
Practitioners' Perspective on Microservices Design Areas
Challenges: A Socio-Technical Grounded Theory
Literature Review

Muhammad Hamza1, Muhammad Azeem Akbar1, Kari Smolander1 and Arif Ali Khan2

1 LUT University, 53851, Lappeenranta, Finland
2 University of Oulu, 90570, Oulu, Finland

Abstract
Microservice architecture has gained hype both in industry and academia. Companies are migrating
their legacy monolithic systems to microservices architecture due to its promised benefits (e.g., agility
and scalability). However, practitioners have faced many challenges in microservices architecture’s
design, development, and operation. This study investigates the challenging factors that could
negatively affect the adoption of microservices architecture, as revealed by practitioners in empirical
studies. We performed a socio-technical grounded theory literature review (ST-GTLR) and identified 24
key challenges from 31 empirical studies. The identified challenges were labeled as codes and mapped
into seven concepts. Finally, the concepts were merged into three core categories design, development,
and infrastructure. Our results serve as a body of knowledge for practitioners and researchers to
understand the challenging aspects of microservices architecture in design areas.

Keywords
Microservices Architecture (MSA), Design Areas, Challenges, ST-GTLR1

1. Introduction

Software organizations are continuously seeking
solutions to improve product quality. To this end,
many companies are migrating their monolithic
systems to a microservices architecture to achieve
better scalability, maintainability, and deliverability.
In traditional monolithic architecture, all layers of
application, e.g., user interface, business, and database,
are developed as a single logical executable unit [1],
which raises several challenges, such as scalability,
maintainability, and deliverability. To tackle the
mentioned challenges, the concept of microservices is
introduced. Lewis and Flower [2], defined
microservices architecture (MSA) as the counterpart
to the monolith: a single application composed of
loosely coupled and independently deployable smaller
services.

In recent years, MSA concepts have largely been
adopted across a vast array of industrial solutions.
Technology giants like Amazon, Netflix, Spotify, Uber,
and Twitter have successfully migrated the
conventional monolithic system architectures to
microservices architecture MSA to achieve structural,
functional, and data decoupling [3]. Modernizing the
legacy system with microservices architecture enables
faster delivery, improved scalability, and greater
autonomy.

TKTP 2023: Annual Symposium for Computer Science 2023, June 13-
14, 2023, Oulu, Finland

© 2023 Copyright for this paper by its authors. The use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

However, adopting microservices architecture is
not a one-go process as various challenges are likely to
appear [4], e.g., decentralization of microservices
requires more exertion to optimize the
communication among services and to trace
performance [5]. Haselböck et al. [6] have identified
design areas of microservices architecture, such as
microservices security, testing, communication, etc.,
by conducting expert interviews. Knoche and
Hasselbringa [7] investigated the main motivation,
challenges, and goals of adopting microservices by
conducting a survey study. Similarly, Jamshidi et al. [5]
identified microservices architecture's drivers,
evolution, and future challenges. Yarygina et al. [8]
identified and categorized security challenges in a
microservices architecture. Viggiato et al. [9]
conducted an industrial survey and investigated
prevalent programming languages, their advantages,
and challenges, e.g., distributed transactions,
integration tests, service faults, and remote procedure
calls in microservices systems. Zhou et al. [11]
conducted a survey study of practitioners and
investigated the fault analysis of a microservices
system and practices for debugging. Similarly, Wang et
al. [12] empirically investigated the challenges (e.g.,
common code management across services) faced by
practitioners and their solutions in the microservices
system. Moreover, Taibi et al. [13] reported migration

motivation to MSA, benefits, and challenges (e.g., data
splitting). Several studies identified challenges
covering different aspects of microservices [7] [8].

However, all these studies report different
challenges from each other. Some studies discuss the
architecture, whereas others discuss the security
perspective. Therefore, no systematic study analyzes
all the empirical studies that classify the microservices
system's most common challenges in each design area
(design, development, and operations). This study
aims to identify the challenges for each design area
from the empirical studies and develop a taxonomy of
challenges that practitioners faced while designing,
developing, and operating MSA. To achieve the study
objectives, we conducted a socio-technical grounded
theory literature review (ST-GTLR) to understand the
industrial practitioner's perspective on the challenges
and map the identified challenges into the design areas
(e.g., design, development, and operation) of
microservices architecture. ST-GTLR is based on the
grounded theory literature review guidelines
developed by Wolfswinkel et al. [18]. GTLR studies
have been conducted in healthcare [19], [20],
education [21], and banking [22]. This approach has
also been implemented in information system
research [23], and the software engineering domain
[24]. Hence, in this study, we derived the following
research question (RQ):

[RQ]: What are the challenges in the design area of
microservices architecture, reported by practitioners
in state-of-the-art empirical studies?

2. Methodology

2.1. Socio-Technical Grounded
Theory Literature Review

Socio-technical grounded theory literature review
(ST-GLTR) is an iterative and responsive approach that
applies a five-phase framework (i.e., define, search,
select, analyze, and present) of the original grounded
theory literature review (GTLR) with concrete data
analysis framework of socio-technical grounded
theory [17].

We conducted ST-GTLR to explore challenges that
practitioners face when working with microservices
architecture and to develop a taxonomy of challenges
with respect to design areas of microservices
architecture. The main motivation of this review study
is to develop a taxonomy of challenges, understand
various facets of the practice areas, and guide future
research in microservices architecture. Thus, all the
steps to perform the ST- GTLR are presented in Figure
2, with a detailed illustration of the analysis phase. As
per our knowledge, we are the first to use the ST- GTLR
approach to explore the challenges of microservices
architecture design areas. However, the detailed first
version of the ST-GTLR was implemented in the
domain of software engineering [24]. A detailed
description of each stage of ST-GTLR is presented in
the following subsections.

