CEUR-WS.org/Vol-3506/paperl2.pdf

Tools to assist large scale introductory programming courses

Roope Luukkainen’, Rami Saarivuori’, Jesse Peltola’, Uolevi Nikula’ and Jussi Kasurinen’

ILUT University, Yliopistonkatu 34, 53850 Lappeenranta, Finland

Abstract

The first programming course (CS1) at LUT University passed the 1000 student mark in the fall 2022. The continuously
increasing number of students attending the course introduces new challenges for the course arrangements. The core of our
course is a course specific programming guide, which is updated regularly to keep up with the course contents. For the past
few years, we have been developing a style guide that defines the programming style to use in the course project, and in fall
2022 a new autograder was taken in use in all the LUT programming courses. We have also concluded that if we want to
keep improving the course and how it is run, we need to develop ourselves small tools to support the course activities. In
this paper we summarize three tools that we have developed over the past few years. The first tool is ASPA, which is used
to detect style guide violations. Second, we have GradeTool to help in grading student projects and exams. And third, we
have a tool, Mimir, to help manage the increasing number of programming assignments and their variations, and to generate
assignment documents automatically. All these tools have the same basic goals to reduce the amount of manual work and
time required by the tasks, at the same time they increase quality by producing more consistent outputs in a systematic way.
All these tools are still in the development phase, but we have started their empirical testing. The initial feedback from both
students and teaching assistants using the tools or their outputs suggests that these tools can speed up doing the tasks and
improve the quality of the end products. Thus, we plan to continue their development and explore expanding their adoption.

Keywords
CS1, Programming education, Interoperable technology, Static analysis, AST, Abstact syntax tree, Generated feedback,

Assignment management, Grading, Instructions generation, Tool assisted

1. Introduction

The first programming course (CS1) at LUT University hit
the low point in 2010 when only 146 students registered
for the course. A few years earlier in 2004 the course
had 441 registered students, but after university level
administrative changes the interest in the course dropped.
Even after a major revision of the course in 2006, the
interest in the course continued to fall. Only in 2011 the
interest increased for the first time in seven years and
the registration count reached 206 students. The interest
has continued to increase thereafter, and in fall 2022 the
course was offered for 1114 students both in Finnish and
in English. The course changes between 2005 and 2009
have been reported in detail in [1], and the improvement
work has continued ever since. In this paper we look at
the main ongoing course development topics.

The main LUT CS1 course is given in Finnish and it
is based on the Python programming language [2]. The
course covers basic programming topics like variables,
I/O, branching, loops, file I/O, lists, classes, and error
handling. The course includes 3-5 weekly programming
assignments, in total 60 assignments, a course project,
and an exam that is done in an electronic exam envi-

TKTP °23: Annual Symposium for Computer Science 2023, June 13-14,
2023, Oulu, Finland
@) roope.Juukkainen@lut.fi (R. Luukkainen); rami.saarivuori@lut.fi
(R. Saarivuori); jesse.peltola@lut.fi (J. Peltola); uolevi.nikula@lut.fi
(U. Nikula); jussi.kasurinen@lut.fi (J. Kasurinen)
© 2023 Copyright for this paper by its authors. Use permitted under Creative

oy Commons License Attribution 4.0 International (CC BY 4.0).
[—== CEUR Workshop Proceedings (CEUR-WS.org)

ronment using the same tools as all other programming
assignments. The study materials include lecture slides,
a programming guide developed for the course [3], pro-
gramming videos, and students are also offered exercise
sessions both in computer classrooms and online.

With increasing interest in CS1, we developed two
smaller variants of it. First, an online-variant of the
course was developed as a part of FITech ICT -project,
which aimed at offering university level education for
all the Finns [4]. This was done by dropping the course
project and exam, and focusing on the 60 programming
assignments. The outcome was a 3 ects course that can
be completed fully online, and since we are using an auto-
grader for assessing the assignments, the effort required
to manage this course is feasible even if circa 200 students
complete it annually. Second, an English variant of the
course was introduced in the fall 2021 to serve new de-
gree programs for English speaking students [2]. In the
fall 2022 the English course had 393 registered students
while the Finnish one had 721.

The increasing number of students taking the course
introduces new challenges for the course arrangements.
Fundamentally the continuously growing number of stu-
dents suggests that it is possible to study and learn the
course contents with the existing materials and arrange-
ments. However, not all the students are computer sci-
ence majors, but the number of different backgrounds is
also increasing rapidly. For example, the English degree
programs are open to students from different countries
and cultures, and the online course is open to any Finn
who can complete the strong identification required by

mailto:roope.luukkainen@lut.fi
mailto:rami.saarivuori@lut.fi
mailto:jesse.peltola@lut.fi
mailto:uolevi.nikula@lut.fi
mailto:jussi.kasurinen@lut.fi
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

the university. Thus the need to support different kind
of learners increases as students and their different back-
grounds increase, and we also need to be able to handle
large numbers of all kinds of study related events and
activities.

In this paper we describe our ongoing tool develop-
ment actions on the CS1 course. These actions started in
the Finnish CS1 context, but all the tools can be adapted
to suit for different courses and, for example, GradeTool
and Mimir were used in our C-programming course in
spring 2023. In particular, the tools have been designed so
that they can be adapted to other programming courses
independent of the programming language used, and
serve courses offered both in English and in Finnish. We
are currently developing 3 tools:

1. ASPA. ASPA is a static analyzer that can be used
to analyze the student programs and especially
programming style problems in them.

2. GradeTool. Evaluating a large number of
projects is one thing, and another thing is to pro-
vide students feedback that is consistently pre-
sented for all the students and detailed enough
so that students can understand their errors and
fix them. The exams need to be graded, too, even
if now students do not fix the errors but should
learn how to avoid them in the next exam. The
key requirements for the tool are to speed up the
grading, and provide more systematic and helpful
feedback to students.

3. Mimir. Mimir is a tool to manage weekly as-
signments and their variants. Using the same
weekly assignments multiple times increases the
likelihood that students return a solution from a
friend without doing it him/herself. Thus we are
developing a tool to support management of mul-
tiple variants of the assignments, and automatic
generation of systematic weekly assignment doc-
uments with minimal effort.

