
For most of the existing clinical decision 

support systems, doctors still need to manually 

collect lifestyle habit data from patients, such as 
uploading CSV files or manually keying in data, 

before they can analyze the data, which can be 

time-consuming. Furthermore, 

echocardiography is a recommended method to 
detect the early onset of heart disease, but 

echocardiography function has rarely been 

integrated in clinical decision support systems 
[19]. 

Therefore, this study proposes a web-based 

system to monitor the habit-change and 
biomedical data of heart disease patients which 

consists of diet habits, exercise habits, sleeping 

habits. The system collects lifestyle habit data 

from devices and carries out machine learning 
on the data to generate an overall report of the 

patient’s risk of developing heart failure. The 

results of data analytics are visualized in the 
form of an intelligent dashboard to be viewed by 

doctors to gain insights from their patients’ data. 

The system is expected to provide an effective 
diagnosis of patients and thereby support 

doctors in decision-making for digital care 

pathway so they can focus on prescribing advice 

for habit adjustment to mitigate disease. 

This paper introduced the proposed 
LiveHeart information system and reviewed the 

existing studies. The system requirements, design, 
development methodology, data analytics, tests, and 

evaluation are included afterwards. The paper is 

finally wrapped up with concluding remarks and 

future directions. 

2. Related Works 

2.1. Heart Disease and Lifestyle 

Habit 

Coronary heart disease, also known as ischemic 

heart disease and coronary artery disease, occurs 
when a blockage forms in the blood vessels that 

supply blood to the heart, reducing the supply and 

causing the heart muscle cells to die. This blockage 
is usually made up of fatty deposits such as 

cholesterol. As a result, patients suffering from 

coronary heart disease experience a form of chest 
pain [20]. 

An important, controllable risk factor for 

coronary heart disease is lifestyle habits – these 

include unhealthy diet, physical inactivity, tobacco 
use and excessive alcohol consumption, as these 

activities contribute to the narrowing of the blood 

vessels that supply blood to the heart. As such, the 
risk of coronary heart disease can be managed by 

adopting healthy habits, such as eating more fruits 

and vegetables, reducing salt intake, engaging in 

daily physical activity, and managing blood 
pressure [21].  

There are a number of existing risk assessment 

systems that assess the 10-year risk of 
cardiovascular disease mortality such as 

Framingham [22] and SCORE [23]. However, the 

studies conducted to develop these systems were 
limited to the American and European regions. As 

for heart disease specifically, the Get With the 

Guidelines-Heart Failure risk score is used to 

predict in-hospital mortality [24], while the Seattle 
Heart Failure Model predicts the 1-, 2- and 3-year 

survival of heart failure patients [25]. Again, these 

models were developed on a dataset of patients in 
the American region.  

On the other hand, poor-quality diet, low 

physical activity, and emotional stress can lead to 
obesity, which in turn can lead to hypertension and 

diabetes, which are risk factors for heart failure with 

reduced ejection fraction. Adherence to diets rich in 

plant-based foods such as food and vegetables and 
low-sodium diets has been associated with a lower 

incidence of heart failure. The risk can also be 

lowered by carrying out enough physical activity to 



balance out calorie intake [27] and sleeping 7-8 
hours a day [28-29]. Overall, healthier lifestyle 

habits are associated with a lower risk of 

developing heart failure, and vice-versa [14]–

[16]. 

2.2. Habit Classification 

Since healthcare systems are very sensitive, 

they require high accuracy to provide a reliable 

solution for doctors’ decision making. Thus, this 
section focuses on the comparison of different 

classification algorithms to find the most 

suitable one with the best accuracy for 
classifying lifestyle habit data. Various studies 

were conducted for habit classification. For 

instance, random Forests algorithm was used to 
classify eating occasions as meals or snacks, 

achieving an accuracy of 84% with time, 

location, and time since last intake as the most 

informative features [30]. Furthermore, feeding 
gestures were used as an indicator of caloric 

intake and thus used Random Forests to 

differentiate between 10 types of feeding 
gestures, achieving an accuracy of 94% [31]. In 

another study, Random Forests was utilized to 

classify food consumption level as overeating, 
undereating and as usual, where a combination 

of self-reported features such as social and 

mood and passive smartphone sensing features 

such as battery level and accelerometer 
measurements yielded an accuracy of 87.81% 