Define: In the initial phase of ST-GTLR, we set the
study's scope by defining the research question and
criteria, as shown in Table 1. This guided the creation

of the search string, developed through a thorough
analysis of keywords by the first two authors.

Furthermore, the search string was created using
'AND' and 'OR' Boolean operators to combine key
terms and synonyms. After a team meeting to test eight
candidate strings, the final version was selected and
run on five major databases—ACM, Science Direct,
IEEE Xplore, Wiley OL, and Springer Link—yielding
2,830 studies. These databases were chosen by
unanimous author agreement and are commonly used
in software engineering reviews [25].
Table 1
Inclusion and Exclusion criteria

Inclusion Exclusion

The selected study must be
full text published in Journal,
Conference, as a thesis, and
report or paper on arXiv.
The study must be published
in English.
The study must present
empirical findings regarding
practitioners' perspectives on
microservices.
A study that presents
empirical results on
challenges in the
implementation of
microservices architecture.

Studies include
microservices terms
but do not focus on
empirical challenges.
Papers published in
workshop, short paper
(less than 4 pages).
Grey literature, books,
and incomplete work.
Review and duplicate
articles.

Search: In the second stage, the actual search was
performed using the review protocols defined in the
first stage's guidelines by Wolfswinkel et al. [18]. The
search process was iterative and time-consuming
because we had to revisit the define section as some
necessary synonyms of search terms were missed. The
search process was started on 21 October 2022 and
ended on 13 November 2022. By executing the final
search string, 2830 articles were collected. The total
number of studies was large in number; thus, we
exerted inclusion and exclusion criteria presented in
Table 1.

Select: In the third stage, literature was filtered
based on criteria in Table 1, narrowing it down to 2067
articles from various sources like journals,
conferences, and arXiv. Further refinement led to 23
primary studies. The first author then used a backward
snowballing approach, adding 8 more studies. The
final list included 31 studies (23+8), as shown in
Figure 1. If new articles emerged from snowballing, the
process would restart; an article was finalized only if
no new ones were found.

Figure 1: Studies selection process

Analyze: STGT is an effective approach to deeply
understanding the state-of-the-art literature and

exploring the specific research problem reported in
the state-of-the-art literature [17]. Hence, we used the
step-by-step guidelines STGTLR proposed by Hoda
[17] to understand the practitioner's perception
concerning microservices architecture design areas
challenges reported in primary studies and socio-
technical phenomena [16]. Our research group is
highly skilled in terms of the technical background of
microservices architecture and qualitative and
quantitative empirical research. We used MS Excel
software to collect the qualitative data from selected
primary studies and applied advanced STGT data
analysis techniques.

We employed Socio-Technical Grounded Theory
(STGT) in our ST-GTLR study, using traditional
methods like open coding and constant comparison in
the early stages, and advanced techniques like targeted
Data Collection and Analysis (DCA) later. The data
consisted of practitioners' statements on
microservices architecture, analyzed using STGT
methods like open coding and theoretical structuring.
Details of the analysis are depicted on the right-hand
side of Figure 2.

The basic stage – Open Coding: The open coding
technique was performed to develop the codes from
the finding section of primary empirical studies. For
instance, the primary study stated, "Without a design
of microservices systems, a system could become a
nightmare for developers. Several risks can affect the
microservices system, including poor work and time
management," is coded as "Lak of design" Similarly, we
developed several codes by considering the statement
of practitioners in the finding section of the primary
study. All study authors carefully verified the codes in
multiple meetings to check whether they met the
objective of our research question.

Figure 2: Socio-technical grounded theory literature
review

Finally, we mapped the similar codes into their
respective concepts, and similar concepts were
mapped to respective categories by using the constant
comparison technique. An example is presented in
Figure 3 for better understanding. A similar process
was performed in the findings section of all primary
studies. We numbered each code as (C1, C2, C3 ….) and
mapped them into respective categories. We again
searched articles using snowballing once the concepts
and categories were generated. We have provided the
final replication package at http://tiny.cc/t6d2vz.

Advanced stage – Theory development: The
codes generated through open coding techniques led
us to the development of seven concepts and three

categories. The seven concepts are microservices
architecture, microservices security, testing,
monitoring, development, microservices
development, storage, and deployment. The concepts
were mainly mapped into three categories:
microservices design, development, and operation.

Figure 3: Example of STGT data analysis

Present: In the final stage of the ST-GTLR, we
presented the final findings through textual
description along with the quotations taken from the
final selected primary studies. Furthermore,
Wolfswinkel et al. [18] recommend "presenting
findings using visualizations such as diagrams can help
reach a wider audience". The final findings are
depicted in Figure 4.

Figure 4: Mapping of concepts into categories

3. FINDINGS – KEY CATEGORIES

We derived three key categories from the rigorous
analysis: (1) microservices design (2) microservices
development (3) microservices operation. The codes
were mapped into the seven concepts, and concepts
were mapped into key categories. The mapping of
concepts into categories is depicted in Figure 4,
whereas their respective challenges are depicted in
Figure 5.

3.1. Microservices design

Microservices design is the first category that
emerged from the analysis. This category emerged
from the underlying microservice architecture and
microservices security concepts. The design of the
microservices system should be comprised of loosely
coupled microservices that can be developed, tested,
and deployed independently [26].
Microservices architecture: Architecture is a crucial
component of microservices system development.
However, defining microservices architecture carries
several challenges. The challenges are coded and
numbered as C1, C2, C3.