In the rest of this paper we shall describe each of tools

in more detail, and look at the following three aspects:

« research questions and motivation
« tool developed
« empirical observations and data.

The paper is closed with a summary of the current and
future interoperability of these development actions.

2. ASPA - Tool to provide feedback
on program structure

In the fall 2022 students submitted over 92 000 programs
for evaluation in our Finnish CS1 course. Consequently

we do not evaluate all these programs manually but
use an autograder to execute the programs and check
that they work as instructed. As of now most student
programs pass the autograder tests, but in manual re-
view their structure is not always understandable, which
makes both grading and code maintenance difficult. Thus
we have moved our focus from a working program to
understandable code, which we did by introducing a style
guide. Since many software companies are using style
guides today, we decided to use it in our course to show
students how to write understandable code. One key
reason to introduce the style guide was the use of global
variables that is syntactically acceptable in typical pro-
gramming languages, but from the good programming
style point of view it has been deemed not acceptable
since 1970’s. That is, even if a compiler/interpreter ac-
cepts global variables, in our CS1 it is forbidden to use
them by the course style guide.

Introduction of a style guide in our CS1 course caused
problems since many students aimed at a working pro-
gram and once it passed the autograder, no second
thought was given to it. Thus requiring that programs
follow a style guide raised a lot of objection, and to reduce
this we introduced a tool to find style guide violations.
First we developed an abstract syntax tree (AST) ana-
lyzer in 2020 and called it ASPA. As of now the staff uses
ASPA to check to student projects and exams, and we also
give it to the students so they can check their programs
with it, too. Second, we adopted a new autograder in fall
2022 and we are currently using CodeGrade [5] which
has a semgrep-feature supporting structural style guide
checks. Including the style guide checks as a part of au-
tograder and rejecting submissions that do not pass them
makes it easier for students to understand that the style
guide needs to be followed. In this paper we describe
our ASPA-tool in short. The tool was developed for the
first programming course with Python starting with the
following research questions:

RQ1: Can static analyzer be used to assist students with
programming assignments?

RQ2: Does a usage of static analyzer correlate with
grades?

2.1. Literature review

AST-based static analysers are interesting from the pro-
gramming education point of view, and many such sys-
tems have been developed. For example, PyTA is a wrap-
per module for Pylint [6], PEDAL is a feedback system
for Python 3 programs [7], and AutoStyle is a style tutor
providing hints for student [8, 9]. On the other hand,
Semgrep is an open-source based extended AST solution
that detects patterns in source code. It supports over 30
programming languages, as well as generic option for

any text-based search [10]. And finally, there are educa-
tion platforms such as VIiLLE [11] and A+ [12] which can
do style checks in the submission phase.

2.2. Developed solution

ASPA uses AST for structural pattern checks to detect,
for example, whether variables, classes, and functions are
defined within functions or globally. This part of the solu-
tion is very similar to PyTA solution, but we created own
checks without wrapping Pylint in between. In practice
we have a style guide describing the patterns, which are
then implemented as rule based checks in ASPA. When
ASPA is run, a structural analysis for program is con-
ducted, as demonstrated in Figure 1.

1 data_list = []

2 def main():

3 data_list.append("abc")
4 print(data_list)

5 return None

6 main()

ASPA feedback for the program above:
Functions, detected:
Global variable

Line 1: 'data_list'.

Figure 1: Detection of a global variable.

Program shown in Figure 1 is evaluated against three
rules: First, the file must contain a function called main.
Second, the main level code should contain only one
function call, which calls the main-function. Third, vari-
ables should not be defined in global namespace. Notice
that the third rule focuses on global variables, and global
constants are acceptable. Since Python does not support
constants, ASPA needs to differentiate global variables
and constants by checking how often the identifier is set
— if it is set once, it is considered constant, but if it is
set more often, then it is considered a variable. In Fig-
ure 1 data_list is defined in the global namespace and
is modified after definition, so it is a global variable and
violates the style guide. While comparing to other solu-
tions, such as PEDAL and AutoSyle which provide hint
for solution, ASPA points the violation and style guide
is student’s is source for correct style. This way student
can also see correct solution before and after usage of the
tool.

ASPA was first introduced in our CS1 in 2020, and cur-
rently it has 41 checks. Over time the rule base evolves
as Python develops and the students get more creative.
For example, Figure 1 demonstrates the basic global vari-
able, but we have also seen students using classes and
functions as global variables. Namely, classes are defined

in the global namespace and if an object is not created
but a class attribute is set directly, it can be used as a
global variable. In the same vein functions are defined in
the global namespace and since it is possible to add an at-
tribute to a function, this can be used as a global variable.
In general this kind of solutions cannot be considered
good programming style, and thus their use is forbid-
den by our style guide. In short the idea is to document
the principles in the style guide, e.g. “global variables
are forbidden”, and then check all the different ways to
implement them by a rule based tool. This systematic
process becomes important when both the number of
student programs and rules increase to assure that all the
student submissions are evaluated in the same way and
in a reasonable time.

Since ASPA was developed to be used in the first pro-
gramming course with freshmen students, a key design
goal was simplicity. Figure 2 shows the ASPA graphical
user interface (GUI), which offers some features both for
the students and the staff. The students get access to
ASPA after lecture 5 in which the functions and names-
paces are explained. The following lectures address file
handling, data structures - lists, classes, objects — self-
made libraries, and exception handling. Thus students
can select, on the left, with checkboxes the relevant anal-
yses; Basic commands - e.g., checks for loops and un-
reachable code, Functions — checks for functions, param-
eters, and return values, File handling - checks for file
opening, reading, writing, and closing, Data structures
— checks for lists, classes, and objects, Library usage -
checks for imports and library function calls, Exception
handling - checks for proper exception handling in file
operations. On the top right it is possible to select a sin-
gle file for analysis, or a folder. The folder option is for
staff so that a desired group of programs can be analyzed
at once. The actual analysis is started with the button on
the bottom, and results are shown in a separate window.

¢

File Help

Select analyses Filepaths Select file Select folder Clear
¥ Basic commands

¥ Functions

I File handling

I Data structures

I Library usage

W Exception handling

Execute analysis

Figure 2: ASPA graphical user interface.

