
Integrating	Sparklis	and	ViziQuer	for	Enhanced	SPARQL	
Querying	and	Visualization	

Uldis	Bojārs,	Jūlija	Ovčiņņikova,	Lelde	Lāce,	Artūrs	Sproģis,	Mikus	Grasmanis	and		
Kārlis	Čerāns	

Institute	of	Mathematics	and	Computer	Science,	University	of	Latvia,	Riga,	Latvia		

Abstract	
This	paper	introduces	a	multimodal	SPARQL	query	system	that	combines	the	capabilities	of	Sparklis	
and	ViziQuer,	two	powerful	tools	for	SPARQL	query	building	and	visualization.	Sparklis	offers	a	faceted	
user	 interface	 for	 constructing	 SPARQL	 queries,	 while	 ViziQuer	 provides	 a	 rich	 visual	 interface	 for	
constructing	and	visualizing	SPARQL	queries.	By	integrating	the	two	applications,	the	system	facilitates	
the	 automatic	 visualization	 of	 SPARQL	 queries	 constructed	 in	 Sparklis	 within	 the	 ViziQuer	 visual	
environment.	

Keywords		
RDF,	SPARQL,	query	visualization,	Sparklis,	ViziQuer	1	

1. Introduction	
SPARQL	queries	can	be	difficult	to	write	by	non-technical	users	[1].	There	are	various	SPARQL	
query	building	assistants	that	can	help	with	this	task,	including	tools	using	form-based	interfaces	
(e.g.	PepeSearch	[2]	and	WYSIWYQ	[3]),	controlled	natural	language	snippets	(e.g.	Sparklis	[4]),	
and	visual	diagrams	(cf.	e.g.	[1,5,6,7]).	
Each	of	the	notations	have	their	strengths	and	weaknesses,	especially	when	it	comes	to	the	

design	of	 rich	 SPARQL	queries	 (involving,	 e.g.,	 aggregation	 and	 subqueries).	 For	 instance,	 the	
Sparklis	notation	allows	for	rich	query	composition	using	the	natural	language	snippets	that	can	
be	expected	to	be	suitable	for	a	less	technical	end-user,	while	the	created	query	formulations	may	
still	appear	difficult	to	understand	by	some	end-users.	On	the	other	hand,	ViziQuer	may	provide	
a	structural	overview	and	further	refinement	of	the	query.		
Both	Sparklis	and	ViziQuer	provide	means	for	rich	SPARQL	query	definition	including	complex	

expressions,	 grouping	 and	 aggregation.	 The	 ViziQuer	 functionality	 for	 visualizing	 SPARQL	
queries	 [8]	opens	 the	way	 for	combining	 the	strengths	of	both	query	building	methods	 into	a	
multi-modal	query	creation	environment,	where	the	query	can	be	initially	built	in	Sparklis	and	
then	translated	into	ViziQuer	(from	the	SPARQL	query	form	that	is	provided	by	Sparklis).	
This	paper	presents	a	prototype	of	such	a	multi-modal	system	that	 integrates	Sparklis	and	

ViziQuer	tools2	and	allows	users	to	visualize	SPARQL	queries	created	in	Sparklis.	The	integrated	
system	combines	the	benefits	of	the	two	tools:	users	can	use	the	faceted	UI	and	controlled	natural	
language	approach	of	Sparklis,	and	can	visualize	and	refine	these	SPARQL	queries	in	the	ViziQuer	
visual	query	environment.	These	visualizations	are	based	on	the	UML-like	notation	implemented	
in	 ViziQuer	 and	 ViziQuer's	 query	 visualization	 functionality	 [7,8].	 Apart	 from	 the	 particular	
integration	 of	 two	 SPARQL	 query	 composition	 assistants,	 SPARKLIS	 and	 ViziQuer,	 this	 paper	
establishes	 the	 concept	 of	 integration	 of	 several	 such	 assistants	 into	 a	 single	 multi-modal	
environment.	
	

