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Abstract
This paper presents a use case in the energy domain showing the benefits of digital twins. More
specifically, we study the problem of peak shaving, which aims for managing a micro power grid in
such a way that the energy demanded from the surrounding global power grid does not exceed certain
limits. We examine a living lab consisting of university buildings as power consumers and power
buffers in forms of fixed installed batteries as well as power-to-grid capable electrical vehicles that are
booked by users. We provide a formal model of the relevant aspects of the micro grid and show how an
artificial intelligence based prediction established from historical data as well as suitable simulation and
optimization algorithms help to improve peak shaving.
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1. Introduction

The ongoing transition to renewable and climate-neutral energy sources, such as wind and solar
power, means that the production of electrical energy becomes more volatile and fluctuating on
a daily and seasonal scale. This creates a need for technical solutions to intermediately store
electrical energy, and to better forecast energy supply, in order to meet the demand.

However, technical solutions on the energy supply side alone will not be sufficient; instead,
more flexibility on the consumption side and user participation will also be necessary. For
instance in Germany, the largest electricity market in Europe, the installation of smart meters
in private households will soon become mandatory and allow more consumers to shift load to
times when energy is more abundant. For particularly energy-intensive devices, such as heat
pumps or wallboxes for electric car charging, users get incentives if communication links allow
grid providers to switch them off temporarily1.
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Besides the energy sector, the mobility sector is still a large source of climate gas emissions.
Battery-powered electric vehicles have the potential to reduce carbon emissions, if operated
with green electricity; the positive effects can be even greater in a car sharing context when
vehicles are shared among several users and thus the initial cost and carbon “backpack” of
battery production is faster amortized. In addition, during idle times when the vehicles are
parked and connected to the grid, their batteries can be used as buffers to store excess electricity
and feed it back to the grid during peak demand times. Such so-called vehicle-to-grid concepts
are now extensively studied in pilot projects [1, 2, 3] and corresponding norms to introduce
bi-directional charging in the automotive market have recently been rolled out [4].

In this paper, we study a use case, on the campus of our university, that combines both
the mobility and energy domain. The scenario consists of a fleet of electric vehicles with
bi-directional charging capabilities and a stationary buffer battery, connected to a micro grid
with additional consumers (buildings on the campus). The cars can be booked by users for
trips, and the charging and discharging of the batteries (cars and stationary buffer) needs to be
managed in such a way that the range of the cars suffices for the trips, while the total power
demand of the micro grid should not exceed a given limit. The latter is called peak shaving and
is important for grid stability, but also for electricity costs: grid usage fees, which make up a
large proportion of the electricity costs, are based on the maximal power used in the billing
period (monthly or annually), even if this maximum is reached only for a short period of time2.

It is easy in this scenario to devise a simple controller strategy that will, at each point in
time, try to stay within the power limit by immediately reducing the charging power and – if
this is not sufficient and there is energy left in the batteries – feeding back energy from the
batteries into the grid. However, in our setting such a (myopic) controller might (depending on
the additional load of other consumers in the micro grid) render user bookings infeasible by
failing to charge the cars on time, or discharging them below the range required for upcoming
bookings.

In the following, we present a formal model of this problem and propose a digital twin
[5] solution that uses AI-based load forecasting, simulation and optimization to intelligently
improve the balance between peak shaving and user’s mobility needs. In particular, the approach
will simulate the effect of bookings on the micro grid to assess new bookings requested by
users, while at the same time safeguarding already committed bookings such that the cars will
have enough range for the planned trips. The system has been prototypically implemented
and experiments have been conducted with carsharing users in a living lab on our university’s
campus.

The rest of the paper is organized as follows: Section 2 presents the case study and our
living lab in more detail, and introduces a mathematical optimization model to describe the
problem formally. Section 3 describes our proposed digital twin solution on this model. Section
4 concludes with a discussion and directions for further work.

2This policy is typical for many energy providers, and also the case for our campus’ energy provider.



2. Case study: The ReNuBiL living lab

In the EU-funded research project ReNuBiL3 (living lab for user-oriented bi-directional charging),
an infrastructure for experimenting with vehicle-to-grid concepts in the context of battery-
powered electric vehicles shared among different users was set up on University of Lübeck’s
campus. It consists of (see also Figure 1):

• a Nissan LEAF passenger car with a battery capacity of 62kWh and approximate range of
385km

• a Nissan e-NV200 transporter with a battery capacity of 40kWh and approximate range
of 275km

• two EVTEC4 “coffee&charge” bi-directional charging stations with 20kW power output
each

• an EVTEC “save&charge” stationary (second-life) battery with a capacity of 24kWh

The vehicles are connected to the stations using CHAdeMo plugs (direct current) for charging
and discharging. The lab components come with an embedded software (EVTEC “barista”) that
can be used to control the charging and discharging power of the batteries (in the cars and the
container), provided that the vehicles are idle (i.e. not booked by customers for trips) and the
charging levels of the batteries are sufficiently high. The lab infrastructure is set up next to the
largest lecture hall (Audimax) on the campus, and so the components are connected to the local
micro-grid of this building that is part of the overall campus’ power grid. Electricity meters
were installed to record the energy flows (charging and discharging power, battery charge levels,
etc.) in the lab and the adjacent Audimax building. Also, the vehicles themselves log data about
their current position and energy consumption. The data is collected periodically since January
2021 and stored in a time-series database.