Table 1

Correlation values between usage of ASPA in programming assignments and performance in course tasks. Used correlation

methods: ¥ = Pearson’s r, X = Kendall’s Tau B. Significance values: *p-value < 0.05, **p-value < 0.01,

ke

p-value < 0.001.

kl Final
ASPA usage (rows) compared to performance (columns) Wee Y Coqrse Examination ‘na
assignments project grade
Amount of ASPA usage in weekly assignments * 0.407** 0.371"* 0.360"** 0.392"**
Amount of ASPA usage in course project X 0.222"* 0.206™* 0.171** 0.212"**

2.3. Results

ASPA was introduced in our CS1 course in the fall 2020
and it is now a standard part of the course. Our standard
course feedback survey in fall 2022 was answered by 156
or 26.1 % of the students and 92 % of respondents had used
ASPA while doing the course project. The most common
reason for not using ASPA, 3 % of the respondents, was
that they did not want to use an extra tool. In general
with Likert scale of 1-5; 1 worst and 5 best, ASPA was
found useful for the project with an average 4.4, selecting
the checks was easy 4.5, selecting the files was easy, 4.6,
and the results were understandable 4.5.

A more comprehensive analysis of ASPA and its use-
fulness was done for 2020 course [13]. Also then students
found ASPA useful as seen in Figure 3.

CS1: Student answers for usefulness of ASPA

90

el

-
=)
=]

86 80
55 59

i |

Neither agree
nor disagree

, 18 14 _ 18
5 3

o mmmm 02 =T
Strongly
disagree

100
48
] Hlﬁ

Strongly agree

Number of answers

Disagree Agree

EThe course would be more difficult to complete without ASPA.
BASPA helped my performance in the weekly assignments.
BASPA helped my performance in the course project.

OASPA enhanced my understanding of the course topics.

Figure 3: Usefulness of ASPA in CS1 course.

At the end of 2020 course, 205 students reported their
ASPA usage via survey. Weekly assignment data is an
integer number representing student’s answer to a ques-
tion In how many weekly assignment you used ASPA? and
course project data is an answer to a question Did you use
ASPA while doing the course project?, with options “No”,
“Yes, once”, “Yes, 2-3 times”, or “Yes, multiple times”. Pear-
son’s correlation is used to analyse correlation between
weekly assignments and performance on programming
assignments, while for the course project usage, which
is ordinal data, Kendall’s Tau B is used instead. In both
there is a clear positive correlation between ASPA use
and grades, presented in Table 1. For correlation calcula-
tions JASP program [14] was used.

2.4. Summary

As of now we are using ASPA in our CS1 with Python, but
we have also considered extending it to other program-
ming courses. Current ASPA is implemented with the
Python 3 abstract syntax tree, but since syntax trees are
available for other languages, ASPA can be extended for
other languages. One key benefit of the AST approach
is that it allows measuring student learning based on
their submissions. We have done studied learning ear-
lier [15], and initially ASPA seems to fit this task well.
ASPA was initially developed with Tkinter to avoid need
to any installations before it can be used. However, as
seen in our more recent tool development efforts, other
user interface frameworks could help improve the usabil-
ity and make the tool even easier to use than now. A
key consideration with ASPA development is synchro-
nizing it with the autograder style checker. As of now a
simple standalone tool seems to help students follow the
style guide rules, but since our current autograder has a
built-in style checker, it is faster and more powerful in
enforcing the rules, and we need to study this balance
closer.

3. GradeTool - Tool to assist
grading process

In LUT programming courses various tools, including
ASPA mentioned in Section 2, are assisting teaching as-
sistants (TAs) in assessment process of programming
assignments. The current aim in introductory courses is
to synchronize assessment process between TAs and help
them to provide consistent feedback for such cases where
automated grading is limited or is not yet supported at
all. Generation of feedback based on selected violations
would both save time of TA, due to the decreased amount
of writing required, and standardize majority of given
feedback. However, there are cases where general feed-
back is not enough, and content should be personalized
and therefore possibility to modify the feedback is re-
quired. In addition, the usability of grading tool should
such simple that assessment process is easier and faster
compared to more primitive methods such as spread-
sheets and text editors.

We decided to develop a tool, called GradeTool, for
this purpose. A development process started in summer
2022 and currently the second version of the tool is in
use. Course staff uses GradeTool to keep track of pro-
gramming errors and style violations in assessed student
submission, and based on marked errors the tool cal-
culates grade, generates categorical feedback and skele-
ton for open feedback. Open feedback can be modified
by evaluator, if needed. In this study we describe our
GradeTool-tool in short. The tool was developed for the
first programming course with Python starting with the
following research questions:

The research questions are as follows:

RQ3: Can a grading tool make evaluation process of
programming assignments easier and faster for
teaching assistants?

RQ4: What kind of programming violations are com-
monly done by students?

3.1. Literature review

Various solutions to assist grading have been developed,
such as Labtool, a website to given and share feedback
from staff to students [16], ALOHA, a grading rubric
based online tool to generate feedback based on selected
errors [17, 18], GradelT, a grading and program repair
system for TAs [19].

In addition, automated grading systems, which enable
feedback generation, have also been utilized in education.
For example, an automatic grading system, which utilized
Bash scripting, grep and regular expression [20], gdb
and valgrind based spectral error localization solution to
generate feedback report [21], and education platforms
VILLE [11] and A+[12] which allow both automated tests
and manual feedback.

3.2. Developed solution

GradeTool has been iteratively developed since summer
2022, and in addition to functionality, usability of the tool
has been continuously improved by removing unneces-
sary steps and creating GUI responsive with flexible lay-
out to allow grader to modify to it if desired. GradeTool is
developed with Python and selected GUI module is Dear
PyGui [22], which enables variety of layout flexibility out
of the box. To store all possible violations and all marked
violations, grades, feedback etc. metainformation for
each graded submission, JSON files are utilized.