	
Proceedings	Acronym:	Proceedings	Name,	Month	XX–XX,	YYYY,	City,	Country	
	uldis.bojars@lumii.lv	(U.	Bojārs);	karlis.cerans@lumii.lv	(K.	Čerāns)		
	0000-0001-7444-565X	(U.	Bojārs);	0000-0002-0154-5294	(K.	Čerāns)	

	
©	2023	Copyright	for	this	paper	by	its	authors.	
Use	permitted	under	Creative	Commons	License	Attribution	4.0	International	(CC	BY	4.0).	
	 CEUR	Workshop	Proceedings	(CEUR-WS.org)		

	
2	http://viziquer.lumii.lv/sparklis/	

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073

The	rest	of	 the	paper	consists	of	main	 information	about	Sparklis	(Section	2)	and	ViziQuer	
(Section	3),	followed	by	a	description	of	the	integration	of	these	tools	(Section	4)	and	examples	
of	SPARQL	queries	in	both	notations	(Section	5).	The	paper	is	completed	by	a	summary	of	related	
work	(Section	6),	and	conclusions	and	future	work	(Section	7).	

2. Sparklis	
Sparklis3	is	an	open	source	SPARQL	query	builder	tool	that	uses	controlled	natural	language	and	
a	 faceted	 search	 user	 interface,	 and	 allows	 people	 to	 explore	 and	 query	 SPARQL	 endpoints	
without	knowledge	of	SPARQL	or	the	vocabulary	used	by	a	particular	SPARQL	endpoint	[4].	It	is	
a	web	application	that	runs	entirely	in	the	browser.	
Sparklis	 covers	 a	 large	 subset	 of	 SPARQL	1.1	 SELECT	 queries:	 basic	 graph	 patterns	 (BGP)	

including	 cycles,	 UNION,	 OPTIONAL,	 NOT	 EXISTS,	 FILTER,	 BIND,	 complex	 expressions,	
aggregations,	 GROUP	 BY	 and	 ORDER	 BY.	 Its	 configuration	 panel	 offers	 options	 to	 adapt	 to	
different	endpoints.	Sparklis	also	 includes	the	YASGUI	editor	to	 let	advanced	users	access	and	
modify	the	SPARQL	translation	of	the	query.	We	extend	the	Sparklis	functionality	by	letting	users	
also	access	and	modify	the	visual	representation	of	the	SPARQL	query.	
	

	
	
Figure	1:	Sparklis	query	example	
	
The	query	builder	 functionality	 lets	Sparklis	users	 incrementally	build	 complex	queries	by	

combining	elementary	queries.	Elementary	queries	can	be	a	class	(e.g.	"a	film"),	a	property	(e.g.	
"that	has	a	director"),	an	RDF	node	(e.g.	 "Tim	Burton"),	a	reference	to	another	node	(e.g.	 "the	
film"),	 or	 an	 operator	 (e.g.	 "average").	 Sparklis	 queries	 are	 verbalized	 in	 controlled	 natural	
language,	hiding	 the	SPARQL	queries	generated	by	 this	 tool	 from	the	user.	Figure	1	shows	an	
example	 of	 a	 Sparklis	 query	 for	 films	 by	 Tim	 Burton	 that	 star	 somebody	 born	 after	 1980.	
Additional	query	examples	can	be	found	on	the	Sparklis	website4.	

3. ViziQuer	
ViziQuer5	 is	 an	 open	 source	 UML-style	 visual	 SPARQL	 query	 tool	 that	 allows	 users	 to	 define	
SPARQL	 queries	 visually	 using	 the	 ViziQuer	 visual	 notation.	 The	 ViziQuer	 notation	 and	
environment	 (cf.	 [7,9])	provides	visual	means	 for	 rich	query	definition,	 involving	BGPs,	 value	
filters,	optional	and	negated	constructs,	as	well	as	unions,	aggregation,	grouping	and	subqueries,	