[32].  
Using Random Forests to predict the 

probability of an individual reaching their daily 

step count based on step count data collected 

from a wrist-worn activity tracker yielded an 

accuracy of 93% [33]. Support Vector Machine 
(SVM) was used in another study to classify 

ambulation, cycling, sedentary and other 

activities based on accelerometer data [34]. 
When the classification uncertainty estimated 

by the SVM exceeded a set threshold, the 

proposed algorithm requested for the ground 
truth activity label from the user and updated the 

classification model. This method achieved an 

accuracy of 89.2% Davidson et al. carried out a 

pilot study to predict two classes of RPE 
(RPE≤15 “Somewhat hard to hard” and 

RPE>15 “Hard to very hard” on Borg’s 6–20 

scale) based on time-series data collected from 
a smartwatch such as heart rate and peak oxygen 

consumption [35]. Convolutional Neural 

Network (CNN) was used for classification with 

an accuracy of 86.0%.  
Another study collected raw respiratory signals and 

used balanced bootstrapping and Long Short-term 

Memory (LSTM) to detect sleep apnea, achieving 

the best accuracy of 77.2% on the abdominal 
respiratory belt signal [36]. An ensemble of bagged 

tree classifier, which is a combination of the 

bagging algorithm and decision tree classifier, was 
used in one study to classify sleep disorders as 

healthy, insomnia, sleep-disordered breathing, and 

REM behavior disorder. The authors used a pre-
processing technique that used 30-seconds epoch of 

ECG signal. The classifier used sleep quality 

parameters such as wakefulness, total time in bed 

and REM and achieved an accuracy of 86.27% [37]. 
In another study, ECG signals were subjected to 5-

level wavelet decomposition and norm features 

were extracted to be fed to a KNN classifier with 
10-fold cross-validation to classify healthy sleep 

and insomnia in various sleep stages, achieving an 

accuracy of 97.87% for the REM sleep stage [38].  

2.3. Echocardiogram 
Classification 

There have been a limited number of studies that 
integrate echocardiogram classification into home-

based clinical decision support systems. The 

existing studies [39-42] did not extend the diagnosis 
of heart chamber abnormalities to predict the risk of 

developing heart disease and did not have the 

potential to explore early detection of heart disease. 
Back Propagation Neural Network (BPNN), K-

Nearest Neighbor (KNN), and Support Vector 

Machine (SVM) were used by [40] to classify the 

echocardiogram as normal, dilated cardiomyopathy 
or hypertrophic cardiomyopathy. Left ventricle 

measurements are extracted, and principal 

component analysis (PCA) and discrete cosine 
transform (DCT) are applied in this study to reduce 

the dimensionality of the data.  The results showed 

that BPNN classifier with PCA features had the best 

accuracy of 90.2%. 
Furthermore, the CNN model was developed by 

[41] for echocardiogram viewpoint classification. 

The proposed CNN model was developed for image 
segmentation of selected echocardiographic views 

to locate cardiac chambers, and the output was used 

to derive cardiac chamber measurements such as 
area, volume, and mass. The authors also developed 

separate CNNs to detect 3 types of heart diseases: 

hypertrophic cardiomyopathy, pulmonary arterial 

hypertension, and cardiac amyloidosis in A4c and 
PLAX views, achieving C-statistics of 0.93, 0.87 



and 0.85 respectively.  
Another study was done by [39] segmenting 

the main field of view in echocardiograms 

before utilizing an ensemble of CNN models for 

viewing the classification. Then, the U-Net was 
used to segment the left ventricle in A4c images 

before utilizing a CNN model to detect left 

ventricular hypertrophy. This method of 
performing image segmentation before 

classification resulted in detection of left 

ventricular hypertrophy with an accuracy of 
91.2%. The authors also trained a semi-

supervised Generative Adversarial Network 

(GAN) on labeled and unlabeled 

echocardiograms to detect left ventricular 
hypertrophy, achieving an accuracy of 92.3%.   

Finally, a CNN model was developed by [42] 

for segmenting the left ventricle of the heart, 
predicting ejection fraction, and classifying 

heart failure with reduced ejection fraction. The 

end systolic volume, end diastolic volume and 
ejection fraction were included as features for 

training. The model was able to classify heart 

failure with reduced ejection fraction with an 

area under the curve of 0.97. 