A grader can mark all the errors and violations via
GUI, shown in Figure 4, as well as modify open feedback.
In Figure 4, list of all categorized violations can be seen
on the left side of the GUI, with category Parameters
and return values being open. Inside the open cate-
gory a programming violation global variable is marked

to exist twice in the selected students’ submission. The
graded students can be selected on the right side of the
GUI, while below this student list, level of submission,
current grade, and current amount of errorpoints are
shown. At the bottom right the generated skeleton for
open feedback is shown, currently there are three differ-
ent violations selected, aforementioned global variable
violation, file which is left open, and close command with-
out parenthesis. Finally, at the top right there is WRITE
TO FILES-button which saves all the assessments files.

Open feedback in Feedbacks section can be edited
by grader if needed, similarly, as in ALOHA tool [17].
In some cases, it is also intended to give students more
specific and personalized feedback, e.g., in simple case
giving name of global variable or in more complicated
case explain why implemented analysis option is not
suitable but is against the project instructions or style
guide.

To enable selection of common violations, these viola-
tions are related to a certain assignment and all related
information, i.e., identifier, name visible for grader, cat-
egory, errorpoints depending on the error amount, and
generated feedback phrase, are stored to a JSON file be-
fore starting an assessment process. However, violation
set can be updated and modified during the evaluation
process, if needed and just by reopening GradeTool with
updated violation file updated errors can be selected. A
minimal example of violation set used is shown in Fig-
ure 5.

ID is unique identifier of a violation, text is label shown
in GUI, feedback is generated skeleton phrase and cat-
egory is heading under which the violation belongs to
in GUI and in feedback. As same violation can be done
multiple times in same submission there is possibility to
scale grading based on how often certain violations occur,
e.g., in Figure 5 close command without parenthesis has
three error values, for occurrences 1, 3 and All. One time
is considered as a careless mistake and therefore only 0.7
error points are given, while 3 times doing same viola-
tion is not anymore just a careless mistake and therefore
more error points, 1 in this case, are given. The label All
is used when student has never done this specific part
correctly, and it leads to the most error points, in this
case 2. In the GUI this can be marked with value of -1.

On the other end, Global variable is considered as a
fatal error and therefore already a single occurrence leads
to 2 error points, in this case all option is not very rele-
vant but is stored to allow similar behaviour for every
violation.

In addition to traditional grading, GradeTool enables
grading of multiple levels of same assignment, mean-
ing that the grade calculation is based on marked viola-
tions and the level of submitted programming project.
In LUT CS1 course project three levels were used suc-
cessfully. When assessment is done, marked violations

File Settings

¥ Categories

» Functionality

» File structure

» Author comments

» Functions

» Basic commands

¥ Parameters and return values
Programming errors
Read data is passed to file writing instead of analysed results
Global variable
Returning list, but no storing to variable
Multiple return values without real reason
returnis missing
No return value
A class as parameter

» File handling

» Data structures

» Exception handling

» Analysis implemention

» Code style and good practices

Figure 4: GradeTool graphical user interface.

can be saved to a JSON file, which allows returning to
assessment process and continuing later from exactly
same assessment state, if needed. In addition, generated
feedback also saved to a separate file which is used while
importing assessments to learning management system
(LMS). The entire generated feedback contains three sec-
tions in following order. First general information about
what was graded and overall pass/fail grading for that
submission. Second, category feedback for each category,
in CS1 course 11 categories were used and they can be
seen in Figure 4, and third, open feedback, which is the
only part intended to be modified by graders.

3.3. Results

GradeTool was used in LUT CS1 course during fall 2022
and CS2 course during spring 2023. In the latest use dur-
ing CS2 course with four graders and 169 graded course
projects, assessment process with GradeTool resulted
over 17 000 words and 2860 lines of feedback, while ex-
cluding empty lines, which is almost 17 lines of feedback
per student. Empty lines were used to distinct mentioned
sections from each other and to make feedback more
readable within sections. While the amount is large, also
consistency of the feedback has, at least so far, been con-
sistent enough as there have not been any complains
about varying grading between similar violations, how-
ever, few feedback comments were perceived too general

¥ Students
WRITE TO FILES

Student Name1

Student Name 2

Student Name 3

Student Name 4

Student Name 5

Shidank Nama R

¥ Evaluation grid

Level: minimi Grade: @ Errorpoints: 4.7

Student number: 0123456|

¥ Feedbacks

There is a global variable XX in the program.
In function XX file is left open.
close command without parenthesis.

and did not help students to locate their actual problem.
From graders perspective, three TAs, with experience
from previous years courses, estimated the time used
to give these feedbacks being 33 % - 50 % less than with
previous methods they were using. However, these val-
ues are estimates and are not statistically significant. On
the other hand, assessment results were published to stu-
dents 10 days earlier than estimated publication date. The
estimation was based on previous assessment process.
Assessment of student submissions with GradeTool
generates also quantitative data about violation occur-
rences. In fall 2022 Finnish version of CS1 course with
circa 600 students, the course project assessment resulted
1418 violations for 76 different violations. As an example,
subset of this dataset with only 10 violations is shown in
Table 2. The colouring is used to visually highlight higher
values, used coloring scale is from green, 0 occurrences,
to red, the highest occurrence, in this example case 13.
In the complete set, the most common violations were
programming practice violations which violated style
guide. The highest value of 196 occurrences was with
Clearing data structures at the end of the program, the
second highest value of 96 occurrences was initialization
of values in analysis was not done according to guide. The
style guide guides to initialize value with the first ele-
ment of analysed list to ensure that analysis will always
work regardless of dataset. However, many students ini-

Table 2

Number of violations marked in CS1 course project grading by each teaching assistant. As a demo only 10 out of all 76 given
violations are shown and TA columns from 4 to 10 are compressed.

Violation name TA1 TA2 TA3 TA 11 TA12 TOTAL
Multiple similar variable instead of a list 7 4 10 1 10 69
Entire analysis done with multiple if branches 7 1 7 10 9 58
except without an exception type 3 1 0 3 13 53
File is read in other than readfile selection 1 4 9 0 0 41
Global variable 3 0 1 8 0 15
File is left open 0 1 1 0 0 13
close command without parenthesis 1 0 0 0 1 8
No main function 1 0 0 0 0 3
Class is nested inside a function 1 1 0 1 0 3
Hardcoded results 0 1 0 0 0 1
TOTAL 24 13 28 33 33 264

"violations": [
{
"ID": "TV0601",
"text": "Global variable",
"feedback": "There is a global
» variable XX in the program.",
"category":"Parameters and return

- values",
"error_values": {
" 2,
"All": 2
}
s
{
"ID": "TKO0704",
"text": "close command without
-~ parenthesis",
"feedback": "close command without

» parenthesis.",
"category":"File handling",
"error_values": {

" 0.7,
"3": 1,
"ALL": 2

Figure 5: As en example of two violations from JSON file
storing programming violations.

tialize values with real numbers, e.g., for minimum and
maximum search they use “big value” and zero (0), or
zero for both. In cases with negative values in dataset
zero works also for minimum, but often that is not the
case.