	
3	https://github.com/sebferre/sparklis	
4	http://www.irisa.fr/LIS/ferre/sparklis/examples.html	
5	https://viziquer.lumii.lv/	

coming	 close	 to	 the	 full	 SPARQL	 1.1	 SELECT	 query	 visualization	 [8].	 ViziQuer	 source	 code	 is	
available	on	Github6.	
ViziQuer	 has	 been	 extended	 with	 a	 query	 visualization	 functionality	 that	 allows	 users	 to	

transform	SPARQL	queries	into	their	visual	representation.	The	visualization	of	SPARQL	SELECT	
queries	produces	a	visual	extended	UML-style	diagram	that	describes	the	entire	query	contents.	
For	a	simple	query	consisting	of	the	graph	patterns,	the	pattern	subject	and	object	variables	and	
resources	are	depicted	as	the	query	graph	nodes,	with	important	optimizations	for	representing	
the	variable/resource	classes	in	the	dedicated	class	name	compartments	and	single-use	SPARQL	
triple	objects	within	node	attribute	fields,	so	obtaining	a	compact	query	presentation	[7].	
The	 visualization	 of	 a	 SPARQL	 query	 could	 originally	 be	 achieved	 by	 copying	 the	 SPARQL	

query	text	into	ViziQuer's	SPARQL	query	pane	and	activating	a	"Visualize	SPARQL"	context	menu	
item.	Before	 doing	 this,	 users	 also	 needed	 to	 log	 in	 to	 the	ViziQuer	 tool.	 In	 order	 to	 perform	
automatic	integration	of	ViziQuer	with	external	tools	such	as	Sparklis,	ViziQuer	was	extended	in	
order	to	allow	anyone	to	work	with	SPARQL	queries	(incl.	visualizing	queries)	without	logging	in.	

4. Implementation	
The	integration	of	Sparklis	and	ViziQuer	was	realized	by	creating	a	Sparklis	plugin	(viziquer.js)	
that	retrieves	the	SPARQL	query	and	associated	information	from	Sparklis	and	sends	 it	 to	the	
ViziQuer	API.	Sparklis	source	code	was	augmented	in	order	to	add	the	ViziQuer	tab	to	the	Sparklis	
UI.	The	user	interface	allows	ViziQuer	to	be	launched	either	in	the	same	Sparklis	screen	(button	
"Show	here")	or	 in	a	new	browser	 tab	(button	"Show	in	a	new	tab").	The	modified	version	of	
Sparklis	and	its	ViziQuer	plugin	are	available	on	Github7.	
	

	
	

Figure	2:	ViziQuer	section	in	the	Sparklis	query	builder	
	

	
6	https://github.com/LUMII-Syslab/viziquer/tree/development	
7	https://github.com/LUMII-Syslab/sparklis	

The	required	ViziQuer	API	call	can	be	invoked	as	an	HTTP	POST	request	to	the	API	endpoint	
provided	by	the	public	ViziQuer	service8.	Alternatively,	users	can	launch	their	own	instances	of	
ViziQuer.	The	parameters	of	this	API	call	 include	the	type	of	the	query	(SPARQL),	the	SPARQL	
endpoint	 URI	 and	 the	 SPARQL	 query	 to	 be	 visualized	 along	 with	 a	 flag	 that	 indicates	 if	 the	
visualization	 action	 should	 be	 started	 automatically	 (the	 other	 alternative	 is	 to	 just	 send	 the	
SPARQL	query	to	ViziQuer	and	let	users	launch	the	visualization	action	manually).	Figure	3	shows	
the	parameters	passed	to	ViziQuer's	JSON	API	call.	
	

Figure	3:	Parameters	for	the	ViziQuer	API	call	
	
In	a	similar	way,	the	ViziQuer	tool	can	be	integrated	into	other	querying	environments,	e.g.,	

into	a	YASGUI	based	frontend	of	a	SPARQL	endpoint.	
Query	visualization	in	ViziQuer	works	best	 if	ViziQuer	is	"aware"	of	the	data	schema	of	the	

given	SPARQL	endpoint	but	it	is	also	possible	to	visualize	SPARQL	queries	for	endpoints	for	which	
ViziQuer	does	not	have	a	data	schema	available.	