The vehicles can be booked by users via the project partner StattAuto5, who operates a fleet
of more than 200 cars in the region and has included the ReNuBiL vehicles in its car sharing
system so they can be booked by any of their customers.

StattAuto’s current solution for safeguarding bookings is to leave a gap of three hours between
bookings, enough for the vehicles to fully recharge. Clearly, this is not optimal from the point
of view of the carsharing operator but also in terms of peak shaving.

Problem Description. In our tackled setting, the cars are rented by customers and picked up
at and brought back to the charging stations. While customers are free to charge the cars during
a rental at third party stations, they are unlikely to do so except for very long trips. Although it
is technically possible to utilize the full charging power of the stations at all times, as outlined
above our aim is to stay below a power consumption limit (in our experiments of 45 kW) for the
micro-grid including the charging stations, the stationary battery and the Audimax building,
and avoid any peaks above this threshold.

Batteries can be charged from the grid while simultaneously other batteries are discharged
into the grid. We therefore have a multilevel optimization problem: our highest priority is to
3http://www.renubil.de
4https://www.evtec.ch/
5https://www.stattauto-hl.de/



Figure 1: ReNuBiL living lab on University of Lübeck’s campus with two electric cars, two bi-directional
charging stations, and stationary battery container

enable bookings we have already confirmed to users (safeguarding bookings). To this end, users
have to provide their requested range with each booking. Our second priority is to utilize both,
the buffer as well as the car batteries in order to avoid exceeding the power consumption limit
(peak shaving). Our third priority is to keep the cars available for short notice bookings, i.e.
keep the cars charged as much as possible.

Formal Model. We first developed a formal model of our scenario as depicted in Fig. 2. The
model describes the charging and discharging behaviours of the batteries involved. We treat
both the car batteries as well as the stationary buffer battery equivalently as they differ only in
their ability to be booked by users. Parameters and variables are indexed by the battery id 𝑖.
For each battery, the model has the following parameters: bookings𝑖 is the set of associated
bookings comprising a start (𝑡1) and end time (𝑡2) and a required driving distance 𝑟. batCharge𝑖
and disCharge𝑖 assign a maximal charging or discharging power respectively to each level of
charge. These parameters allow us to model the power restrictions of the batteries (see also
[6, 7]). efficiency𝑖 assigns an efficiency factor to a level of (dis-)charging power to model the
power loss during (dis-)charging. demand𝑖 maps driving distance to energy demand and 𝑐𝑖
specifies the initial charge energy of the battery.

The variables of our models are two functions: the charge energy of a battery by time energy𝑖
and the current (dis-)charge power of a battery by time power𝑖. The model only is defined in
terms of the energy stored in the batteries not the actual charge as the energy stored by charge
varies with voltage. Charging and discharging are distinguished by positive and negative power
values.



Parameters
bookings𝑖 ⊆ {(𝑡1, 𝑡2, 𝑟) ∈ R+

0 × R+
0 × R+

0 | 𝑡1 < 𝑡2}
batCharge𝑖 : R

+
0 → R

batDischarge𝑖 : R
+
0 → R

efficiency𝑖 : R
+
0 → [0, 1]

demand𝑖 : R+
0 → R

𝑐𝑖 : R+
0

Variables
energy𝑖 : R

+
0 → R+

0

power𝑖 : R
+
0 → R

Goal
𝑓 : (R → R) → R
𝑓(𝑔) =

∫︀∞
0

max(0, (𝑔(𝑡)− limit(𝑡))) 𝑑𝑡
minimize: 𝑓(power)

Constraints
(1) 𝑒𝑛𝑒𝑟𝑔𝑦(0)𝑖 = 𝑐𝑖
(2) ∀(𝑡1, 𝑡2, 𝑟) ∈ bookings𝑖 : energy𝑖(𝑡2) = energy𝑖(𝑡1) + demand𝑖(𝑟)
(3) ∀(𝑡1, 𝑡2, 𝑟) ∈ bookings𝑖, 𝑡1 < 𝑡 < 𝑡2 : energy𝑖(𝑡) = 0