C1 (Microservices granularity): Granularity
defines the size of microservices, such as how big and
short a microservices should be. However, identifying

http://tiny.cc/t6d2vz

the right granularity of microservices is challenging
from most practitioners' perspectives, whether they
are experienced or newcomers reported in [12], [27],
[28], [29], [13], [30], [31], [32], [33], [34], [35], [36],
[37],[38], [39], [40], [41]. For example, the participants
of [12] mentioned “Identifying the right granularity of
microservices is challenging; the size in lines of code is
less crucial than having a cohesive service that focuses
on one thing [….]” (Page no. 15) [12].

C2 (Lack of microservices ownership): Services
ownership states that a person should be accountable
for the service in the entire lifecycle of its success or
failure. Microservices ownership helps identify and fix
bugs, implement new features, and train new
recruiters [42]. However, companies do not have
experienced persons for microservices ownership.
Therefore, the lack of microservices ownership is also
considered a significant challenge among practitioners
[12], [27], [37], [41]. For instance, the participants of
the study [37] stated “Instead of excelling at one specific
function, these 'jack-of-all-trades' services end up
performing multiple tasks poorly, undermining the
principle of doing one thing well” (page no. 18) [37].

C3 (Language Diversity): The polyglot nature of
the microservices architecture is more advertised as a
developer can choose different programming
languages for different microservices [41]. However,
specifying different languages for different
microservices may negatively affect the microservices
system maintenance and testing [12], [13], [31], [34],
[35], [36], [37], [43], [44], [40]. For instance, the
participants of the study stated, “We said, 'Hey, why not
try using Golang? Why not try using Elixir?' [...] so we
wrote a service in that language […...]” (page no. 19)
[43].

C4 (Lack of microservices design): Having a
detailed design of the microservices system may assist
(i) teams in estimating the amount of work required
(ii) implementing security standards and solutions
(iii) helping to understand the system for trainee
developers [37]. However, companies generally do not
create the design of the microservices systems.
Therefore, the lack of microservices design is a
significant challenge among practitioners [27], [31],
[34], [37], [44], [40], [41], [7]. For instance, the
participants of the study stated “Without a design of
microservices systems, a system could become a
nightmare for developers. Several kinds of risks can
affect the microservices system as a whole [….]” (Page
no. 17) [37].

C5 (Lack of knowledge on decomposing
strategies): Decomposing monolithic systems is
challenging due to the lack of a one-size-fits-all
strategy. While methods like Domain-Driven Design
(DDD) exist, companies often break down systems
based on team structure, resource consumption,
dependencies, and delivery cycles [37]. Therefore, the
lack of knowledge on decomposing strategies is a
significant challenge for some companies [28], [34],
[37], [45], [46]. As one of the practitioners, “We are not
familiar with other strategies that can be used for
decomposing the application than domain-driven
design DDD and business capability. However, DDD is
not always the right […]” (page 26) [45].

C6 (API Versioning): This is the way of managing
the expected changes with full assurance that these

changes will not disrupt the client. Even minor changes
to your API can cause client applications to fail [40].
Therefore, it is highly encouraged not to make even
minor changes to API. However, change is still
unavoidable [12], [28], [29], [35], [36], [37], [39], [43],
[47], [10], [9], [48]. Therefore, managing API
versioning is a significant challenge among
practitioners "If we are going to delete something from
the payload or we completely change the signature, we
will have to bump up the major version and create
another version of the API and ask people to move over
[…]” (Page no. 24) [29].
Microservices security is the second concept that
emerged from the analysis of the microservices design
category. Securing the microservices system is more
intricate than securing monolithic architecture, as
communication in the microservices system is done
through the network that creates the surface attack.
Besides this, malicious requests can be sent by a
compromised microservice to other services in the
system [8]. Therefore, practitioners face challenges
when securing microservices architecture.

C7 (Lack of authentication and authorization):
Authentication is the way of verifying the identity of an
individual, whereas authorization verifies whether an
individual is authorized to access data or services [49]
[51]. The practitioner stated that “I would say
microservices can get exposed to, e.g., confused deputy
problem where attackers can trick a service and get
data that they should not be able to get if proper
authorization is not enforced [….]” (Page no. 8) [50].

C8 (Irrelevant privileges): This challenge arises
when different microservices are given access to those
functions that are not required by a particular service.
These privileges could cause confidentiality and
integrity issues [50], [51]. As reported by the
practitioner “In our case, what happens, e.g., when a
service can write or read data stored in databases or
messages posted in messages queues, even if such
databases or queues are not needed by the service to
deliver its business function […]” (Page no. 10) [51].

C9 (Lack of secure communication):
Microservices architecture is highly distributed in
nature, thus requiring a communication interface to
interact with other microservices to perform business
functionalities. The communication among
microservices can be compromised by attackers [50],
[51]. “Let's say that the communication channel is not
secured, and then it is possible that data transferred can
be exposed to the man-in-the-middle, eavesdropping,
and tampering attacks […]” (page no. 11) [50].

C10 (Implementing own cryptic algorithms):
Most companies build and implement their own
cryptographic algorithm to secure their microservices
system. However, a system's confidentiality, Integrity,
and authenticity can be compromised if the company's
development team starts to build its own
cryptographic algorithms [50], [51]. As reported by
the practitioner: “Microservice-based applications are
not the exception: development teams that implement
their encryption solutions may end with improper
solutions […]” (Page no 6) [51].