3.4. Summary

GradeTool has successfully been used in assessment pro-
cess of CS1 and CS2 courses with hundreds of students.
With four graders, the produced 2860 lines of feedback,
excluding empty spacer lines, is such high amount of
text that it is easy to argue that GradeTool have saved
huge effort of writing all that. In addition, the feedback
generated by GradeTool is consistent enough, but feed-
back phrasing should be focused on more in the future
to avoid unnecessary misunderstandings and confusion
about feedback.

The data about time used by TAs is not statistically
significant and it is based on TA estimates, not measured
values. However, being able to publish course project
assessments 10 days earlier in a mass course like LUT
CS2, is a great success. Moreover, gradings can be also
directly imported to LMS, which objectively saves time
and removes one possibility for human errors. In addi-
tion, estimated difference is high and amount of gener-
ated feedback is high compared to fully manual feedback,
therefore benefit of tool should be studied more to thor-
oughly answer RQ3 about faster and easier evaluation
process. However, it is important to mention that amount
itself is not our target but quality of the given feedback.
As an answer to RQ4 the most common violations for
CS1 course are clearing data structures at the end of the
program, and initialization of values in analysis was not
done according to guide. which are style guide violations.
As exact occurrences for each marked violation are now
available and in the future, these can be used to focus
teaching more on topics which seem to create the most
problems. Moreover, detection of clearly distinguishable
assessments between TAs is also possible, which could be
utilized to standardize grading and marking of violations
even more to ensure fair and standardized assessment
for every student.

4. Mimir - Tool to manage course
assignments

While detection of plagiarism in normal academic writ-
ing is fairly straightforward, the detection of plagiarism
in source code can be difficult [23, 24]. In addition, sim-
ple plagiarism detection tools can be easily fooled by
changing variable names, by changing the structure of
the program, or by doing other types of obfuscations [25].
Moreover, when similar programming assignments, with
no major updates to them, are utilized multiple years in
a row students start to do plagiarism even more [26]. To
mitigate these two plagiarism problems, i.e., lack of ad-
vanced plagiarism detector and similarity of assignments
over the course implementations, in our programming
courses an autograder was changed and all the program-
ming assignments in LUT CS1 and CS2 courses were
completely updated in fall 2022 and in spring 2023, respec-
tively. Current autograder used in LUT programming
courses, CodeGrade, has integrated plagiarism detector
called JPlag, which have detected many obfuscated stu-
dent submissions already [5, 27]. An enormous effort
of updating assignment included designing new assign-
ments, programming example solutions, rewriting as-
signment instructions and setting up autograder tests for
circa 100 assignments.

Since the effort for recreating assignment base was
time-consuming, we decided to develop a tool to manage
assignments and their variations for upcoming course
implementations. Tool needed to be able to generate
assignment instruction papers based on information in-
putted by user. The generated document would naturally
need all the assignment related information which were
available in handmade instructions, such as assignment
instructions, example outputs, and possible example data
from file(s). In addition, for course TAs an example so-
lution is needed to be attached to the document. The
developed tool is called Mimir, and in this study we de-
scribe our Mimir-tool in short. The tool was developed
for the CS1 and CS2 courses with Python and C, respec-
tively, starting with the following research questions:

RQ5: How to manage multiple sets of programming
assignments?
RQ6:

Are generated assignment instructions clear and
understandable enough for students?

4.1. Developed solution

Since, according to our knowledge, there is no publicly
available solution, which would solve our assigment man-
agement problem, we created our own proof-of-concept
solution for such tool. The tool, Mimir, helps a program-
ming course instructor to combat plagiarism by automat-
ing selection of course assignments from a pool of similar

assignments, moreover, automates generation of assign-
ment instruction document provided to student, which
ensures they are always done with consistent formatting
and layout. Mimir is developed with Python and selected
GUI module is Dear PyGui [22], in addition, instruction
document generation utilizes LaTeX, which features a ro-
bust and programmatically easy way to compile uniform
and clear documents from different types of data, and
JavaScript Object Notation (JSON) files are used to store
assignment data. It is intended to be easy to use and to
help in compiling the assignment instructions from the
selected assignments, while keeping the visual style and
readability consistent across each lecture week during
one course implementation, as well as across multiple
course implementations. This aims to help students focus
on the task itself and helps the course instructor to fo-
cus on assignment creation and other duties rather than
trying to make the visuals of the assignments readable
enough. In addition, Mimir enables the instructor an
easy method of editing the assignments based on pre-
vious feedback or changes in teaching. This way the
edits are easy to implement and do not require fiddling
simultaneously with text editors and IDE. User can in-
put all information needed, e.g., title, lecture number,
instructions, and example files, to generate assignment
instructions via GUI, shown in Figure 6, or by utilizing
existing files, e.g., source code files of an example solu-
tion.

Figure 6: Mimir GUI with assignment pop-up open.

Course metadata is inserted in a main window, seen in
the background in Figure 6, and for the new assignment a
pop-window is opened, seen in foreground in Figure 6. In
this demo example, the assignment is simple, with only
single variation called “variation A”, and instructions
part is extremely short. After insertion data is stored to
a JSON file, which structure can be seen from Figure 7.