(4) ∀(𝑡1, 𝑡2) ∈ between(bookings𝑖), 𝑡1 < 𝑡 ≤ 𝑡2 : energy𝑖(𝑡) = energy𝑖(𝑡1) +
∫︀ 𝑡

𝑡1
efficiency𝑖(power𝑖(𝑡)) power𝑖(𝑡) 𝑑𝑡

(5) ∀(𝑡1, 𝑡2) ∈ between(bookings𝑖), 𝑡1 < 𝑡 ≤ 𝑡2 : batDischarge𝑖(energy𝑖(𝑡)) ≤ power𝑖(𝑡) ≤ batCharge𝑖(energy𝑖(𝑡))
(6) ∀(𝑡1, 𝑡2, 𝑟) ∈ bookings : charge𝑖(𝑡1) ≥ demand(𝑟)
(7) power(𝑡) =

∑︀
𝑖 power𝑖(𝑡)

Figure 2: Formal model of the peak-shaving problem for bi-directional charging and carsharing

The possible solutions for the power and energy functions are now defined by (1) the initial
energy, (2) the consumption of required energy during bookings, (3) the inability to use car
batteries during bookings, (4) the charging/discharging according to the assigned power with
respective efficiency when batteries are available, (5) the power restrictions of the batteries and
(6) the requirement to provide the required energy for bookings before they start.

Optimization goals can then be expressed as functions reducing the accumulative power
function power defined by (7). The optimization goal to minimize the excess of a power limit
can be expressed by the function 𝑓 defined in Fig. 2. The limit there depends on time and
therefore can take the external power consumption into account.

Charge Strategy. During operation of the charging station the (dis-)charging of the batteries
has to be constantly optimized according to the charging model and our optimization goals.
Solving the constraint model on the fly can be difficult to impossible especially considering the
non-linear behavior of battery constraints. We therefore designed a dedicated charge strategy
that achieves our goals comprising the following rules (stated here only informally due to lack
of space):

1. for each battery, if we need to start charging at full power in order to facilitate the next
(or a subsequent) booking, do so.

2. for each battery that remains, charge if we are below the limit, discharge, if we are above
the limit.

3. prefer car batteries when charging, prefer buffer battery when discharging.

As our optimization goal is linear, i.e. exceeding the limit moderately for a long time is not
better than exceeding the limit excessively for a short time, rules 1. and 2. result in an optimal
strategy. Rule 3 deviates from that slightly to also optimize for availability for short notice
bookings.

Booking Assessment. In contrast to other work such as [8], we are not considering a
scheduling problem here: bookings are not scheduled but have to be assessed and facilitated



when they are requested by the users. When a user wants to book a car, we provide him with a
rating of that booking based on the optimization goal. This rating is computed by simulating the
current bookings excluding and including the new booking according to the constraint model
and the charge strategy. We then take the difference between the values of the goal function, i.e.
the additional violation of the peak shaving power limit caused by adding the new booking. For
high ratings, i.e. bookings that would force us to violate the limit by a large amount, we ask the
user to consider changing his booking to a different time slot. The simulation incorporates a
prediction of the future external power consumption, which is either done directly on multiple
historical data traces or on a prediction generated by machine learning from these traces.

3. Proposed Solution: Digital Twin Approach

Our solution is based on the idea of a digital and a physical twin. The physical twin is constituted
by the cars, the charging station and the university grid. The digital twin is constituted by the
formal model of the charging station and car batteries, and the historical consumption data of
the university grid and the machine learning model based on that data.

The physical charging station is controlled by the charging strategy designed above. The
strategy provides control outputs to the battery control units and receives measurements from
them as well as from the meters of the university grid. In addition, it receives minimal charge
requirements for the car batteries that have to be observed in order to facilitate the currently
confirmed bookings. These requirements are computed in the digital twin, i.e. the formal model
using a backward simulation of the charging process with maximal possible charging power.

The second use case of the digital twin is the booking process: when requesting a booking,
the user is provided with a rating. This rating is calculated by simulating the charging strategy
over a prediction of the power consumption of the university grid. We support two prediction
schemes: generating example traces from a machine learning model using LSTM networks (see
[9] for according details) or directly using a set of historic traces. The rating presented to the
user is then based on the average additional violation of the power consumption limit caused
by the requested booking.

3.1. Simulation and Experiments

We have simulated our solution extensively using the setup described above. Let us explain
our approach using a typical simulation for three consecutive days Sunday 00:00h to Tuesday
24:00h of a typical week during the lecture period (week 2 of year 2023), as depicted in Fig. 3a.