C11 (Lack of data encryption): In most cases, the
data in microservices storage are kept without any
encryption or authenticated data protection method
that the intruder eventually compromises. The data

stored without encrypted could breach the
confidentiality and Integrity of the system [50], [51] as
explained by the practitioner “When sensitive data is
exposed, its Confidentiality and Integrity can get
violated because it could be acquired or modified by an
intruder who gets direct access to the microservices
forming an application […]” (Page no. 7) [51].

3.2. Development

Microservices development is the second category
that emerged from the rigorous analysis. This category
is underlying by three main microservices
development, microservices testing, and
microservices storage concept. The review shows
that practitioners face several challenges in each
concept of this category.

Development: Microservices architecture includes
small, loosely coupled services that can be
independently developed, tested, and deployed into
production. However, developing microservices raises
several challenges, such as shared libraries/ managing
common codes, variants, and cyclic dependencies [43].
Microservices development is the first concept in the
underlying category of development.

C12 (Managing common codes/ shared
libraries): Splitting all monolithic systems into small
services that can be developed and deployed
independently is not possible in most cases. Some
systems require sharing the functionalities among
other microservices, such as logging and
authentication, database access, common utilities, etc.
However, the common code cannot be shared among
microservices as it will breach the common principle
of microservices architecture [12], [30], [34], [52].
Therefore, practitioners stated it is challenging when
managing shared libraries “That is a [...] hassle because
you change the common library, and all the services that
depend on this library need to change” (Page no. 23)
[12].

C13 (Difficulties in managing variants): Most
applications offer free or premium versions to their
customers based on their necessities. However,
managing the variants for different customers is still
challenging for many companies. Most companies use
the feature flag to handle it, but it requires extensive
management of features [12], [36], [37]. Similarly,
testing multiple features is also challenging “When the
feature is toggled for a customer, it is more like a
temporary thing where it is like a hack. [...]” (Page no.
26) [36].

C14 (Cyclic dependencies): This challenge arises
when one microservices directly or indirectly rely on
the other microservices to function properly, known as
mutually recursive. Cyclic dependency will eventually
increase the complexity of microservices [43], [44].
“Having circular dependencies between microservices
will result in hardly maintainable services. You'll be
unable to think of a single service at a time […].” (Page
no. 9) [43].

Microservices Testing is a crucial part of any
system to deliver a quality product to end customers.
However, monolithic testing is easier as one codebase
is to test, whereas each microservice is tested in the
distributed microservices architecture. There are

several challenges that practitioners face when testing
microservices-based systems.

C15 (Creating and implementing manual tests):
Most systems are composed of many microservices in
a microservices architecture. According to the survey
by Kong [53], most companies have more than 184
microservices in their system. However, creating and
implementing manual test cases is tedious for
companies “There are several reasons why manual
testing could become a problem due to the number of
microservices and communication between them” (page
no. 39) [37].

C16 (Integration testing of microservices): In
integration testing, the tester usually examines the
proper working of different modules in a sub-system
when a high-level feature is introduced. However,
integration testing becomes a challenge because of
multiple connecting points where the tester has
limited knowledge of other microservices [31], [35],
[37]. “Our major challenge is to write effective test cases
for the integration testing of the microservices system,
[…]” (page no.36) [31].

Storage: In monolithic architecture, an application
is composed of a single codebase that requires a single
database, whereas microservices architecture
comprises several services, and each service can have
an independent database. If any change is made in the
data model of a monolithic application, the entire
database will be affected, whereas, in microservices,
only the dedicated database will be affected.
Furthermore, different services can have different
storage requirements; one requires a relational
database, while another requires MongoDB [54]. This
distributed nature of microservices also poses storage
challenges.

C17 (Distributed transactions): Microservices
are distributed, and the transactions made by any
client can also be distributed. They may span multiple
computers over the network. However, distributed
transactions lose the ACID (atomicity, consistency,
isolation, durability) feature [13], [36], [39], [41], [55].
“In an async[hronous] environment and having
microservices be[ing] responsible for processing their
changes, issues introduced with new releases on
microservices may cause inconsistencies in data
processing which are generally hard to correct after the
fact”.

C18 (Lack of consistency between
heterogenous databases): A shared relational
database is used to handle the data consistency in the
monolithic architecture as companies use a single
database for the entire application [13], [36], [39],
[41], [55]. However, different microservices may use
different database technologies, which may cause data
consistency challenges “Atomicity cannot be
guaranteed over different storage technologies, no
information or proper literature. Guessing and fixing
error approach” (Page no. 9) [39].

C19 (Query complexity): Microservice
architectures extensively use online queries. There is,
however, no de facto approach because developers
typically rely on various ad hoc mechanisms for online
queries [55]. According to the practitioner, “We are
integrating data from different sources in a global
transportation network. The changes in data are
flowing into our system consistently.” (Page no. 11) [55].

3.3. Operation

The third category is the operation that emerged
from two underlying microservices monitoring and
microservices deployment concepts. This category is
related to the microservices operation team that
governs and deploys the microservices in IT
infrastructure. The operation team automates the
repeatable task and maintain the consistency of the
entire microservice system.

Microservices monitoring: Microservices systems
have a distributed nature comprised of many
independent services that run inside the container.
However, it becomes a nightmare to track the
availability and performance of numerous
microservices and use the suitable monitoring
infrastructure. We identified three challenges under
this concept.