"course_id" "CTO0A0000",

"course_name" "Demo Course",
"assignment_id" "XYz",

"exp_lecture" : 2,

"exp_assignment_no" [1, 27,

"tags" ["file", "input", "error handling"],
"title" "File reading",

"next, last" [1,

"code_language" "c",

"instruction_language" "ENG",
"variations" : [
{
"variation_id" "A",

"instructions” "Create a C-program
» to read the contents of a file and print it
» to the terminal. Use \\texttt{\\textcolor{red}
-~ {fopen()}} to open the file and \\texttt{
- \\textcolor{red}{fgets()}} to read the
-~ contents.",

"example_runs" : [
{
"generate" true,
"inputs" ["Inputfile.txt"],
"cmd_inputs” [1,
"output": "Input filename:

» Inputfile.txt\nFile contents: \nThis is the
~ first line.\nAnd this is the 2nd line.\n",
"outputfiles" : []

}
1,
"codefiles" ["ExampleCode.c"],
"datafiles" ["Inputfile.txt"],
"used_in" : []

Figure 7: An example of the JSON file used to generate as-
signment with Mimir.

The main level value pairs in JSON object contain the
general assignment information that are not specific to a
variation, or a single example run. As assignments are
not fixed to single week or order per week and therefore
also these metainformation values are editable. The vari-
ations of the same assignment are then listed as a list of
assignment objects, each having their own versions of in-
structions and paths to the files. Example runs, generated
to the instruction paper, are tied to a variation and there
can be multiple example runs per variation, therefore,
they are stored inside a list that is inside the variation.
In addition, an example run object must store inputs and
outputs for that specific run as they may differ. Finally,
each variation also stores implementations that it has
been used in, such as "Spring 2023”. Generated assign-
ment instructions for this demo assignment are shown

in Figure 8. In normal course setting there would be 3-5
assignments per week, but now only one assignment was
added to demo week 2.

CT00A0000 Demo Course

Page 1 /1

L2 Assignments

« Reading files

Read course book chapter 2 and return the assignments to the autograder.

Contents

L2E1: File reading 1

L2E1: File reading

Make a C-program to read the contents of a file and print it to the terminal. Use £open() to open
the file and £gets () to read the contents.

Example from input file “Inputfile.txt’:

This is the first line
And this is the 2nd line

Example run 1

Inputs:

Inputfile. txt

Output:

Input filename: Inputfile.txt
File contents

This is the first line

And this is the 2nd line.

Mimir v0.2.12 Week 2

Figure 8: Demo assignment generated by Mimir.

While example in Figure 8 is done with C, Mimir is
language independent, so that it can be used on multiple
courses that use different programming languages. How-
ever, as the tool is designed to be used on programming
courses specifically, there are no features or options for
other type of assignments. The major external depen-
dencies which are not included in the program itself are
pdflatex program and programming language’s com-
piler or runtime. pdflatex is needed to compile the
LaTeX documents into Portable Document Format (PDF)
files, and compiler or runtime are used to generate exam-
ple runs by executing an example solution. However, the
example solution compiling and running is voluntary, so
if user chooses not to use the feature, external compilers
or runtimes are not needed.

4.2. Results

A survey about generated assignment instructions was
conducted during CS2 course in spring 2023, in total 65

out of 240 students, i.e., 27.1 %, answered. Students were
asked how they perceive visual clearness of generated
assignment instructions, as well as, how the generated
documents compared to handmade documents, used in
the first four weeks of the course. In addition, there
were four questions about how layout and formatting
highlights help students while doing their assignments.
Answer distributions for these question sets are shown
in Figures 9 and 10, respectively.

As seen in Figure 9, with the scale of 1-5; 1 worst and
5 best, documents generated by Mimir were considered
slightly clearer than handmade ones, with an average 3.2,
colored highlight of keyword was perceived better than
only bolding the keyword, with an average 3.9. Visual
clearness and readability as well as distinction of sep-
arated instruction sections were considered good with
averages 3.9 and 4.2, respectively. As seen in Figure 10,
formatting and layout helping students with assignment
were perceived very good for listing functions in bullet
points, separating inputs as a distinct section, colouring
keywords, and background highlighting, with averages
4.1, 4.4, 4.1 and 4.1, respectively.

Visual clearness of generated instruction paper
45 41
240
$3s
£ 30 28 27 27
o 23
25
P
3 20 16 18 19
815 11 s 10
E 10 I 7- 5 7- N
3 3
z 5 101 1 .| H
o m0O0- _ 00 = W | mis
Do not know Strongly Disagree Neither Agree Completely
disagree agree nor agree
disagree
EThe appearance of the instruction paper is clearer on lecture weeks 5-7
than on 1-3.
@Overall look is clear and readable
@Program example run, inputs and examples from input and result data
are distinct from each other
OColoured highlight are better than only bolded highlight

Figure 9: Visual clearness of instruction paper generated by
Mimir.

4.3. Summary

Mimir is a tool, developed with Python 3, to manage sets
of programming assignments, with option to automate
selection of programming assignments for new course
implementations. It stores assignment data to JSON files
and utilizes LaTeX to generate assignment instructions
as PDF files. The tool is designed to be used by course
staff either before the course implementation to generate
dataset for the entire course at once, or when needed
before each assignment set is released. While Mimir is
not for students, they are a stakeholder as they the target
group for generated assignment instruction papers, and
therefore the survey was conducted to gather feedback

Do layout and formatting help students
45
w
£ 40 36
235
b 30 28 . 2
S5
%20
]
315
E 10
3 3
5 12
z 0 ml
Do not know Strongly
disagree

2324
1919

15 12
I 9 i‘ﬂ IH
Neither Agree

agree nor
disagree

mFunctions separated into bullet points help conseptualize the program

2423
0000 o mm

Disagree Completely

agree

BSeparated inputs help test my own program

BEThe colored highlight on keywords help read the instructions

OThe background colours in inputs and example runs help with readability

Figure 10: Do generated layout and formatting help students
understand the assignment instructions.

about generated documents. Based on the survey stu-
dents were satisfied with the generated content, which
motivates us to develop the tool more and utilize it in
upcoming courses. As Mimir is not limited to generate as-
signments for CS2 course and C programming language,
it is planned to be used for fall 2023 CS1 course lectured
with Python 3.

For the future development Mimir could be utilized
to automatically generate autograder test cases, which
could then be imported to autograder. However, this
development option requires closer cooperation with the
used autograder.