3. Development Methodology 

This study is developed using the Agile 

methodology. Agile methodology is chosen to 

provide more flexibility in revising the analysis, 
design, and implementation of the system in the 

event that the system does not meet user 

requirements. As the system has many modules 
which require the integration of web 

development, machine learning and database 

management, it is more efficient to develop 

basic functionalities in earlier iterations and 
develop finer-grained functionalities in later 

iterations, with regular testing so that bugs can 

be fixed early in development. Using the Agile 
methodology, feedback can be continuously 

collected which is useful for improving the 

functionality of the system. For this study, the 
system requirements were collected from 

healthcare professionals as well as people prone 

to heart disease. Ethic approval was granted to 

collect data for system requirement gathering as 
well as acceptance testing.  

The LiveHeart system was developed using 

basic web programming languages with a Flask 
application server and a MySQL cloud database. 

The system makes calls to a RESTful API to 

retrieve habit data and uses Random Forests and 

decision trees with selected features to classify the 
healthiness level of the data. The system also uses 

3D CNNs to classify echocardiograms into 

“normal” and “low ejection fraction”. It visualizes 

the results of data analysis in an intelligent 
dashboard. In addition, the system generates reports 

outlining the relationship between the patient’s 

lifestyle habits and their heart health and allows the 
doctor to annotate and store these reports for future 

viewing. 

LiveHeart is able to automate the collection of 
lifestyle habit data by collecting data through IoT 

devices such as smartphone and smartwatch, 

allowing doctors to receive real-time updates of 

patient’s habit-change. Moreover, LiveHeart helps 
doctors to gain meaningful insights from data 

visualizations of analyzed habit data to support 

decision-making in digital care pathway. LiveHeart 
also speeds up the clinical workflow of diagnosis, 

treatment, and prevention through the application of 

machine learning.  

3.1. System Overall 
Architecture and Module Design 

The proposed solution is a web-based system to 
monitor habit-change and echocardiogram of heart 

disease patients. The patient can upload lifestyle 

habit data to their own personal devices while the 
patient is at home and the data can be received by 

the system to be viewed by the doctor at the hospital. 

The system can also be used at the hospital for 
nurses to upload echocardiograms during the 

echocardiography test and receive the 

echocardiography results. 

The data for diet habits, exercise habits and sleeping 
habits of heart disease patients is collected from a 

smartwatch and the Samsung Health mobile 

application. This data is stored in a cloud database 
that can be accessed via a desktop application with 

an Internet connection. 

In the web-based system, machine learning is 

carried out to classify the healthiness level of the 
patient’s diet habit data, exercise habit data and 

sleeping habit data separately. The healthiness level 

is classified into five categories: very unhealthy, 
unhealthy, moderate, healthy, and very healthy.  

The average healthiness level of the patient’s 

diet, exercise and sleep are calculated to determine 
the patient’s forecasted heart health. An overall 

healthiness level that is unhealthy indicates that the 

patient has a risk of developing heart failure with 

reduced ejection fraction, while an overall 
healthiness level that is moderate to healthy 



indicates that the patient has normal heart 
function. 

A web application is developed (Figure 1) to 

enable the doctor to view the results of habit-

change and biomedical data analysis on a digital 
dashboard, visualized in the form of graphs and 

tables. heart disease. 

 
Figure 1: Overall architecture diagram for 
LiveHeart 

 
The web application also generates a report 

that summarizes the patient’s lifestyle habits 

and their impact on the patient’s heart health, as 

well as a list of preventive measures to improve 
the patient’s health. The doctor can annotate 

these reports, which are stored so they can be 

viewed anytime as a form of electronic health 
record. This feature supports doctors in the 

decision-making process of prescribing advice 

for habit adjustment to minimize the risk of 

The overall architecture diagram of the 
proposed system is shown in Figure 1. The 

proposed system consists of four main modules 

which are user management, Internet of Things 
(IoT) device, habit classification, and intelligent 

dashboard.  

A two-tier architecture was chosen for this 
web-based system because it is simple to 

develop and make modifications. As the back-

end server is completely developed using 

Python, machine learning models can be 
directly run on the server without the need of an 

API. The two-tier architecture of the system is 

shown in Figure 2. 
 

 
Figure 2: 2-tier architecture of the LiveHeart 
system 

4. System Implementation and Data 
Analytics Results  

4.1. Data Collection 

To use this application, the patient must first 

have the Samsung Health mobile application 
installed on their smartphone. Secondly, the patient 

must have a smartwatch that is paired with their 

smartphone and the Samsung Health application. 