C20 (Lack of early setup of a logging and
monitoring framework): Managing logs and
monitoring in systems with numerous microservices is
complex and often lacks infrastructure. A robust
framework is essential from the project's start, a step
often overlooked by practitioners [12], [37], [40].
Furthermore, practitioners also stated that the privacy
of the client should be preserved by obscuring logged
data “Probably I will focus more on logging and
monitoring, right off the bat. Because trying to retrofit
monitoring and logging once we have all the services, is
quite a bit of work” (page no. 20) [37].

C21 (Lack of early setup of distributed tracing):
Distributed tracing is a process of following a
transaction request and recording all relevant data
throughout the path of a microservices architecture.
Failure is unavoidable, and when it occurs in the
microservices system, most of the practitioners start
from the failing services and gradually trace the source
of occurrence of failure [12], [37], [40], [41].
Practitioners stated that companies should set up the
distributed tracing as early as the project starts “A lot
of companies that start do not think about distributed
tracing right from the get-go […]” (page no. 19) [12].

Microservice deployment is the second concept
that has emerged in the infrastructure category. The
deployment in a microservices architecture is different
from that of a monolithic architecture. The operational
team must deploy multiple microservices in
microservices architecture, whereas only a Single
deployment is required in a monolithic architecture.
Considering the microservice deployment, we
identified three main challenges in this concept.

C22 (Lack of an automatic process): Companies
usually develop microservices and manually add them
to the deployment pipeline. However, it took a lot of
time as compared to automating the microservices
stub, and creating the build and deployment pipeline
for newly created microservices may reduce the
operational cost and time [12], [37], [56]. As the
practitioner stated “The tooling is very important.
There is one way to create, at least, the structure of
projects for different platforms. So, like, Scala
microservices, they will all look the same. They will have
the same structure […]” (Page no. 22) [56].

C23 (Multiple services in one container):
Containers are used for packaging up code and

dependencies to deploy microservices ideally.
However, many companies package multiple
microservices in one container and deploy it.
Packaging multiple microservices in one container can
cause issues such as launching new instances for such
services [37], [38], [41] “We observe that placing
multiple services in one container would constitute
independent deployability of microservices. If two
microservices would be packaged in the same Docker
image […]”

C24 (Tool selection): With the hype of
microservice architecture, numerous tools are built
and publicly available in the market. There are several
tools publicly available in the market for microservices
development and deployment [57], [58]. However, the
selection of the appropriate tool among many is a time-
consuming task for many practitioners, particularly
when there is a lack of knowledge on how these tools
and technologies work [12], [37], [56] “There are tools
that are out or coming out that are solving a lot of
problems that we have. Things like gRPC, GraphQL, code
generation and documentation, service meshes, [...]”
(page no. 22) [56].

Figure 5: Mapping of challenges in concepts

4. DISCUSSIONS

This section describes the conclusive summary of our
research study, comparative analysis, implications,
and limitations.

Conclusive summary: Microservices architecture
offers benefits like easier development and
deployment but isn't a one-size-fits-all solution. Our
research question focused on challenges in
microservices design as reported by practitioners.
Using a Socio-Technical Grounded Theory Literature
Review (ST-GTLR), we selected 31 relevant studies
and identified 24 challenges. These were categorized
into seven concepts and three categories. The study
revealed that most of the challenges are in the
microservices design and development category.
Similarly, securing microservices architecture,
particularly authentication and authorization of
services, is extremely challenging due to the
distributed nature of microservices. The study calls for
industry-specific solutions to these challenges for
successful microservices adoption.

Comparative analysis: Recently, several studies
investigated different aspects of microservices
architecture from state-of-the-art practices. Pahl and

Jamshidi [59] conducted a systematic mapping study
on MSA where they taxonomically classified the
emerging applications particularly related to cloud
and container technologies. Similarly, Taibi et al. [60]
conducted a systematic mapping study on
microservices-based solutions' common patterns and
principles. Furthermore, Di Francesco et al. [31]
conducted an industrial survey to identify the
activities and challenges when organizations migrate
to microservices architecture. Similarly, Baskarada et
al. [10] conducted an in-depth interview with
industrial practitioners and identified the challenges
and practical opportunities. Xiang et al. [38]
empirically investigated the activities performed
during the migration of legacy monolithic architecture
and the challenges faced during the migration.
Similarly, Wang et al. [12] empirically collected
challenges and best practices in microservices.
architecture design and deployment from the
practitioners who have successfully developed
microservices systems. De Almeida and Canedo [61]
conducted a systematic literature review on
authentication and authorization in a microservices
architecture. They have identified the challenges and
practical solutions related to microservices security
but did not cover other design areas. Lianger et al. [55]
conducted an empirical investigation to identify the
practices and challenges regarding data management
in a microservices architecture but did not classify and
develop the taxonomy of challenges in other design
areas of microservices architecture. Soldani et al. [15]
conducted systematic grey literature to identify the
barriers and solutions of microservices architecture.
They just included the grey literature which differs
from our study which particularly identifies the
challenges from empirical studies. Ghofrani and Lubke
[30] empirically investigated the current state of
practices on barriers and advantages of using a
microservices architecture. However, no study
provided and systematically classified the challenges
that practitioners faced in each design area (design,
development, and operation) of microservices. Both of
these studies addressed different aspects of
microservices architecture [11][13][40].

Study Implications: The results of this study
contribute to academic research by explicitly
exploring the available primary studies related to the
microservices architecture design areas. Similarly, the
study findings make a concrete research contribution
by providing a significant overview of microservices
architecture design area challenges. The implications
for researchers and practitioners were distilled from
seven concepts (microservices implementation,
architecture, security, testing, storage, monitoring,
deployment) identified in this study.