5. Results	
Through	the	integration	of	Sparklis	and	Viziquer,	users	can	visualize	SPARQL	queries	constructed	
in	Sparklis.	This	section	provides	some	examples	of	queries	expressed	in	the	controlled	natural	
language	of	Sparklis	[4]	along	with	the	corresponding	SPARQL	queries	and	their	visualization	in	
ViziQuer.		
UML-style	 visual	 queries	 in	 ViziQuer	 notation	 consist	 of	 nodes	 describing	 variables	 or	

resources	where	each	node	can	have	a	possible	class	name	and	attribute	specification.	One	of	the	
nodes	is	marked	as	the	main	node	of	a	query	(orange	round	rectangle).	The	edges	that	connect	
the	 nodes	 correspond	 to	 links	 among	 the	 query	 variables	 or	 resources.	 Furthermore,	
condition/filter	 fields,	 as	 well	 as	 aggregation	 and	 query	 nesting	 links	 can	 be	 used	 in	 query	
construction	[7,9].	
ViziQuer	allows	users	to	edit	and	fine-tune	the	visual	representation	of	SPARQL	queries.	We	

used	this	functionality	to	manually	tune	the	presentation	of	visualizations	shown	in	this	section.		
Figure	 4	 shows	 a	 simple	 query	 for	 information	 about	 biomolecule	 class	 instances	 from	

DBpedia	in	Sparklis	and	ViziQuer	representation.	The	following	SPARQL	query	is	represented	by	
Sparklis	and	ViziQuer	notations	in	this	example:	
	
SELECT DISTINCT ?Biomolecule_1 ?label_103 ?name_140
WHERE { ?Biomolecule_1 a dbo:Biomolecule .
 ?Biomolecule_1 rdfs:label ?label_103 .
 ?Biomolecule_1 foaf:name ?name_140 . }
LIMIT 200
	
	
	
	
	
	
	

	
8	https://viziquer.app/api/public-diagram	

	

	

Figure	4:	SPARQL	query	for	biomolecule	information	in	Sparklis	and	in	ViziQuer	
	
We	observe	that	the	ViziQuer	representation	of	the	query	matches	the	structure	of	the	original	

Sparklis	query,	explicating	at	 the	same	time	some	of	 the	assumptions	regarding	property	and	
variable	names	and	the	query	limit	that	are	left	implicit	in	the	original	Sparklis	notation.	
Figure	5	illustrates	a	query	that	uses	aggregation	to	calculate	the	number	of	languages	spoken	

in	Colombia.	
	

	
	

	
	

Figure	5:	SPARQL	query	using	aggregation	in	Sparklis	and	in	ViziQuer	
	
The	visual	query	representation	distinguishes	the	nodes	corresponding	to	the	language	and	

the	country.	The	full	visual	appearance	of	the	query	is	somewhat	overburdened	by	the	explicit	
variable	names	(Language_1	and	number_of_122)	introduced	by	the	Sparklis	tool	in	the	generated	
SPARQL	query:	
	

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT DISTINCT (COUNT(DISTINCT ?Language_1) AS ?number_of_122)
WHERE { ?Language_1 a dbo:Language .
 ?Language_1 dbo:spokenIn dbr:Colombia . }
LIMIT 200

	
Figure	6	illustrates	a	more	complex	query	that	uses	aggregation	to	calculate	the	number	of	

books	written	by	poets	and	returns	the	results	ordered	in	decreasing	order	of	aggregated	values.	
It	shows	the	original	Sparklis	representation	and	four	options	how	the	corresponding	query	can	
be	represented	in	ViziQuer.	Option	(a)	is	auto-generated	from	the	SPARQL	query	produced	by	
Sparklis,	while	option	(b)	is	a	cleaned-up	form	of	it.	The	options	(c)	and	(d)	were	created	manually	
by	placing	 the	Person	 class	 at	 the	main	node	of	 the	query.	Option	 (c)	 uses	 the	 joined	 classes	
construction,	while	option	(d)	uses	a	subquery	to	calculate	the	number	of	books	authored	by	a	
person	(option	(d)	would	translate	to	a	different	SPARQL	query	form).	
It	might	be	an	interesting	future	work	to	understand	which	of	the	query	representations	(b),	

(c)	or	(d)	would	be	the	easiest-to-understand	by	various	groups	of	potential	end	users.	This	ease	
of	perception	may	depend	on	users	mastering	the	concepts	of	aggregation	with	grouping	(option	
(b)),	 instance	 aliases	 (option	 (c))	 and	 subqueries	 (option	 (d)).	 Each	 of	 these	 representations	
provides	an	explicit	query	structure	of	nodes	linked	by	properties	that	was	not	present	in	the	
initial	 Sparklis	 formulation.	 Given	 the	 obtained	 understanding,	 further	 work	 would	 be	 to	
implement	an	automated	creation	of	the	desired	visual	query	form.	
	

