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Abstract
Privacy concerns often limit sharing sensitive data collected from individuals. One proposed solution to make secondary use
possible is privacy-preserving synthetic data that attempts to mimic real data. Due to their success on non-private tasks,
GAN networks trained with differentially private stochastic gradient descent (DPSGD) have been popular for generating DP
synthetic data. In recent years, a prominent approach to achieving better privacy guarantees has been to train ensembles
of discriminator networks with DPSDG on mutually exclusive subsets to obtain better differential privacy guarantees by
taking advantage of the synergy between GANs and privacy amplification by subsampling. However, this research has
been done almost exclusively on images, and empirical evaluations of this strategy on other types of data are lacking. This
work focuses on the effects of subsampling in creating DP synthetic tabular data with GANs. We evaluate synthetic data
utility by training classification models on synthetic- and testing on real data at varying subsampling rates. Further, we
complement the evaluation with a qualitative examination of the generated data. Our findings show that while subsampling
does bring benefits with tabular data in terms of the prediction performance for classifiers trained on synthetic data, the
resulting samples can be very distorted compared to original real data. The results suggest that the benefits obtainable via
this method of training DP GAN can differ significantly based on the type of data used.

Keywords
Machine Learning, Differential Privacy, GAN, Synthetic Data, Privacy Amplification by Subsampling, Tabular Data

1. Introduction
The success of machine learning (ML) has created high
demand for data as researchers and businesses alike seek
to capitalize on advances in computational methods. One
consequence of this has been a push to allow the sec-
ondary use of sensitive individual data, which currently
can not be utilized due to privacy concerns and laws. The
potential value in enabling the use of electronic health
records (EHR), for example, has also inspired a wealth of
research on privacy-preserving data analysis methods in
the past decade.

Synthetic data, which attempts to mimic the statisti-
cal properties of some real data, has been proposed as
a natural framework to make privacy-preserving data
sharing possible. The idea is that synthetic data would be
shared in place of real data as a privacy-preserving proxy.
Synthetic data has proven to be an appealing proposition
that has attracted significant interest both in and outside
academia. Many tutorials have been published for the
non-technical audience [1, 2], and multiple start-ups cre-
ating synthetic data for privacy purposes have sprung
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up around the subject in the last years.
Unfortunately, creating useful, high-quality synthetic

data that would be privacy-preserving has proven to be
a complex and difficult problem; it has repeatedly been
shown that generative models and synthetic data pro-
duced with them are not inherently privacy-preserving
but vulnerable against, for example, membership infer-
ence attacks [3, 4]. The gold standard to deal with this vul-
nerability has come to be combining generative models
with differential privacy [5]. DP is a mathematical frame-
work that can be used to quantify privacy. This quantifi-
cation is expressed as a worst-case privacy guarantee; the
maximum amount of private information leaked about
an individual, denoted with 𝜖 [5].

Combining DP with generative models results in what
is called differentially private synthetic data. For machine
learning models, privacy guarantees can be attained via
a DP optimization algorithm, the most popular being dif-
ferentially private stochastic gradient descent (DPSDG)
[6]. In DPSGD, per-example gradients are manipulated
prior to updating model parameters. First, these gradi-
ents are clipped to some maximum norm, bounding each
observation’s maximum influence, referred to as sensi-
tivity. Second, statistical noise sampled from a chosen
distribution whose parameters depend on the strictness
of the imposed guarantee 𝜖 is added to the gradient. Un-
fortunately, privacy does not come for free. While per-
turbation makes it worse, whether or not the calculation
is perturbed, there is a tradeoff [5, 7] between privacy
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and utility. How good DP synthetic data is, comes down
to optimizing this tradeoff.

Due to their success in non-private settings, Genera-
tive adversarial networks (GAN) (see e.g. [8]), trained
privately, have been among the most utilized model types
to create DP synthetic data. GAN comprises two types of
neural networks, a generator 𝐺 and a discriminator 𝐷,
both initialized simultaneously and trained in tandem in
an adversarial setup [9]. The goal is that 𝐺 learns to pro-
duce samples similar to those of the real data distribution
based on the feedback of 𝐷. This feedback concerns how
well 𝐷 can discern whether the sample was synthetic
or came from the real data distribution based on the ap-
proximation 𝐷 has learned of the real data distribution
during training.