Practitioners face major challenges in the
architecture and implementation phases of
microservices, especially in decomposing monolithic
systems. Researchers should focus on empirical
studies to identify industry strategies for
decomposition and create universal solutions. These
should help define service boundaries for low coupling
and offer guidelines on which applications would
benefit from transitioning to microservices.

The security of microservices systems can be
compromised due to the distributed nature of the

system as it gains a large attack surface. Therefore,
researchers and practitioners should develop unique
solutions to trace the vulnerabilities.

Concerning microservices deployment, it is still
challenging for novice developers to manage and
configure CI/CD tools or services. Researchers should
evaluate the tools employed in the industry, and
practitioners should simplify the configuration of
these tools to help better support, novice developers.

Managing and monitoring microservices is
considered the second most challenging phase in the
industry. Logging and monitoring traces have been
critical for the developer of the microservices system.
Therefore, the researcher should develop guidelines
for early setup logging and monitoring. Furthermore,
practitioners should develop simple tools for
monitoring the traces.

The distributed nature of the microservices
architecture poses significant challenges to data
management. The data consistency, query complexity,
and distributed transactions are some significant
challenges. However, research and practitioners
should define the guidelines on how data consistency
can be ensured in a microservices architecture, where
multiple microservices may access and modify the
same data.

From a practical perspective, practitioners can use
the study's findings to develop strategies for
improving microservices architecture design areas.
The taxonomy of reported challenges provides an
overview of critical areas that need to be considered
by industry experts before initiating the design
activities of microservices architecture.

4.1. Threats to Validity

Several threats could influence the validity of our
study. The potential threats of this study are analyzed
based on internal, external, and conclusion validity.

Internal validity: We used ST-GTLR to focus on
key aspects of the topic, acknowledging the risk of
missing some studies due to our search strategy and
keyword selection. To mitigate this, we used an
iterative approach for keyword definition and study
selection, validated by experienced authors. Studies
were chosen based on the criteria in Table 1 and
discussed for quality assurance. Personal bias in data
extraction was minimized through regular discussions
with senior authors. We included non-reviewed
studies from arXiv for comprehensive insights. Coding
was done by the first author and validated iteratively
by expert co-authors to ensure accuracy.

External validity: refers to the extent to which the
results of a study can be generalized to other
populations, settings, or times. To mitigate this
validity, we followed rigorous protocols of ST-GTLR.

Conclusion validity: The degree to which the
study's conclusions are credible or reasonable is
referred to as conclusion validity. The authors
conducted brainstorming sessions to discuss the
findings of the study to construct a correct conclusion.

5. Conclusion

The concept of microservices architecture is booming
and has become more common due to its significant
benefits, such as agility and scalability. However,
design areas of microservices architecture (design,
development, and operations) pose various
challenges. Seeking the significance of design,
development, and operations, we formulated the
research question: what are the challenges in the
design area of microservices architecture reported by
practitioners in state-of-the-art empirical studies? To
address the mentioned research question, we
conducted a socio-technical grounded theory
literature review (ST-GTLR) by applying the
framework of grounded theory literature review
(GTLR) and rigorous steps of socio-technical grounded
theory (STGT) for analyzing the data of 31 primary
studies. We applied open coding and targeted coding
in the finding section of each empirical study. The
codes were developed by analyzing the raw data of the
finding sections. Further, codes were mapped into core
concepts, and finally, core concepts were mapped into
categories. Through rigorous analysis, we found 24
challenges mapped into seven concepts, i.e.,
architecture, security, development, testing, storage,
monitoring, and deployment. All the concepts were
mapped into three categories, i.e., microservices
design, development, and operation. The challenges
and their mapping would provide a holistic view to
practitioners and researchers.

References

[1] S. Newman, Monolith to microservices:
evolutionary patterns to transform your
monolith. O’Reilly Media, 2019.

[2] J. Lewis and M. Fowler, “Microservices: a
definition of this new architectural term,”
MartinFowler. com, vol. 25, pp. 14–26, 2014.

[3] C. Richardson, “Who is using microservices?”
[Online]. Available:
https://microservices.io/articles/whoisusingmi
croservices.html

[4] M. Waseem, P. Liang, M. Shahin, A. Ahmad, and A.
R. Nassab, “On the nature of issues in five open
source microservices systems: An empirical
study,” in Evaluation and Assessment in Software
Engineering, 2021, pp. 201–210.

[5] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and
S. Tilkov, “Microservices: The journey so far and
challenges ahead,” IEEE Software, vol. 35, no. 3,
pp. 24– 35, 2018.

[6] S. Haselböck, R. Weinreich, and G. Buchgeher, “An
expert interview study on areas of microservice
design,” in 2018 IEEE 11th Conference on
service-oriented computing and applications
(SOCA), 2018, pp. 137–144.

[7] H. Knoche and W. Hasselbring, “Drivers and
barriers for microservice adoption– a survey
among professionals in Germany,” Enterprise
Modelling and Information Systems
Architectures (EMISAJ)–International Journal of
Conceptual Modeling: Vol. 14, Nr. 1, 2019.

[8] T. Yarygina and A. H. Bagge, “Overcoming
security challenges in microservice
architectures,” in 2018 IEEE Symposium on
Service-Oriented System Engineering (SOSE),
2018, pp. 11–20.

[9] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and
E. Figueiredo, “Microservices in practice: A
survey study,” arXiv preprint arXiv:1808.04836,
2018.