Let us first concentrate on the upper part of the diagram. The purple curve shows the actual
power consumption of the Audimax, our lecture hall acting as main consumer. We can see that
the power demand is around 25-25 kW during night time and above 45 kW during day time
with peaks up to 70 kW on work days. This curve serves as a prediction of the Audimax power
consumption for the simulated scenario.

The red curve shows the simulated total power consumption that would arise from running
our charging strategy with one booking request for the LEAF with the given Audimax power
consumption. The considered booking request starts at 32 h with a duration of 5 h and requires
the complete battery capacity of 62 kWh.



(a) violation 33 kWh (b) violation 21 kWh

(c) violation 0 kWh

Figure 3: Simulated scenario

The anticipated limit of energy consumption is set to 45 kW as depicted by the grey horizontal
line. Whenever this limit is reached, the energy of the fixed installed batteries (buffer) and
those of the electric vehicles may be used to reduce the energy consumption from the global
grid. Whenever surplus power is available, the battery may be charged. We can observe this
behavior starting from 45 h. The energy levels of the batteries are depicted in the lower part
of the diagram, blue and cyan for the LEAF and the e-NV200, respectively, and green for the
buffer. As we can see, the system starts to charge the vehicle batteries as soon as surplus power
is available. As there is not enough power available to charge the buffer as well and vehicles are
prioritized, charging the buffer is delayed. Conversely, when the limit is reached at 54 h the
buffer is discharged first.

Due to the booking, the LEAF is not available from 32 h to 37 h and is completely discharged
after the booking. As a consequence after 36 h the system is not able to maintain the power
limit and the total power starts to coincide with the Audimax power consumption until 45 h.
Note that the batteries have a discharge limit of 10 kWh to avoid deep discharge. The system



respects that limit but the vehicle batteries can be discharged further when driving.
In this scenario the limit would be violated by 33 kWh which in this case is due to the single

booking. Fig. 3b depicts how the scenario would change if we were to move the booking to 46 h.
Here, we can observe how the system prioritizes bookings over the power limit. The system
manages to uphold the limit up to 46h, but due to the booking then has to switch to charging
the battery of the LEAF resulting in a large violation. Consequently, the violation in this sceario
is still 21 kWh.

Fig. 3c shows how moving the booking to 19 h, the previous evening, allows the vehicle to
be charged over night, makes it available for power management during the day and avoids
overshooting the power limit completely. In total, we see that intelligent peak shaving works
out in many situations yet going beyond the limit could not be completely avoided by our
system.

4. Discussion and Conclusion

Future energy systems will need a tighter and more intelligent integration between different
sectors, in particular the sectors of mobility and electrical power. This includes comprehensive
sensor meter gathering, data-driven trend analysis and forecasting, and real-time mathematical
optimization of control parameters. Simultaneously, such systems must enable and support
more flexibility on the user side, allowing consumers to express their desires/needs and receive
relevant information that enables them to adjust their behavior accordingly, thus contributing
to overall stability and sustainability goals.

In this paper, we presented an approach towards this goal in the setting of electric car sharing
and bi-directional charging. The batteries of the cars can feed back their energy into the local
micro grid, in order to limit the total power consumption (peak shaving). The users request to
book the vehicles at certain times and for certain desired ranges, such that they are not available
as buffers for peak shaving during these times and also need to be re-charged, creating further
load on the micro grid.

Our approach uses a digital twin model to balance the two conflicting concerns of optimal
peak shaving and user mobility. The digital twin allows to simulate and assess user’s requests
(at query time) and give recommendations to adapt their behavior (by possibly shifting their
bookings to earlier or later times of the day). The user requests are typically issued several hours
or days ahead of the actual bookings and so the evaluation/planning is based on predictions
using historical data. In our setting, the objective to fulfill user’s bookings is prioritized over
the objective of peak shaving. Thus, during execution time, the digital twin model is used
to appropriately control charging and discharging (full-power charging to enable committed
bookings, vs. reduced-power charging and discharging to do peak shaving).

As another partner in the ReNuBiL project, the Institute for Engineering Psychology6 studies
possible incentives to motivate users to adjust bookings and participate in peak shaving. Clearly
the system could also be further optimized if users would be asked (and convinced) to re-schedule
older, already committed bookings that turn out not to fit well with newer bookings. Due to the
involved user interaction via the car sharing provider, this has not been considered so far.

6https://www.imis.uni-luebeck.de/de



Our current work includes the implementation of an alternative approach that uses constraint
optimization on the formal model to synthesize optimal strategies, instead of selecting between
pre-defined charge strategies (peak shaving and full-power charging). However, while this
allows more flexibility and accuracy, the computational cost is much higher. Furthermore, we
are trying to extend the machine learning approach to forecast not only the grid load, but also
bookings, which is inherently difficult as much fewer training data is available.
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