DPSGD [6] was groundbreaking because it enabled
the training of deep ML models with meaningful privacy
guarantees. At the heart of why DPSGD made this pos-
sible is that it takes advantage of privacy amplification
by subsampling (PABS) [6, 10, 5] a well-known result
vital for modern privacy-preserving algorithms. PABS
describes how privacy is amplified when an algorithm is
run only on a subset of the whole data. In DPSGD, this
result is applied to mini-batching, seeing each batch as a
subset. Intuitively, amplification results from an adver-
sary being unable to know which points were chosen for
which iteration of the algorithm. The resulting improve-
ment to privacy is very significant even for datasets of
modest size and can, depending on the sampling strategy,
be roughly as large as 𝑚

𝑛
* 𝜖, where 𝑚 stands for the size

of the subset and 𝑛 the size of the whole training data.
While the first works on DP GANs took DPSGD and

more or less simply combined it with a GAN to make
information on the sensitive, real data flowing to the
discriminator private (see e.g. [11, 12]), soon methods
taking advantage of the specifics of GANs were intro-
duced. PATE-GAN [13], took the PATE [14] mechanism,
a version of the subsample-and-aggregate framework of
DP [5, 15], and used it to train a GAN model using ag-
gregated votes of an ensemble of multiple discriminators.
Long et al. [16] took this approach further with G-PATE
and noted that only the sensitive information flowing to
the generator needs to be sanitized as only the generator
is released (after the network is trained, discriminators
are not needed for generating synthetic data). This al-
lowed for training a large ensemble of discriminators on
exclusive subsets of data, taking advantage of the synergy
between PABS and the GAN setup, where discriminator
and generator networks are separated.

Unlike G-PATE, where information 𝐷 provides to 𝐺
is discretized to votes, the work on GS-WGAN by Chen
et al. [17] worked the subsample-and-aggregate idea
into DPSGD, improving the results of previous works
by aggregating the gradient of large discriminator en-
sembles ( > 1000) to train the generator. This application

of subsample-and-aggregate [5, 15] to DPSGD results
in only the updates to 𝐺 network cost privacy while 𝐷
can be trained without privacy costs, while also reaping
the benefits of PABS by training multiple discriminators.
This opens up many possibilities for further optimization:
for example, the 𝐷 networks can be pre-trained before
updates to 𝐺 and 𝐷 trained for more iterations 𝐺. How-
ever, further research on this method has been lacking,
with some claiming that the large number of networks
trained hinders practical usability due to the time and
resources taken to train so many networks [18].

Most DP GAN synthetic data generation research has
been conducted on image data. However, the overwhelm-
ing majority of, for example, health data is in tabular form.
Here, tabular data is referred to as data where observa-
tions are on rows and columns represent features of those
observations, that may or may not be of mixed type. At
time, Chen et al., achieved state-of-the-art results using
the handwritten digits MNIST [19] and Fashion-MNIST
image datasets [20]. The absence of empirical results on
tabular data leaves open interesting questions on data
modality and the usability of this method to train DP
GAN. As said, the approach requires dividing the data
into many mutually exclusive subsets. Unlike tabular
data, where features may or may not be correlated or
important for some task at hand, the features of images
are autocorrelated, as they depict parts of a whole.

This paper presents an empirical investigation into
generating DP tabular synthetic data using a GAN trained
with the subsampled DPSGD strategy presented by Chen
et al. [17]. We conduct experiments with tabular data
using the freely available Cardio [21] dataset. The exper-
iments include a standard downstream classification util-
ity task in which classifiers are trained on synthetic and
tested on real data. Unlike previous works, we focus on
the effect of this training strategy in particular by varying
the number of discriminators trained with mutually ex-
clusive subsets across the experiments. The downstream
classification utility experiment is augmented with a qual-
itative examination of the structure of the synthetic data
generated. To the authors’ knowledge, this work is the
first to present an evaluation that focuses on subsampled
DPSGD training of DP-GAN with tabular data rather
than images.