Thirdly, the patient must have the FitnessSyncer 
mobile application installed, and must enable 

FitnessSyncer to read diet, exercise, and sleep data 

from Samsung Health. FitnessSyncer is an 
application that aggregates data from multiple 

health and fitness applications and has an API that 

allows users to access their own data.  
For this study, data was collected from only one 

patient for few months to successfully design and 

develop the system first. The process of habit data 

collection from the user-facing side is as follows: 
the patient records exercise and sleep data while 

wearing a smartwatch, which is simultaneously 

recorded in the Samsung Health mobile application; 
for diet data, the patient records a meal on the 

Samsung Health mobile application. Then, the 

patient opens the FitnessSyncer mobile application 
and allows FitnessSyncer to read their habit data 

from Samsung Health by selecting their Samsung 

Health data source and pressing the “Sync Now” 

button. The habit data from Samsung Health gets 
uploaded to the FitnessSyncer server and becomes 

accessible to the LiveHeart system. The Habit-

change chart on the intelligent dashboard is updated 
with the healthiness level of the newly uploaded 

habit data. Figure 3 shows the example of Samsung 

Smartwatch used for data collection in this study as 

well as the sample collected data in Samsung health 
application.  

 
Figure 3: SmartWatch and the sample of 

collected data in Samsung Health 



4.2. Habit Classification 

The feature importance based on Mean 

Decrease in Impurity (MDI) of the Random 

Forests classifier is used for diet classification 
using the Scikit-learn library. The MDI is 

defined as the total decrease in node impurity 

weighted by the probability of reaching that 
node, averaging over all trees in the ensemble. 

Based on the feature importance shown in 

Figure 4, we can infer that the calories per 

serving have a significantly larger effect on the 
healthiness level of diet compared to other 

features.  

The diet dataset consists of 293 rows of data 
where each row contains the nutrient intake of a 

meal taken on a particular day. The diet data was 

collected using the Samsung Health mobile 

application. The exercise dataset consists of 141 
rows of data where each row contains 

information about an exercise activity 

undertaken on a particular day. The exercise 
data was collected using a smartwatch and the 

Samsung Health mobile application. The sleep 

dataset consists of 123 rows of data where each 
row contains information about an individual’s 

sleep for a particular night. The sleep data was 

also collected using a smartwatch and the 

Samsung Health mobile application. The data in 
all three lifestyle habit datasets was collected 

from 1 October 2019 to 31 January 2020. 

 

 
Figure 4: Feature importance chart for diet 

classification 

 
In all three lifestyle habit datasets, each row 

is labelled with a level of healthiness within the 
range of 1-5, where 1 is the least healthy and 5 

is the healthiest. The data labeling was verified 

by experts. As such, the habit classification 
consists of three main objectives as follows: 

• To classify the healthiness level of diet 

as 1 (very unhealthy), 2 (unhealthy), 3 

(moderate), 4 (healthy) or 5 (very healthy) 

• To classify the healthiness level of exercise 

as 1 (very unhealthy), 2 (unhealthy), 3 
(moderate), 4 (healthy) or 5 (very healthy) 

• To classify the healthiness level of sleep as 

1 (very unhealthy), 2 (unhealthy), 3 (moderate), 

4 (healthy) or 5 (very healthy) 

The decision tree and Random Forest models 
were used for classification. For diet classification, 

the ReliefF algorithm with 50 nearest neighbors was 

used to select 11 relevant features for training, and 
the data was divided into a training dataset and a 

testing dataset using a 70-30 split ratio. For sleep 

classification, the ReliefF algorithm with 30 nearest 
neighbors was used to select 10 relevant features for 

training, and the data was divided into a training 

dataset and a testing dataset using 80-20 split ratio. 

For exercise classification, all features were 
selected for training as feature selection did not 

improve the accuracy of the model, and the data was 

divided into a training dataset and testing dataset 
using 80-20 split ratio. The exercise data was also 

pre-processed by removing rows that contained 

cells with zero values and converting the type of 
workout activity into numerical values. The selected 

features for each habit classification are listed in 

Table 2. 