	
	

	
	 (a)	 (b)	 (c)	 (d)	
	

Figure	6:	Options	for	visualizing	an	aggregated	SPARQL	query	
	
The	following	SPARQL	query	corresponds	to	the	Sparklis	and	ViziQuer	query	representation	

in	Figure	6	(a):	

SELECT DISTINCT ?Person_1 (COUNT(DISTINCT ?Book_106) AS ?number_of_165)
WHERE { ?Person_1 a dbo:Person .
 ?Person_1 dbo:occupation dbr:Poet .
 ?Book_106 a dbo:Book .
 ?Book_106 dbo:author ?Person_1 . }
GROUP BY ?Person_1
ORDER BY DESC(?number_of_165)
LIMIT 200

	 	

6. Related	Work	
The	visual	 presentation	of	 information	 can	 facilitate	 its	 perception.	 Facet-based	 tools	 such	 as	
PepeSearch	[2]	and	WYSIWYQ	[3]	aim	to	make	it	easier	to	create	SPARQL	queries	by	using	data	
forms	and	facets.	Visual	query	composition	tools	allow	users	to	define	the	query	visually	and	can	
be	classified	into	tools	that	display	attribute	values	in	separate	graph	nodes	and	tools	that	use	a	
UML-style	notation	that	offers	us	a	more	compact	query	representation.	Examples	of	the	former	
group	are	QueryVOWL	[6],	RDF	Explorer	[10]	and	GRUFF	[11]	which	support	just	the	simplest	
forms	of	 conjunctive	SPARQL	queries.	FedViz	 [13]	 lets	users	visually	 select	query	classes	and	
properties,	 yet	 it	 does	 not	 provide	 a	 full	 visual	 representation	 of	 the	 query.	 FedViz	 and	
SPARQLGraph	[12]	differ	from	other	tools	in	that	they	allow	users	to	build	federated	queries.	In	
the	 UML-style	 group,	 Optique	 VQS	 [1]	 and	 LinDA	 [5]	 also	 support	 outer-level	 aggregation.	
Compared	to	ViziQuer,	the	visual	query	constructs	in	Optique	VQS	are	more	limited,	as	they	do	
not	support	subqueries,	or	the	optional	and	negation	modalities	of	join	queries.	There	is	also	a	
more	limited	expression	language	and	expressions	are	not	shown	explicitly	in	the	Optique	VQS	
visual	query	presentation.	
Compared	to	these	tools,	the	ViziQuer	notation	and	environment	(cf.	[7,8,9])	provides	visual	

means	for	rich	query	definition,	including	basic	graph	patterns,	value	filters,	optional	and	negated	
constructs,	 as	well	 as	 unions,	 aggregation,	 grouping	 and	 subqueries,	 coming	 close	 to	 the	 full	
SPARQL	 1.1	 SELECT	 query	 visualization	 [8].	 Sparklis,	 while	 using	 a	 different	 approach	 –	
controlled	natural	language	and	faceted	exploration	–	also	supports	a	large	subset	of	SPARQL	1.1	
SELECT	queries	(OPTIONAL,	NOT	EXISTS,	FILTER,	BIND,	etc.)	[4].	
The	integration	of	Sparklis	and	ViziQuer	was	made	possible	by	the	extension	mechanism	in	

Sparklis	 and	 the	ViziQuer	visualization	API.	While	 there	are	other	 tools	 available	 for	defining	
SPARQL	 queries,	 after	 exploring	 related	work	we	 did	 not	 find	 other	 instances	 of	 integrating	
SPARQL	query	tools	in	the	way	described	in	this	paper.	