5. Conclusion

The LUT CS1 course has continued to grow over a decade
now. To improve the quality to the student materials as
well as to reduce the time and effort required to complete
all the course tasks, we are currently developing three
new tools to support the course arrangements. In this
paper we described three tools we are developing - ASPA,
GradeTool and Mimir - and presented initial data that
indicate the usefulness of these tools.

ASPA is an AST-based static analyzer tool to detect
common programming style violations, and saves time
both for students and teaching assistants by providing
feedback anytime needed. Thus TA can focus on less
common problems which require human to be detected
or to explain reasons for required changes to student. Em-
pirical data shows that students find the tool useful, and
numerical data shows a statistically significant positive
correlation between ASPA usage and student grades.

GradeTool is a tool to assist programming assignment
grader in assessment process by providing convenient
way to mark detected programming violations. Empirical
data shows that the feedback generated by GradeTool
is consistent enough, but feedback phrasing should be

focused on more in the future, and numerical data shows
that with help of the tool, graders can generate a lot
of feedback for students without need to write every-
thing. Furthermore, while using GradeTool TAs generate
numerical data about violation occurrences which can
used to improve teaching and assessment processes even
more.

Mimir is a programming assignment manager to han-
dle assignment variations and generate assignment in-
struction documents for selected assignment variations.
Empirical survey data shows that generated assignment
instruction documents are clear and consistent enough,
even a little bit better than handmade ones, which were
used earlier. In addition, students perceived that, on the
average, used layout and formatting highlights helped
them to focus on the actual programming task and its
implementation instead of assignment instructions.

Each of these tools has already been successfully used
in programming courses and they suit for CS1 context,
both in Finnish and in English, with Python program-
ming language but are not limited to it, which is why
GradeTool and Mimir are already used also in CS2 course
lecture with C programming language. Due to the suc-
cess, development is continued, and aim is moved for
integrating these tools together more closely not just use
their outputs in same course. For example, violations
detected by ASPA are aimed to be importable directly
to GradeTool, which would even more fasten the assess-
ment process when grader would not need to even mark
already found violations. On the other hand, the future
development of Mimir could be automatic generation of
autograder test cases, which could then be imported to
autograder, which would then save time on assignment
setup phase.

Next iterations for these development actions are
planned to be done for the fall 2023 CS1 course and ex-
pand range to other programming courses as well. In
the future, we also could expand our analysis to cover
topics related to the support services of code generation,
such as use and role of artificial intelligence, or taking an
indepth look into the discussions and common problems
the teaching assistants encounter on the online support
platforms.

References

[1] U. Nikula, O. Gotel, J. Kasurinen, A Motivation
Guided Holistic Rehabilitation of the First Program-
ming Course, ACM Transactions on Computing
Education 11 (2011) 1-38. doi:10.1145/2048931.
2048935.

[2] U. Nikula, J. Jarvinen, Ohjelmoinnin perusteet
(6 op) / Introduction to Programming (6 cr),
2023. URL: https://sisu.lut.fi/student/courseunit/

(10]

(11]

(13]

otm-d92aa788-3b57-4580-bb82-60b836198ee9/
brochure.

E. Vanhala, U. Nikula, Python 3 — ohjelmointiopas
versio 1.2.1, LUT University, 2020. URL: https://urn.
fi/URN:ISBN:978-952-335-622-1.

The Finnish Institute of Technology, Fitech: Apply
to summer courses from 4 april, 2023. URL: https:
//fitech.io/en/.

CodeGrade, Streamline code learning and grading.,
2021. URL: https://www.codegrade.com/.

D. Liu, A. Petersen, Static Analyses in Python Pro-
gramming Courses, in: Proceedings of the 50th
ACM Technical Symposium on Computer Science
Education - SIGCSE 19, ACM Press, Minneapo-
lis, MN, USA, 2019, pp. 666—671. doi:10.1145/
3287324.3287503.

L. Gusukuma, A. C. Bart, D. Kafura, Pedal: An
Infrastructure for Automated Feedback Systems, in:
Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, ACM, Portland OR
USA, 2020, pp. 1061-1067. doi:10.1145/3328778.
3366913.

R. R. Choudhury, H. Yin, A. Fox, Scale-Driven Au-
tomatic Hint Generation for Coding Style, in: Pro-
ceedings of the 13th International Conference on
Intelligent Tutoring Systems - Volume 9684, ITS
2016, Springer-Verlag, Zagreb, Croatia, 2016, pp.
122-132. doi:10.1007/978-3-319-39583-8_12.
E. S. Wiese, M. Yen, A. Chen, L. A. Santos, A. Fox,
Teaching Students to Recognize and Implement
Good Coding Style, in: Conference on Learning @
Scale - L@S 17, 2017, pp. 41-50.

r2c, Semgrep: Code scanning at ludicrous speed.,
2023. URL: https://semgrep.dev/docs/.

E. Kaila, M.-J. Laakso, T. Rajala, E. Kurvinen,
A model for gamifying programming education:
University-level programming course quantified, in:
2018 41st International Convention on Information
and Communication Technology, Electronics and
Microelectronics (MIPRO), IEEE, Opatija, 2018, pp.
0689-0694. doi:10.23919/MIPRO.2018.8400129.
V. Karavirta, P. Thantola, T. Koskinen, Service-
Oriented Approach to Improve Interoperability of E-
Learning Systems, in: 2013 IEEE 13th International
Conference on Advanced Learning Technologies,
2013, pp. 341-345. doi:10.1109/ICALT.2013.105,
iSSN: 2161-377X.