 

Table 2 
Selected features for habit classification 

Diet Exercise Sleep 

- Calories per 
serving 
- Calcium 
Cholesterol 
- Vitamin A 
- Vitamin C 
- Potassium 
- Total 
carbohydrates 
- Sodium 
- Saturated fat 
- Iron 
- Protein 

- Total time spent 
for activity 
- Type of workout 
activity 
- Workout duration 
- Distance travelled 
- Average speed 
- Maximum speed 
- Workout calories 
- Workout steps 
- Average heartbeat 
- Maximum 
heartbeat 
- Average cadence 
- Maximum cadence 

- Percentage of 
light sleep 
- Percentage of 
deep sleep  
- Percentage of 
awake phase 
- Percentage of - 
REM sleep 
- Sleep efficiency 
- Total sleep time 
- Calories burned 
- Actual sleep time 
- Alcohol intake 
- Eating dinner 
within 2 hours 
before sleep 

 

The performance metrics of diet classification, 
exercise classification and sleep classification are 

shown in Table 3, 4, and 5 respectively. For diet 

classification, only the metrics for three categories 

of healthiness level are reported as the diet data only 
consisted of data that was labelled with a healthiness 

level of 1-3. 

 
 
 
 



Table 3 
Performance metrics of diet classification 

 

Algorithm Class Precision Recall F1-score 
Accuracy 
(%) 

Decision 
tree 
 

1 0.88 0.91 0.89 

87.50 2 0.88 0.86 0.87 

3 0.86 0.86 0.86 

Random 
Forests 

1 0.90 0.90 0.90 

89.77 2 0.86 0.89 0.87 

3 1.00 0.92 0.96 

 
The best accuracy obtained for the diet, 

exercise and sleep classifiers were 89.77%, 

90.00% and 68.00% respectively. Based on 

these performance metrics, the Random Forest 

classifier was chosen for diet classification, the 
decision tree classifier for exercise classification 

and the decision tree classifier for sleep 

classification in the developed system.  

 
Table 4 
Performance metrics of exercise classification 

 

Algorithm Class Precision Recall F1-score 
Accuracy 
(%) 

Decision 
tree 
 

1 1.00 1.00 1.00 

90.00 
2 0.50 1.00 0.67 

3 1.00 0.80 0.89 

4 1.00 1.00 1.00 

5 0.86 0.86 0.86 

Random 
Forests 

1 1.00 0.50 0.67 

70.00 
2 0.00 0.00 0.00 

3 0.50 0.60 0.55 

4 0.71 0.71 0.71 

5 0.83 1.00 0.91 

 
Table 5 
Performance metrics of sleep classification 
 

Algorithm Class Precision Recall 
F1-
score 

Accuracy 
(%) 

Decision 
tree  
 

1 1.00 0.50 0.67 

68.00 

2 0.75 0.50 0.60 

3 0.67 0.57 0.62 

4 0.55 1.00 0.71 

5 1.00 0.75 0.86 

Random 
Forests 

1 1.00 0.50 0.67 

52.00 

2 0.67 0.33 0.44 

3 0.42 0.62 0.50 

4 0.67 0.80 0.73 

5 0.33 0.25 0.29 

 

4.3. Echocardiogram 
Classification and Segmentation 

This section focuses on the details of 

echocardiogram classification as one of the main 

features of the system. The echocardiography 

dataset used in this study is the EchoNet-Dynamic 
Dataset taken from the Stanford University School 

of Medicine [42].  

A Convolutional Neural Network (CNN) based 
on the ResNet (2+1)D architecture was designed to 

take in echocardiography videos as input, and 

predict the value of ejection fraction. 32 frames 
were sampled from each video across a period of 2 

before being loaded into the model. The model was 

built using the Torchvision library from the 

PyTorch machine learning framework and trained 
by running a Python script on the command-line for 

2 epochs until it reached a validation loss of 

167.145, before the model weights were saved. The 
performance metrics of ejection fraction prediction 

are shown in Table 6. 

An if-else statement is used to set the 

classification of the echocardiogram based on the 
value of ejection fraction predicted by the model. If 

the ejection fraction predicted by the model is less 

than 55, the echocardiogram is classified as “low 
ejection fraction”. Otherwise, the echocardiogram is 

classified as “normal”. This classification, along 

with the value of ejection fraction is saved to the 
database. 