[10] S. Baškarada, V. Nguyen, and A. Koronios,
“Architecting microservices: Practical
opportunities and challenges,” Journal of
Computer Information Systems, vol. 60, no. 5, pp.
428–436, 2020.

[11] X. Zhou et al., “Fault analysis and debugging of
microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE
Transactions on Software Engineering, vol. 47,
no. 2, pp. 243–260, 2018.

[12] Y. Wang, H. Kadiyala, and J. Rubin, “Promises and
challenges of microservices: an exploratory
study,” Empirical Software Engineering, vol. 26,
no. 4, pp. 1–44, 2021.

[13] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes,
motivations, and issues for migrating to
microservices architectures: An empirical
investigation,” IEEE Cloud Computing, vol. 4, no.
5, pp. 22–32, 2017.

[14] P. Di Francesco, P. Lago, and I. Malavolta,
“Architecting with microservices: A systematic
mapping study,” Journal of Systems and
Software, vol. 150, pp. 77–97, 2019.

[15] J. Soldani, D. A. Tamburri, and W.-J. Van Den
Heuvel, “The pains and gains of microservices: A
systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232,
2018.

[16] P. Di Francesco, P. Lago, and I. Malavolta,
“Architecting with microservices: A systematic
mapping study,” Journal of Systems and
Software, vol. 150, pp. 77–97, 2019.

[17] R. Hoda, “Socio-technical grounded theory for
software engineering,” IEEE Transactions on
Software Engineering, 2021.

[18] J. F. Wolfswinkel, E. Furtmueller, and C. P.
Wilderom, “Using grounded theory as a method
for rigorously reviewing literature,” European
journal of information systems, vol. 22, no. 1, pp.
45–55, 2013.

[19] F. Nunes, N. Verdezoto, G. Fitzpatrick, M. Kyng, E.
Grönvall, and C. Storni, “Self-care technologies in
HCI: Trends, tensions, and opportunities,” ACM
Transactions on Computer-Human Interaction
(TOCHI), vol. 22, no. 6, pp. 1–45, 2015.

[20] C. Meuwly et al., “Definition and diagnosis of the
trigeminocardiac reflex: a grounded theory
approach for an update,” Frontiers in neurology,
vol. 8, p. 533, 2017.

[21] K.-I. Andersson, “Developing a theory of open
access: a grounded theory based literature
review,” 2016.

[22] A. R. Montazemi and H. Qahri-Saremi, “Factors
affecting adoption of online banking: A meta-
analytic structural equation modeling study,”
Information & management, vol. 52, no. 2, pp.
210–226, 2015.

[23] S. Utulu, K. Sewchurran, and B. Dwolatzky,
“Systematic and Grounded Theory Literature
Reviews of Software Process Improvement
Phenomena: Implications for IS Research,” in
Proceedings of the Informing Science and
Information Technology Education Conference,
2013, pp. 249–279.

[24] A. Pant, R. Hoda, C. Tantithamthavorn, and B.
Turhan, “Ethics in AI through the Developer’s
Prism: A Socio-Technical Grounded Theory
Literature Review and Guidelines,” arXiv
preprint arXiv:2206.09514, 2022.

[25] D. Hidellaarachchi, J. Grundy, R. Hoda, and K.
Madampe, “The effects of human aspects on the
requirements engineering process: A systematic
literature review,” IEEE Transactions on
Software Engineering, 2021.

[26] A. Sill, “The design and architecture of
microservices,” IEEE Cloud Computing, vol. 3, no.
5, pp. 76–80, 2016.

[27] A. Balalaie, A. Heydarnoori, and P. Jamshidi,
“Microservices architecture enables devops:
Migration to a cloud-native architecture,” Ieee
Software, vol. 33, no. 3, pp. 42–52, 2016.

[28] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes,
“Microservices in agile software development: a
workshop-based study into issues, advantages,
and disadvantages,” in Proceedings of the
XP2017 Scientific Workshops, 2017, pp. 1– 5.

[29] J.-P. Gouigoux and D. Tamzalit, “From monolith to
microservices: Lessons learned on an industrial
migration to a web oriented architecture,” in
2017 IEEE international conference on software
architecture workshops (ICSAW), 2017, pp. 62–
65.

[30] J. Ghofrani and D. Lübke, “Challenges of
Microservices Architecture: A Survey on the
State of the Practice.,” ZEUS, vol. 2018, pp. 1–8,
2018.

[31] P. Di Francesco, P. Lago, and I. Malavolta,
“Migrating towards microservice architectures:
an industrial survey,” in 2018 IEEE International
Conference on Software Architecture (ICSA),
2018, pp. 29–2909.

[32] W. Luz, E. Agilar, M. C. de Oliveira, C. E. R. de Melo,
G. Pinto, and R. Bonifácio, “An experience report
on the adoption of microservices in three
Brazilian government institutions,” in
Proceedings of the XXXII Brazilian Symposium
on Software Engineering, 2018, pp. 32–41.

[33] H. H. S. da Silva, G. de F Carneiro, and M. P.
Monteiro, “An experience report from the
migration of legacy software systems to
microservice based architecture,” in 16th
International Conference on Information
Technology-New Generations (ITNG 2019),
2019, pp. 183–189.

[34] J. Fritzsch, J. Bogner, S. Wagner, and A.
Zimmermann, “Microservices Migration in
Industry: Intentions, Strategies, and Challenges,”
in 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME),
Cleveland, OH, USA, Sep. 2019, pp. 481–490. doi:
10.1109/ICSME.2019.00081.