R. Luukkainen, J. Kasurinen, U. Nikula, V. Lenar-
duzzi, ASPA: A static analyser to support learning
and continuous feedback on programming courses.
an empirical validation, in: Proceedings of the
ACM/IEEE 44th International Conference on Soft-
ware Engineering: Software Engineering Education
and Training, ICSE-SEET °22, Association for Com-
puting Machinery, New York, NY, USA, 2022, p.

http://dx.doi.org/10.1145/2048931.2048935
http://dx.doi.org/10.1145/2048931.2048935
https://sisu.lut.fi/student/courseunit/otm-d92aa788-3b57-4580-bb82-60b836198ee9/brochure
https://sisu.lut.fi/student/courseunit/otm-d92aa788-3b57-4580-bb82-60b836198ee9/brochure
https://sisu.lut.fi/student/courseunit/otm-d92aa788-3b57-4580-bb82-60b836198ee9/brochure
https://urn.fi/URN:ISBN:978-952-335-622-1
https://urn.fi/URN:ISBN:978-952-335-622-1
https://fitech.io/en/
https://fitech.io/en/
https://www.codegrade.com/
http://dx.doi.org/10.1145/3287324.3287503
http://dx.doi.org/10.1145/3287324.3287503
http://dx.doi.org/10.1145/3328778.3366913
http://dx.doi.org/10.1145/3328778.3366913
http://dx.doi.org/10.1007/978-3-319-39583-8_12
https://semgrep.dev/docs/
http://dx.doi.org/10.23919/MIPRO.2018.8400129
http://dx.doi.org/10.1109/ICALT.2013.105

(14]

(15]

[20]

[21]

29-39. doi:10.1145/3510456.3514149.

JASP Team, JASP (Version 0.14.1)[Computer soft-
ware], 2020. URL: https://jasp-stats.org/.

J. Kasurinen, U. Nikula, Estimating programming
knowledge with Bayesian knowledge tracing, ACM
SIGCSE Bulletin 41 (2009) 313-317. doi:10.1145/
1595496.1562972.

Labtool-2019 group, = Welcome to the
labtool wiki!, 2022. URL: https://github.com/
UniversityOfHelsinkiCS/labtool/wiki.

T. Ahoniemi, T. Reinikainen, Aloha - a grading tool
for semi-automatic assessment of mass program-
ming courses, in: Proceedings of the 6th Baltic
Sea Conference on Computing Education Research:
Koli Calling 2006, Baltic Sea *06, Association for
Computing Machinery, New York, NY, USA, 2006,
p. 139-140. doi:10.1145/1315803.1315830.

T. Ahoniemi, E. Lahtinen, T. Reinikainen, Improv-
ing pedagogical feedback and objective grading, in:
Proceedings of the 39th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE *08,
Association for Computing Machinery, New York,
NY, USA, 2008, p. 72-76. doi:10.1145/1352135.
1352162.

S. Parihar, Z. Dadachanji, P. K. Singh, R. Das,
A. Karkare, A. Bhattacharya, Automatic grading
and feedback using program repair for introductory
programming courses, in: Proceedings of the 2017
ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE ’17, Associa-
tion for Computing Machinery, New York, NY, USA,
2017, p. 92-97. doi:10.1145/3059009.3059026.

E. Hegarty-Kelly, D. A. Mooney, Analysis of an
automatic grading system within first year com-
puter science programming modules, in: Pro-
ceedings of 5th Conference on Computing Educa-
tion Practice, CEP "21, Association for Computing
Machinery, New York, NY, USA, 2021, p. 17-20.
doi:10.1145/3437914.3437973.

J.-Y. Kuo, H.-C. Lin, P.-F. Wang, Z.-G. Nie, A feed-
back system supporting students approaching a
high-level programming course, Applied Sciences
12 (2022). doi:10.3390/app12147064.

J. Hoffstadt, P. Cothren, A modern, fast and pow-
erful gui framework for python., 2023. URL: https:
//github.com/hoffstadt/DearPyGui/wiki.

H. T. Jankowitz, Detecting plagiarism in student
pascale programs, The Computer Journal 31 (1988)
1-8. doi:10.1093/comjnl/31.1.1.

S. Mann, Z. Frew, Similarity and originality in code:
Plagiarism and normal variation in student assign-
ments, in: Proceedings of the 8th Australasian Con-
ference on Computing Education-Volume 52, vol-
ume 52, 2006, pp. 143-150. doi:10.5555/1151869.
1151888.

(25]

(27]

L. Nichols, K. Dewey, M. Emre, S. Chen, B. Hard-
ekopf, Syntax-based improvements to plagiarism
detectors and their evaluations, in: Proceedings of
the 2019 ACM Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE 19,
Association for Computing Machinery, New York,
NY, USA, 2019, p. 555-561. doi:10.1145/3304221.
3319789.

T. Hynninen, A. Knutas, J. Kasurinen, Plagiarism
networks: finding instances of copied answers in
an online introductory programming environment,
in: Proceedings of the 17th Koli Calling Interna-
tional Conference on Computing Education Re-
search, Koli Calling ’17, Association for Comput-
ing Machinery, 2017, pp. 187-188. doi:10.1145/
3141880.3141906.

L. Prechelt, G. Malpohl, M. Philippsen, Finding
plagiarisms among a set of programs with JPlag,
Journal of Universal Computer Science 8 (2002)
1016-1038.

http://dx.doi.org/10.1145/3510456.3514149
https://jasp-stats.org/
http://dx.doi.org/10.1145/1595496.1562972
http://dx.doi.org/10.1145/1595496.1562972
https://github.com/UniversityOfHelsinkiCS/labtool/wiki
https://github.com/UniversityOfHelsinkiCS/labtool/wiki
http://dx.doi.org/10.1145/1315803.1315830
http://dx.doi.org/10.1145/1352135.1352162
http://dx.doi.org/10.1145/1352135.1352162
http://dx.doi.org/10.1145/3059009.3059026
http://dx.doi.org/10.1145/3437914.3437973
http://dx.doi.org/10.3390/app12147064
https://github.com/hoffstadt/DearPyGui/wiki
https://github.com/hoffstadt/DearPyGui/wiki
http://dx.doi.org/10.1093/comjnl/31.1.1
http://dx.doi.org/10.5555/1151869.1151888
http://dx.doi.org/10.5555/1151869.1151888
http://dx.doi.org/10.1145/3304221.3319789
http://dx.doi.org/10.1145/3304221.3319789
http://dx.doi.org/10.1145/3141880.3141906
http://dx.doi.org/10.1145/3141880.3141906

	1 Introduction
	2 ASPA - Tool to provide feedback on program structure
	2.1 Literature review
	2.2 Developed solution
	2.3 Results
	2.4 Summary

	3 GradeTool - Tool to assist grading process
	3.1 Literature review
	3.2 Developed solution
	3.3 Results
	3.4 Summary

	4 Mímir - Tool to manage course assignments
	4.1 Developed solution
	4.2 Results
	4.3 Summary

	5 Conclusion