2. Preliminaries

2.1. Differential privacy
A randomized algorithmℳ is (𝜖, 𝛿)-differentially private
if for adjacent datasets 𝐷1 and 𝐷2, meaning they differ
by at most one record, and for all measurable sets 𝑆 of
outputs, the following inequality holds:



𝑃𝑟[ℳ(𝐷1) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟[ℳ(𝐷2) ∈ 𝑆] + 𝛿 (1)

Where ℳ is, for example, one iteration of DPSGD
training, 𝜖 is the upper bound for privacy loss, and 𝛿 is
a small probability of a catastrophic breach of the DP-
guarantee [5]. A smaller 𝜖 stands for a stronger guarantee.
Although a single acceptable value for the privacy budget
𝜖 can not be given as it depends on the context, in the
literature, values of 𝜖 ≤ 1 have been seen as very strong
protection [22] and depending on the type of data and
task, values of 𝜖 ≤ 10 have been seen to still result in
meaningful guarantees [6]. Informally 𝜖 can be said to
depict the worst-case of how much information, that can
not be learned from other individuals data, can be learned
from the output concerning a specific individual.

The model in this work uses Rényi differential pri-
vacy (RDP) [23], another formulation of DP often used
with DP deep learning models to get tighter bounds of
composing DP guarantees over iterations. In this paper,
due to interpretability, Rényi DP bounds are converted
to (𝜖, 𝛿). The privacy loss of training is tracked via the
subsampled Rényi moments accountant [24]. There exist
many ways to compose privacy costs of sequential runs
of a DP algorithm. Naively, this is a summation, but by
using advanced techniques, a more efficient composition
can be achieved.

This work uses differentially private stochastic gradi-
ent descent (DPSGD) [6] to optimize the DP GAN. DPSGD
differs from its non-private counterpart in that prior to
updating model parameters, the maximum influence of
an individual data point can have on the output, called
the sensitivity [5] of the function is bounded by clipping
gradients. Clipping is followed by adding noise from a
noise mechanism. Noise mechanisms like the gaussian
mechanism used in this work are functions from which
noise calibrated to a specific sensitivity can be sampled
[25]. The choice of noise mechanism largely depends on
the type of information sanitized.

A DPSDG training step, that is, one run of the DP
optimization algorithm, can be summarized as follows:

1. Gradients before sanitation are calculated with
backpropagation as in non-DP SGD. At train-
ing step 𝑡 these are: ∇𝑡

ℒ(𝜃) = ∇𝜃ℒ (𝜃𝐷,𝜃𝐺),
where 𝜃𝐷 and 𝜃𝐺 are the discriminator and gen-
erator network’s weights.

2. Gradient information is sanitized by bounding
the sensitivity, clipping the gradient vectors to a
maximum of C, and adding noise:

∇̂𝑡
= ℳ𝜎,𝐶

(︁
∇(𝑡)

)︁
=

clip
(︁
∇(𝑡), 𝐶

)︁
+𝒩

(︀
0, 𝜎2𝐶2𝐼

)︀

3. The parameters of the model are updated using
the sanitized gradients as in normal gradient de-

scent: 𝜃(𝑡+1) := 𝜃(𝑡) − 𝜂 · ∇̂(𝑡)

2.2. DP synthetic data
DP synthetic data generation is possible due to the post-
processing property [5] of differential privacy, which
guarantees that outputs, in this case, synthetic data, of
any process that is DP are also DP. Importantly, DP guar-
antees are not actually over the synthetic data but the
algorithm that generated it.

Evaluation of DP synthetic data can be said [1] to lie on
three axes: privacy, utility, and fidelity (also sometimes
called sample quality). Utility is simply the usefulness of
the synthetic data for a given task. In this work, the down-
stream classification task, where a downstream model, a
model trained on synthetic data, is evaluated on real data,
is concerned with utility. Fidelity, refers to, how closely
the statistical properties of the synthetic data are pre-
served. What exactly this means differs on the measure
used, but often, for example, correlational structure and
distributions are compared between synthetic and real
data.

2.3. GAN
Generative Adversarial Networks [9] are a type of gener-
ative model where training is formulated as a competitive
game between two networks: a generator 𝐺 and a dis-
criminator 𝐷. The goal is that 𝐺 learns a mapping from
some bounded domain, usually a noise vector denoted
with z, to an approximation of the distribution of real
data based on the 𝑑𝑖𝑠-network’s feedback.

The 𝐺 can be used to generate samples from the dis-
tribution it has learned, that is, 𝑝𝑚𝑜𝑑𝑒𝑙, by feeding z to
the network as input: 𝐺(z). 𝐷 discriminates between
this generated output 𝐺(z) and real data. GAN have
been thought to have some inherent privacy attributes,
such as resistance to overfitting [8], because 𝐺 only in-
teracts with the real data indirectly by receiving informa-
tion from 𝐷, which does not define an explicit density
function but learns an approximation during training.
Few works on these inherent properties exist, but even
non-DP GAN have been shown to provide some weak
protection against membership inference attacks [26].