 

Table 6 
Performance metrics of ejection fraction prediction 
 

Algorithm R2 score MAE RMSE 

ResNet (2+1)D -0.944 7.46 10.41 

 

A CNN model based on the DeepLabV3 
ResNet50 architecture was built to carry out 

semantic segmentation of the left ventricle in the 

echocardiogram. Each video is divided into blocks 

of frames before being passed through the model. 
The model was built using the Torchvision library 

from the PyTorch machine learning framework and 

trained for 5 epochs until it reached a validation loss 
of 0.0401. The performance metrics of 

echocardiogram segmentation is approximately 

0.912. 

Both models were built based on the deep 
learning model for beat-to-beat cardiac function 

assessment developed by [43]. For both models, 



2099 echocardiography videos were selected for 
training, 600 for validation and 300 for testing.  

In the Echocardiography section on the 

Patient page, the nurse can click on a button in 

the top-right corner that redirects them to a page 
to upload an echocardiogram in .AVI format. 

Once the file is uploaded, the system runs the 

ejection fraction prediction and echocardiogram 
segmentation models on the echocardiogram. 

First, the predictEF() function is run and a 

ResNet (2+1)D  model is constructed. The 
ejection fraction prediction model weights, 

stored on the local file system as 

“ef_model_weights.pt”, are loaded into the 

model using the torch.load() method and the 
model is run. Next, the drawLeftVentricle() 

function is run and a DeepLabV3 ResNet50 

model is constructed. The echocardiogram 
classification model weights, stored on the local 

file system as 

“segmentation_model_weights.pt”, are loaded 
into the model using the torch.load() method 

and the model is run. 

After the models have been run, the nurse is 

redirected back to the Echocardiography 
section, where they can view a log of previous 

echocardiography results, which consists of the 

amount of ejection fraction and the 
classification of the echocardiogram. Both the 

doctor and nurse can click on the play button on 

each log to view the echocardiogram uploaded 

at that time, with a blue overlay over the left 
ventricle. This will help them to verify the 

ejection fraction prediction. The user interface 

of the Echocardiography section is shown in 
Figure 5. 

 

 
Figure 5: User interface of the 
Echocardiography section of patient page 

4.4. Intelligent Dashboard 
and User Interfaces  

For the habit dashboard, the system uses the 

Flask-SQLAlchemy extension to retrieve habit 

data from the cloud database, transforms the data 
into the desired format and renders the data in a 

dashboard format using the jinja2 template engine. 

Some of the user interfaces are randomly selected 

and shown in Figure 6-10.  
 

 
Figure 6: User interface of habit dashboard 

(doctor view)  
Users can view detailed information about the 

habit on a certain day by viewing the three diet 

information cards. The data is visualized in a way 

that highlights the important data to guide doctors in 

decision-making. 

 

 
Figure 7: User interface of intelligent 

dashboard (doctor view) 
 

 
Figure 8: User interface of Homepage (Patient 

View) 
 

 



Figure 9: User interface of the Calendar 
section of the homepage (patient view) 

 

 
Figure 10: User interface of the Patient List 

page (admin view) 

5. Discussion and Conclusion  

If we define digital care pathway for heart 

disease as Figure 11, decision making can be 
integrated into the various steps. For instance, to 

identify people at risk for heart disease, 

decision-making may be used to choose the 
right risk assessment tools and screening 

procedures. Healthcare professionals and 

developers can choose which individual risk 

variables to consider, including age, family 
history, blood pressure, cholesterol levels, and 

lifestyle choices, and can create algorithms to 

determine the total cardiovascular risk score. 
After receiving personalized risk evaluations, 

users may decide what preventative steps to 

take. Furthermore, decision making can occur 
during the development of personalized 

treatment plans for individuals with heart 

disease. Based on the patient's medical history, 

diagnostic tests, and risk factors, healthcare 
providers can make decisions regarding 

medication choices, lifestyle modifications, and 

intervention strategies. The digital platform can 
provide recommendations based on evidence-

based guidelines, assisting healthcare providers 

and patients in making informed decisions about 

the most appropriate treatment options. 
 

 
Figure 11: Digital health care pathway for 
people prone to heart disease. 

 
In addition, decision making can be incorporated 

into remote monitoring systems for heart disease. 

The frequency and intensity of monitoring vital 

signs, such as heart rate, echocardiography, 
heartbeat sounds, blood pressure, heart rate, and 

oxygen saturation, can be set by healthcare 

professionals dependent on the patient's condition. 
Healthcare professionals can decide whether there 

is a need for additional medical treatments, lifestyle 

changes, or drug adjustments based on the data 
gathered. 