7. Conclusions	and	Future	Work	
In	this	paper	we	presented	the	integration	of	two	powerful	tools	for	defining	SPARQL	queries	–	
Sparklis	and	ViziQuer	–	resulting	 in	a	multi-modal	system	that	allows	users	to	define	SPARQL	
queries	in	Sparklis	and	visualize	and	refine	them	in	ViziQuer.	We	described	the	implementation	
details	of	this	integration	and	demonstrated	it	with	SPARQL	queries	in	their	Sparklis	and	ViziQuer	
representation.	 The	 obtained	 results	 show	 that	 the	 visual	 query	 representation	 that	 is	 auto-
generated	from	the	technical	SPARQL	query	requires	some	cleaning	up	to	improve	its	usefulness	
for	the	potential	end-users.	Implementation	of	such	cleaning	is	left	to	future	work.	It	may	also	be	
worthwhile	 to	 consider	 making	 use	 of	 higher-level	 Sparklis	 concepts	 in	 the	 visual	 query	
generation.	While	it	is	essential	for	the	ViziQuer	tool	to	maintain	the	principle	of	generating	the	
visual	queries	 from	 their	SPARQL	encoding,	 incorporating	 some	 form	of	annotations	 into	 this	
encoding	could	 let	us	preserve	 the	principal	query	generation	architecture	and	still	 reach	 the	
necessary	effects	of	user-friendliness.	
The	core	of	the	Sparklis	and	ViziQuer	integration	described	in	this	paper	is	the	ability	of	the	

ViziQuer	tool	to	create	a	visual	representation	of	a	given	SPARQL	query.	This	feature	also	allows	
integrating	the	SPARQL	query	visualization	functionality	in	other	contexts	where	SPARQL	queries	
are	available.	The	technical	solution	of	invoking	ViziQuer	without	logging	in,	described	in	Section	
3,	can	be	used	to	support	such	visualizations.	It	could	also	be	useful	in	simpler	use	cases	where	a	
visual	query	environment	can	be	seamlessly	offered	to	the	users	for	visually	composing	queries	
over	a	given	SPARQL	endpoint.	
Other	potential	areas	for	future	exploration	are	the	integration	of	ViziQuer	and	Sparklis	in	the	

opposite	direction	 (from	ViziQuer	visual	notation	 to	Sparklis	queries),	which	would	require	a	
method	for	reverse	translation	of	SPARQL	queries	into	their	Sparklis	representation,	as	well	as	
the	integration	of	the	ViziQuer	SPARQL	visualization	functionality	with	other	Semantic	Web	tools.	
	 	

Acknowledgements	

This	work	 has	 been	 partially	 supported	 by	 a	 Latvian	 Science	 Council	 Grant	 lzp-2021/1-0389	
“Visual	Queries	in	Distributed	Knowledge	Graphs”.	

	
References	

[1] Soylu	A.,	Kharlamov,	E.,	Zheleznyakov,	D.,	Jimenez	Ruiz,	E.,	Giese	M.,	Skjaeveland,	M.G.,	
Hovland,	D.,	Schlatte,	R.,	Brandt,	S.,	Lie,	H.,	Horrocks,	I.	(2018).	OptiqueVQS:	a	Visual	Query	
System	over	Ontologies	for	Industry,	Semantic	Web	9(5),	627-660,	IOS	Press.	

[2] Vega-Gorgojo,	G.,	Giese,	M.,	Heggestøyl,	S.,	Soylu,	A.,	Waaler,	A.	(2016).	PepeSearch:	
semantic	data	for	the	masses.	PloS	one,	11(3),	e0151573.	
https://doi.org/10.1371/journal.pone.0151573	0151573	

[3] Khalili,	 A.,	 Merono-Penuela,	 A.	 (2017).	 WYSIWYQ–What	 You	 See	 Is	 What	 You	 Query,	
Proceedings	of	Voila	2017,	CEUR	Workshop,	1947,	123-130.	

[4] Ferré,	S.	(2017).	Sparklis:	An	Expressive	Query	Builder	for	SPARQL	Endpoints	with	
Guidance	in	Natural	Language.	Semantic	Web	8(3):	405-418.	IOS	Press.	