The model used in this work is based on a Wasserstein
GAN with gradient penalty (WGAN-GP) [27]. In the
context of Wasserstein GAN, [27], the discriminator is
called a critic, but in this work, it is referred to as a
discriminator as well to avoid extra terminology.

The choice of the Wasserstein loss and use of gradient
penalty [27] is non-trivial as it has privacy-synergies
with DPSGD clipping [17]. The Wasserstein loss is based
on the Earth Mover’s distance (EMD). For EMD to be



valid, the 1-Lipschitz continuity condition must hold (see
Definition 1).

Definition 1 (Lipschitz-continuity). A function f :
R𝑛 → R𝑚 is globally L-Lipschitz continuous if there exists
an L ≥ 0 such that ‖𝑓(𝑥)−𝑓(𝑦)‖ ≤ 𝐿‖𝑥−𝑦‖ ∀𝑥, 𝑦 ∈
R𝑛

If the continuity holds, gradient magnitudes during
training are approximately between [−1, 1] [17]. The
gradient penalty regularization term [27] is used as a soft
restraint to make the condition hold. This is beneficial
for DPSGD training, as then setting the clipping bound
𝐶 = 1 should be a close to optimal choice and a costly
search for the hyperparameter value is avoided [17].

Definition 2 (Wasserstein-1 loss of D and G [27]).

ℒ𝐷 = −E𝑥∼�̂�𝑑𝑎𝑡𝑎
[𝐷(𝑥)] + E�̃�∼𝑝𝑚𝑜𝑑𝑒𝑙 [𝐷(�̃�)] +GP

ℒ𝐺 = −E𝑧∼𝑃𝑧 [𝐷(𝐺(𝑧))]

Where 𝑃𝑧 is the noise sampled from a normal dis-
tribution given as input to G to generate samples, 𝜆
is the regularization strength hyperparameter of the
gradient-penalty term, 𝑥 is the real data and �̃� is the
data generated by G. GP is the gradient penalty term
𝜆E

[︀
(‖∇𝐷(𝛼𝑥+ (1− 𝛼)�̃�)‖2 − 1)2

]︀
and 𝛼 ∼ 𝒰 [0, 1]

is the interpolation coefficient and ∇𝐷 [27].

2.4. Subsample-and-aggregate and
privacy amplification

The work of Chen et al., [17] can be seen to be a succes-
sor to a line of works, especially the G-PATE [16], which
adapts the subsample-and-aggregate [5] framework of
DP, first formalized by Nissim et al. [15], to DPSGD and
training of multiple discriminators on a GAN setup to
reap privacy amplification by subsampling (PABS) bene-
fits.

Privacy amplification by subsampling is a well-studied
subject with bounds for different sampling strategies,
such as without replacement or with replacement having
been worked out extensively, especially in the works of
Kasiviswanathan et al., [28] and Balle et al., [10]. PABS
is induced in the model of this work by training a large
number of 𝐷 networks on mutually exclusive subsets
and randomly querying them at each 𝐺 update step. This
corresponds to PABS for sampling without replacement
[10], with an amplification effect roughly proportional to
𝑛
𝑚

, where 𝑚 is the number of mutually exclusive subsets
the data is split into and 𝑛 the size of the whole training
data.

Figure 1 depicts the sanitation of gradients [17] during
the update steps of the generator. As seen from the figure,
where the sanitation bound, or "privacy barrier" as called
by [17] is placed "between" the two networks. This is an

Figure 1: Flow of information for one DPSGD update step
of the Generator modified from the work of [17]. The in-
formation that flows from 𝐺 to 𝐷 is not sanitized, but the
information from 𝐷, that sees the private data to 𝐺 is. The no-
tation 𝐷(𝑥𝑓𝑎𝑘𝑒) refers in this picture to the "fake" examples
produced by 𝐺 being given to 𝐷 to get the value for the loss.
Sensitive information is marked with a red color, whereas non-
sensitive (not depending on real data), information is marked
with a black color. Green denotes sanitized information, that
is information under a DP guarantee.

important emphasis, because, it is what allows training
the 𝐷 networks without incurring privacy costs. If the
sanitation would be between, for example, the real data
and the 𝐷 networks, every time they see real data would
result in a privacy cost.