Decision making can occur during virtual 

consultations with cardiologists and other 

healthcare professionals. Patients can discuss their 
symptoms, test results, and treatment progress, and 

healthcare providers can make decisions regarding 

medication adjustments, diagnostic tests, or 
referrals to other specialists. Patients can actively 

participate in these discussions, ask questions, and 

provide input on the decision-making process. 
Finally, decision making is involved in guiding 

individuals with heart disease to make healthy 

lifestyle choices. The digital platform can provide 

personalized recommendations for diet, exercise, 
stress management, and smoking cessation. Users 

can make decisions about adopting and adhering to 

these lifestyle changes based on their preferences 
and goals, with the guidance and support of 

healthcare providers. 

LiveHeart combines the analysis of a variety of 

lifestyle habit data with input from doctors to 
professionally guide patients prone to heart disease 

to adopt healthier lifestyle habits. Furthermore, the 

proposed system is able to classify lifestyle habit 
data, classify echocardiograms, visualize data 

analytics on an intelligent report and manage reports 

of patients’ overall health.  
This study contributes to SDG3 and SDG9, 

which are Good Health and Well-being and 

Industry, innovation, and infrastructure 

respectively. With accelerated decision-making 
processes in digital care pathway for heart disease, 

the availability of doctors and nurses can be freed 

up to treat a larger number of patients who are 
suffering from heart disease. This addresses the 

reoccurring problem of health worker shortage. 

Furthermore, with the help of IoT, doctors can 
continue to monitor patient’s health and provide 

timely habit intervention even while the patient is at 

home and not physically at the hospital. Meanwhile, 

the patient receives the benefit of having convenient 
access to healthcare facilities. Timely lifestyle habit 

management can help to gradually improve the 

cardiovascular health of heart disease patients if the 



system were to be implemented on a larger 
scale, contributing to the long-term plan to 

reduce the burden of non-communicable 

diseases.  

The proposed for monitoring lifestyle habits 
can help with decision making by providing 

valuable data and insights. By continuously 

tracking and analyzing lifestyle habits such as 
exercise, diet, sleep patterns, and stress levels, 

individuals can gain a deeper understanding of 

their behaviors and their impact on health and 
well-being. This data can then be used to make 

informed decisions about lifestyle changes, goal 

setting, and preventive measures. For example, 

if the system detects a lack of physical activity 
or poor dietary choices, it can prompt the 

individual to adjust and provide 

recommendations for healthier alternatives. 
Ultimately, the system empowers individuals to 

make more informed decisions about their 

lifestyle choices, leading to improved overall 
health and well-being. 

The proposed system includes the features 

for monitoring echocardiography that can 

provide valuable information and aid in decision 
making related to cardiovascular health. By 

continuously monitoring and analyzing 

echocardiographic data, such as heart function, 
chamber size, and blood flow patterns, 

healthcare professionals can gain insights into 

the condition of the heart. This information can 

be used to diagnose and monitor various cardiac 
conditions, assess treatment effectiveness, and 

make informed decisions regarding patient care. 

For example, if abnormalities are detected in the 
echocardiography results, healthcare providers 

can determine the appropriate interventions, 

such as medication adjustments or surgical 
procedures. The system can also help track 

changes over time, enabling healthcare 

professionals to assess the progression or 

improvement of a cardiac condition and adjust 
treatment plans accordingly. Ultimately, the 

system enhances decision making by providing 

objective data and assisting healthcare 
professionals in delivering optimal care for 

patients with cardiovascular conditions. 

It is important to note that the integration of 
decision making into the digital care pathway 

for heart disease should involve collaboration 

between healthcare providers, researchers, and 

developers. The decisions made should be based 
on evidence-based guidelines, clinical expertise, 

and patient preferences to ensure optimal patient 

outcomes and engagement. 

The future direction would be related to 
functionalities to manage other lifestyle habits that 

are risk factors for heart disease, such as the 

regulation of blood pressure, blood glucose and 

intervention for smoking habits. ChatGPT can be 
integrated into the system for consultation and 

recommendations. However, expert confirmation is 

required. Additionally, the IoT device module of the 
system could be extended to collect data from other 

IoT devices such as blood pressure and blood 

glucose monitoring devices. Finally, the system 
could benefit from having the functionality to 

predict the upcoming change in lifestyle habits in 

the future. 
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