[35] J. Bogner, J. Fritzsch, S. Wagner, and A.
Zimmermann, “Assuring the evolvability of

microservices: insights into industry practices
and challenges,” in 2019 IEEE International
Conference on Software Maintenance and
Evolution (ICSME), 2019, pp. 546–556.

[36] J. Ghofrani and A. Bozorgmehr, “Migration to
microservices: Barriers and solutions,” in
International Conference on Applied Informatics,
2019, pp. 269– 281.

[37] M. Waseem, P. Liang, M. Shahin, A. Di Salle, and G.
Márquez, “Design, monitoring, and testing of
microservices systems: The practitioners’
perspective,” Journal of Systems and Software,
vol. 182, p. 111061, 2021.

[38] Q. Xiang et al., “No free lunch: Microservice
practices reconsidered in industry,” arXiv
preprint arXiv:2106.07321, 2021.

[39] M. Wu et al., “On the Way to Microservices:
Exploring Problems and Solutions from Online
Q&A Community,” in 2022 IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER), 2022, pp. 432–443.

[40] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. Zhang,
“Microservice architecture in reality: An
industrial inquiry,” in 2019 IEEE international
conference on software architecture (ICSA),
2019, pp. 51–60.

[41] T. Colanzi et al., “Are we speaking the industry
language? The practice and literature of
modernizing legacy systems with
microservices,” in 15th Brazilian Symposium on
Software Components, Architectures, and Reuse,
2021, pp. 61–70.

[42] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical
debt: From metaphor to theory and practice,”
Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[43] D. Taibi and V. Lenarduzzi, “On the definition of
microservice bad smells,” IEEE software, vol. 35,
no. 3, pp. 56–62, 2018.

[44] D. Taibi, V. Lenarduzzi, and C. Pahl,
“Microservices anti-patterns: A taxonomy,” in
Microservices, Springer, 2020, pp. 111–128.

[45] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D.
Taibi, “Does migrating a monolithic system to
microservices decrease the technical debt?,”
Journal of Systems and Software, vol. 169, p.
110710, 2020.

[46] S. S. de Toledo, A. Martini, and D. I. Sjøberg,
“Identifying architectural technical debt,
principal, and interest in microservices: A
multiple-case study,” Journal of Systems and
Software, vol. 177, p. 110968, 2021.

[47] H. Michael Ayas, P. Leitner, and R. Hebig, “The
Migration Journey Towards Microservices,” in
International Conference on Product-Focused
Software Process Improvement, 2021, pp. 20–35.

[48] J. Lotz, A. Vogelsang, O. Benderius, and C. Berger,
“Microservice architectures for advanced driver
assistance systems: A case-study,” in 2019 IEEE
International Conference on Software
Architecture Companion (ICSA-C), 2019, pp. 45–
52.

[49] J. Carnell and I. H. Sánchez, Spring microservices
in action. Simon and Schuster, 2021.

[50] A. R. Nasab, M. Shahin, S. A. H. Raviz, P. Liang, A.
Mashmool, and V. Lenarduzzi, “An Empirical
Study of Security Practices for Microservices

Systems,” arXiv preprint arXiv:2112.14927,
2021.

[51] P. Billawa, A. B. Tukaram, N. E. D. Ferreyra, J.-P.
Steghöfer, R. Scandariato, and G. Simhandl,
“Security of Microservice Applications: A
Practitioners’ Perspective on Challenges and
Best Practices,” arXiv preprint
arXiv:2202.01612, 2022.

[52] S. S. de Toledo, A. Martini, and D. I. Sjøberg,
“Improving agility by managing shared libraries
in microservices,” in International Conference on
Agile Software Development, 2020, pp. 195–202.

[53] K. Kong, “APIs & Microservices Connectivity
Report.” [Online]. Available:
https://konghq.com/resources/reports/2022-
api-microservices-connectivity-report

[54] N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and
J. Nieh, “Synapse: a microservices architecture
for heterogeneous-database web applications,”
in Proceedings of the Tenth European
Conference on Computer Systems, 2015, pp. 1–
16.

[55] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M.
Kalinowski, “Data management in microservices:
State of the practice, challenges, and research
directions,” arXiv preprint arXiv:2103.00170,
2021.

[56] X. Zhou, H. Huang, H. Zhang, X. Huang, D. Shao,
and C. Zhong, “A cross- company ethnographic
study on software teams for DevOps and
microservices: organization, benefits, and
issues,” in Proceedings of the 44th International
Conference on Software Engineering: Software
Engineering in Practice, 2022, pp. 1–10.

[57] B. BHANDA, “Comprehensive List of DevOps
Tools 2023.” [Online]. Available:
https://www.qentelli.com/thought-
leadership/insights/devops-tools

[58] Forge, “Best Microservices Tools.” [Online].
Available:
https://sourceforge.net/software/microservice
s/

[59] C. Pahl and P. Jamshidi, “Microservices: A
Systematic Mapping Study.,” CLOSER (1), pp.
137–146, 2016.

[60] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural
patterns for microservices: a systematic
mapping study,” in CLOSER 2018: Proceedings of
the 8th International Conference on Cloud
Computing and Services Science; Funchal,
Madeira, Portugal, 19-21 March 2018, 2018.

[61] M. G. de Almeida and E. D. Canedo,
“Authentication and Authorization in
Microservices Architecture: A Systematic
Literature Review,” Applied Sciences, vol. 12, no.
6, p. 3023, 2022