3. Materials and methods

3.1. Model specifications
The freely available code [29] of GS-WGAN by Chen et
al., [17] was used as a basis of the implementation, but
the architecture and gradient clipping procedure code
was re-implemented to fit the tabular data case, replacing
the convolutional architecture with a fully-connected
one using Pytorch (v. 1.4.0) [30]. Choices for the new
architecture specifications were made based on a limited
number of tests with less than five training runs with
different seeds per choice, such as the width or depth of
the network and the number of 𝐷 training repetitions
per generator iteration, denoted 𝑛𝑑𝑖𝑠. Unless mentioned
here, hyperparameter choices were those recommended
by [27].

The 𝐺 network used was a fully connected network
with two hidden layers, the largest being of size 256 with
16 outputs. The size of the noise vector z was set to 32,
based on experimenting on a few usual settings. The
activation function used was ReLU [31], except in the
last layer of where a hyperbolic tangent (TanH) was used,
due to the range of the Wasserstein loss function (both
[-1, 1]). The 𝐷 classifier network was a typical multi-
layer-perceptron architecture with one hidden layer, size
128. Instead of a ReLU, as in the 𝐺 network, a LeakyReLU
[32] with 𝛼 (negative slope) value set to 0.2 was used in
the hidden layers as in [27].



Table 1
Features of the Cardio dataset

Feature Type

Age numeric (days)
Height numeric (cm)
Weight numeric (kg)
Gender binary

Systolic blood pressure (ap_lo) numeric
Diastolic blood pressure (ap_hi) numeric

Cholesterol

categorical
1 = normal
2 = above normal
3 = well above normal

Glucose

categorical
1 = normal
2 = above normal
3 = well above normal

Smoking binary
Alcohol intake binary

Physical activity binary
Cardiovascular disease (cardio) binary

3.2. Data
The publicly available Cardiovascular Disease dataset
[21] consists of 70 000 observations and 12 features, five
binary, two categorical, and five numeric. The classifi-
cation target is to predict the presence of cardiovascular
disease (the feature ’Cardio’). Table 1 lists all features
and their types. This dataset was chosen for reproducibil-
ity and to work as a feasible proxy for common tabular
EHR data; the condition to predict is common, and the
features are routinely collected during doctor’s exam-
inations. The number of patients with cardiovascular
disease in the dataset is balanced. Blood pressure values
were limited to a range of +-20 from values indicating
a hypertensive crisis according to Finnish national stan-
dards [33], affecting 1064 values of ap_hi and 312 values
of ap_lo. KNN-imputation (see [34]) with 𝑘 = 3 was car-
ried out to replace these, using the implementation from
the scikit-learn package [35] (version 1.0.2). The two
categorical variables ’cholesterol’ and ’glucose’ were one-
hot encoded, after which all features were min-maxed to
[-1,1] to match the feature values range of the 𝐺 network
output layer.

4. Experiments and evaluation
The quality of synthetic data is evaluated from two view-
points; downstream classification utility and sample fi-
delity. This section gives an overview of the downstream
utility experiment conducted and the DP synthetic data
generation process. The downstream classification utility
experiment is depicted in Algorithm 1.

4.1. Downstream utility experiment
Downstream classification utility is a standard way of
evaluating DP synthetic data and the method used to
generate it (see e.g. [36, 17, 37]). In this experiment, syn-
thetic data is used to train a downstream model, which
is tested against real data. In this work’s binary classifi-
cation task, a logistic regression (LR) classifier from the
[35] (version 1.0.2) package was used as the model of
choice for classification and accuracy was measured with
the AUC metric [38].

Five private Generators were trained for the down-
stream classification task each up to a maximum of 40
000 iterations, using an amount of pre-trained 𝐷 net-
works corresponding to the subsampling rates, 𝛾 =
1/250, 1/500, 1/750, 1/1000, 1/1500, that is fraction
of real data in each mutually exclusive subset. In ad-
dition, a non-private 𝐺 network was trained to compare
the effects of the generating process only. In all cases, the
discriminators 𝐷 were pre-trained for 2000 iterations.