[5] The	LinDA	Query	Designer,	available	at					
https://2015.semantics.cc/sites/2015.semantics.cc/files/files/LinDAQueryDesigner.pdf	

[6] Haag,	F.,	Lohmann,	S.,	Siek,	S.,	Ertl,	T.	(2015).	QueryVOWL:	A	Visual	Query	Notation	for	
Linked	Data,	in	Gandon,	F.,	Guéret,	C.,	Villata,	S.,	Breslin,	J.,	Faron-Zucker,	C.,	Zimmermann,	
A.	(ed.),	Proceedings	of	The	Semantic	Web:	ESWC	2015	Satellite	Events.	ESWC	2015.	
Lecture	Notes	in	Computer	Science,	Vol.	9341.	Springer,	Cham,	pp.	387–402.	
https://doi.org/10.1007/978-3-319-25639-9_51.	

[7] Čerāns,	K.,	Šostaks,	A.,	Bojārs,	U.,	Ovčiņņikova,	J.,	Lāce,	L.,	Grasmanis,	M.,	Romāne,	A.,	
Sproģis,	A.,	Bārzdiņš,	J.	(2018).	ViziQuer:	A	Web-Based	Tool	for	Visual	Diagrammatic	
Queries	Over	RDF	Data,	in	Gangemi,	A.,	et	al.	(ed.),	Proceedings	of	The	Semantic	Web:	ESWC	
2018	Satellite	Events.	ESWC	2018.	Lecture	Notes	in	Computer	Science,	Vol.	11155.	
Springer,	Cham,	pp.	158–163.	https://doi.org/10.1007/978-3-319-98192-5_30	

[8] Čerāns,	K.,	Ovčiņņikova,	J.,	Grasmanis,	M.,	Lāce,	L.,	Romāne,	A.	(2021).	Visual	Presentation	of	
SPARQL	Queries	in	ViziQuer.	In	Voila!2021,	CEUR	Workshop	Proceedings,	Vol.3023	

[9] Čerāns,	K.,	Šostaks,	A.,	Bojārs,	U.,	Bārzdiņš,	J.,	Ovčiņņikova,	J.,	Lāce,	L.,	Grasmanis,	M.	and	
Sproģis,	A.,	(2018).	ViziQuer:	A	Visual	Notation	for	RDF	Data	Analysis	Queries.	In	Research	
Conference	on	Metadata	and	Semantics	Research.	Springer	CCIS,	Vol.846,	pp.50-62.	

[10] Vargas,	H.,	Aranda,	C.B.,	Hogan,	A.	(2019).	RDF	Explorer:	A	Visual	Query	Builder	for	
Semantic	Web	Knowledge	Graphs,	Proceedings	of	The	Semantic	Web	–	ISWC	2019	
Auckland,	New	Zealand,	October	26–30,	Proceedings,	Part	I.	Springer-Verlag,	Berlin,	
Heidelberg,	647–663.	https://doi.org/10.1007/978-3-030-30793-6_37	

[11] Aasman,	J.	(2017).	Graph	visualization	with	a	time	machine,	In	Dataconomy	August	29,	
2017,	available	at	http://dataconomy.com/2017/08/graph-visualization-time-machine/	

[12] Schweiger,	D.,	Trajanoski,	Z.,	Pabinger,	S.	(2014).	SPARQLGraph:	a	web-based	platform	for	
graphically	querying	biological	Semantic	Web	databases,	BMC	Bioinformatics	15,	279.	
https://doi.org/10.1186/1471-2105-15-279	

[13] e	Zainab,	S.	S.,	Saleem,	M.,	Mehmood,	Q.,	Zehra,	D.,	Decker,	S.,	Hasnain,	A.	(2015).	FedViz:	a	
Visual	Interface	for	SPARQL	Queries	Formulation	and	Execution.	In:	Proceedings	of	the	
International	Workshop	on	Visualizations	and	User	Interfaces	for	Ontologies	and	Linked	
Data	(VOILA	2015),	Bethlehem,	Pennsylvania,	USA.	CEUR	Workshop,	vol.	1456,	p.	49.	

	