Every model was saved once per 1000 iterations, in this
work referred to as checkpoints. Each of these saved states
of the model were evaluated separately. Hyperparameter
optimization over the choice of regularization term and
regularization strength was conducted for the logistic
regression classifier separately for each checkpoint at
different iterations. The real and synthetic data used for
this experiment were split to training, validation, and
test sets with size corresponding to fractions (0.8/0.1/0.1)
of the real dataset. The resulting set sizes were 56000 for
the synthetic training, for the synthetic validation and
7000 for the real test set.

A total of 287 full model selection runs (40 checkpoints
at each of the 6 different 𝛾 settings and the additional real
versus real baseline case) consisting of hyperparameter
optimization and evaluation with the best hyperparame-
ters settings were conducted.

4.2. Sample fidelity
A comparative assessment of the effects of different
privacy- and subsampling levels on the method’s ability
to retain sample fidelity in this work consists of three
comparisons; correlational structure using Spearman’s
rank correlation coefficient, a visual examination of the
change of the continuous feature distributions, and a vi-
sual examination of the change in binary and categorical
variable distributions.

5. Results

5.1. Downstream classification utility
Figure 2 compares results of the downstream classifi-
cation utility experiment (train on synthetic, test on



Algorithm 1: Downstream Classification Quality
Experiment

1 Create sets ℎ ∈ H, where H denotes combinations
between 20 values of 𝑐𝑟𝑒𝑔 randomly sampled from a
logarithmic space between (0, 1) and regularization
term choice of either 𝑙1 or 𝑙2

2 for subsampling rate 𝛾 in {1, 1/250, 1/500, 1/750, 1/1000,
1/1500} do

3 pretrain 𝐾 (denominator of 𝛾), networks 𝐷𝛾
𝑘

4 train (𝑀𝛾 using 𝐷𝛾 ), save "checkpoint models"
𝑀1𝑘

𝛾 ,𝑀2𝑘
𝛾 . . . 𝑀40𝑘

𝛾 every 1000 iterations

5 for 𝛾 in {1, 1/250, 1/500, 1/750, 1/1000, 1/1500} do
6 for i in {1k, 2k, . . . , 40k} do
7 split dataset X of size 𝑛 with stratification by

the Y variable ’cardio’ to X𝑡𝑟𝑎𝑖𝑛, X𝑣𝑎𝑙, and
X𝑡𝑒𝑠𝑡 with proportions 0.8/0.1/0.1 * 𝑛.

8 sample s = 0.9 * 𝑛 synthetic data points from
𝑀 𝑖

𝛾 and split with stratification to
𝑠𝑦𝑛𝑡ℎ𝑡𝑟𝑎𝑖𝑛 and 𝑠𝑦𝑛𝑡ℎ𝑣𝑎𝑙

9 for h ∈ H do
10 train classifier 𝐿𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 with

hyperparameters ℎ and data
𝑠𝑦𝑛𝑡ℎ𝑡𝑟𝑎𝑖𝑛

11 evaluate 𝐿𝑅𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 against 𝑠𝑦𝑛𝑡ℎ𝑣𝑎𝑙

12 save best ℎ in ℎ𝑏𝑒𝑠𝑡

13 train classifier 𝐿𝑅𝑡𝑒𝑠𝑡 with ℎ𝑏𝑒𝑠𝑡 and data
𝑠𝑦𝑛𝑡ℎ𝑡𝑟𝑎𝑖𝑛 combined with 𝑠𝑦𝑛𝑡ℎ𝑣𝑎𝑙

14 evaluate 𝐿𝑅𝑡𝑒𝑠𝑡 using X𝑡𝑒𝑠𝑡

15 save the result of the downstream
classification utility test for 𝑀 𝑖

𝛾

16 empty the set ℎ𝑏𝑒𝑠𝑡

real data) with multiple synthetic datasets sampled at
different checkpoints (every 1000 iterations) of five dif-
ferentially private models with different subsampling
rates 𝛾. The models are denoted 𝑀250 for 𝛾 = 1/250,
𝑀500 for 𝛾 = 1/500, 𝑀750 for 𝛾 = 1/750, 𝑀1000 for
𝛾 = 1/1000 and 𝑀1500 for 𝛾 = 1/1500 and are com-
pared to a non-private Generator denoted 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒.

The best overall results in terms of the 𝜖 - AUC trade-
off were achieved with synthetic data sampled from the
model with the highest subsampling rate, 𝑀1500 with
𝜖 = 6.45 and AUC = 0.717. Compared to the real data
logistic regression (LR) model AUC = 0.795, the differ-
ence was 0.078. Accounting for the loss of information
caused by generating data with any model, that is, when
compared to the results obtained with synthetic data sam-
pled from the non-private 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (AUC = 0.788) this
difference drops to 0.071.

Other private models required more than double the
privacy budget to reach classification accuracy similar
to 𝑀1500 with the closest model, 𝑀750 achieving AUC
= 0.715 at 𝜖 = 13.9. The next best tradeoff was obtained
with data sampled from 𝑀1000, which ultimately failed
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Figure 2: Downstream classification task results training a
logistic regression model on synthetic and testing on real data,
comparing AUC and 𝜖 with a non-private model 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

and models with differential privacy using a noise scale of 𝜎
= 1.07 and a clipping bound 𝐶 = 1. Each marker represents a
’checkpoint’ at every 1000 iterations, where a synthetic dataset
was sampled. The model at a checkpoint with the lowest 𝜖
to AUC ratio close to the highest AUC of the checkpoint
evaluations for a specific model is chosen as the "best model".
The visualizations of distributions in Figure 3 are from data
generated by these "best" models.

to reach the same AUC, with its highest score being 0.687
at 𝜖 = 14.7.

In general, models with weaker privacy guarantees
and a smaller subsampling rate were able to reach higher
values of AUC eventually, but at high privacy costs. In
comparison to 𝑀1500 that reached the best tradeoff, for
example, 𝑀500 reached the value 0.717, close to that of
𝑀1500 at 𝜖 = 34.8, nearly six times more. The best
AUC value obtained with privacy-preserving models was
reached by 𝑀250 at an AUC of 0.752 with 𝜖 = 63.0.
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Figure 3: Comparison of distributions of continuous features
of synthetic data produced by the best performing models of
the downstream classification task based on AUC to 𝜖 tradeoff.
Note that the y-axis varies in range. Real data distributions
are included for comparison. Columns are different models at
different sampling rates 𝛾 and 𝜖 values whereas rows are the
different continuous features.

5.2. Sample fidelity
Figure 3 shows distributions of continuous features gen-
erated by models performing best in the downstream
classification task at settings 𝑀250, 𝑀750, 𝑀1500 as well
as the non-private 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, all compared with the real
data feature distributions. Note that the y-axis density
value range varies to provide better resolution for each
variable. Interestingly, there is visible x-axis shift in es-
pecially the samples from models where 𝛾 is larger.

Figure 4 compares binary and categorical feature dis-
tributions of data sampled from DP models, the baseline
model 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 and real data. 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 appears to cap-
ture distributions of the real data well, but when DP is
applied there are considerable deviations from the real
data case, especially with 𝑀1500 with stricter guarantees
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Figure 4: Comparison of frequencies of binary and categori-
cal features between data sampled from the best performing
models in the downstream utility experiment. Real data dis-
tributions are included for comparison.

𝜖 = 6 and a higher 𝛾. In the case of features where the
number of positive cases is low to begin with, such as
’alcohol’, adding DP seems to often further decrease the
amount of positives. For the categorical features ’choles-
terol’ and ’glucose’, stronger privacy guarantees such
as in the case of M1500 seem to also balance the size
differences between the counts.

Figure 7.3 shows a comparison between Spearman
Rank correlation coefficient values calculated between
the continuous features across synthetic data sampled
from the best performing models shown in 7.2. Signifi-
cant correlations are marked with (*) for a significance
level of p < 0.05 and (**) for p < 0.01. Even in the case of
the non-private synthetic data sampled from 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,
many of the dependencies in the real data are lost, as
is the case with, for example, the correlation between
’weight’ and ’ap_hi’. In addition, the synthetic datasets,
especially those sampled from private models show new



Age Height Weight Ap_lo Ap_hi

Age

Height

Weight

Ap_lo

Ap_hi

1.0**

-0.01** 1.0**

0.13** 0.38** 1.0**

0.12** -0.01 0.22** 1.0**

0.25** 0.16** 0.41** 0.64** 1.0**

Real Data

Age Height Weight Ap_lo Ap_hi

Age

Height

Weight

Ap_lo

Ap_hi

1.0**

-0.03** 1.0**

-0.03** 0.13** 1.0**

0.12** 0.24** -0.03** 1.0**

0.08** -0.01** -0.02** 0.53** 1.0**

Mbaseline, AUC = 0.788

Age Height Weight Ap_lo Ap_hi
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1.0**

-0.09** 1.0**

-0.05** 0.18** 1.0**

0.14** 0.31** 0.28** 1.0**

0.13** -0.14** -0.13** -0.1** 1.0**

M1/250,  = 63, AUC = 0.752
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0.12** 0.38** 1.0**

0.1** -0.15** -0.22** 1.0**

0.35** -0.14** 0.03** 0.52** 1.0**

M1/750,  = 18, AUC = 0.751
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0.29** 0.11** -0.21** 0.0 1.0**

M1/1500,  = 6 AUC = 0.717
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Figure 5: Spearman rank correlation coefficients of continu-
ous variables compared between synthetic and real dataset
across three of the best performing private models in the
downstream classification utility experiment. The synthetic
data generated by the non-private 𝑀𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 as well as the
real data case are included for comparison. One asterisk (*)
denotes a significant at a p-value < 0.05 and ** marks signifi-
cance at level < 0.01.

correlations that are not present in the real data.

6. Conclusion
In the downstream classification utility task (see Figure
2), the private models, especially those with higher sub-
sampling rates, required more training iterations to ob-
tain high AUC values. However, the benefits to privacy
attained with the subsample-and-aggregate DPSGD strat-
egy outweighed these costs. This result suggest that the
benefits seen with PABS and image data by Chen et al.
[17] can also be reaped in terms of downstream tasks
when tabular data with mixed features is used. How-

ever as opposed to the case of image data, this seems to
happen at the cost of fidelity.

The sample fidelity results of Chen et al. [17] show
that images retain fidelity uniformly and, the picture is
still very much recognizable. In contrast, the synthetic
tabular data produced in this study, especially with DP
models at stricter privacy guarantees, have substantial
deviations in all the fidelity examinations when com-
pared to real data. This is especially evident in the binary
feature distributions when there are few positive observa-
tions to begin with, which corresponds with other results
showing that DPSGD training affects imbalanced feature
distributions disparately [39]. In addition, some correla-
tions turn almost opposite and from non-significant to
significant.

The described effect worsens with the subsampling
rate rising, but it does not affect the downstream classifi-
cation metric nearly as much. This could be indicative
of the differences of tabular and image data hypothe-
sized earlier: tabular data features may or may not be
correlated or important for some task at hand, while
the features of images are autocorrelated, as they depict
parts of a whole. Tabular data may lose almost all signal
in some features, while with images, the perturbation
is applied more evenly due to autocorrelation and less
imbalance in the distributions.

A clear limitation of this paper is that it only uses
one dataset. This is due to the significant computational
expenses; the time it took to train a whole model and con-
duct the experiment at one subsampling rate exceeded 15
hours for the model with the highest subsampling rate
𝛾 = 1/1500, not counting the hyperparameter optimiza-
tion using three NVIDIA RTX Titan GPU’s. Subsample-
and-aggregate-based methods have been criticized for
being computationally expensive [18]. However, this
question is not as black and white because, although
expensive, subsampling could incur great privacy ben-
efits for some types of data while only having a small
detrimental effect on model performance.

Compared with other works using the same data, Fang
et al., [40] reported better results. However, it has been
since noted that their approach of adding DP to the con-
ditional GAN of [41] is not DP since it oversamples the
data and the DP mechanism is not random. RDP-CGAN
of Torfi et al., [36] reported results visually in a figure of
approximately 𝐴𝑈𝐶 = 0, 72 at 𝜖 = 10, which fall short
of the results of this work.

The results of this study suggest that subsample-and-
aggregate DPSDG training also brings benefits with tab-
ular data; however, with a higher cost to fidelity than
with images. From a broader perspective, this work adds
to the line of thought [1], that useful DP synthetic data
can be made specifically for some problems, but making
"general" synthetic data, where all features would be pre-
served well and which could be used like real data is very



difficult if not impossible.
Future work could have a closer look at how benefits

from subsampling and data structure relate, using, for
example, simulated data to control more parameters. An-
other direction relates to taking advantage of free train-
ing of the discriminators. For example, ways to track
when generator training steps would be optimal with
this method could result in significant benefits.
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