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Abstract
The area of product configuration has witnessed a growing demand for systems that can effectively guide users through the
configuration process. These systems facilitate interactivity during configuration by combining user actions with automatic
solving. In this paper, we present an API that fulfills the basic requirements of interactive configuration. Our implementation
is based on the OOASP framework for object-oriented configuration in Answer Set Programming (ASP), leveraging multiple
features of the ASP system clingo to dynamically introduce components.

1. Introduction
Product configuration has been one of the first successful
applications of Answer Set Programming (ASP [1, 2]) [3].
Nonetheless, more than 20 years later, its use in product
configurators is still challenging. One open challenge is
to allow for interactivity during configuration.

Industrial product configuration deals with large prob-
lems. For example, even small infrastructure projects may
contain thousands of components and hundreds of com-
ponent types. Such configurations are typically solved
step-by-step by combining interactive actions with au-
tomatic solving of sub-problems [4]. Configurator users,
such as engineers and sales people, expect a system that
guides them through the configuration process. Domain
experts provide the configuration model that defines such
a process and system.

Using a grounding-based formalism like ASP in this
context introduces the risk of a grounding bottleneck
[5] due to the large number of required components for
satisfying all requirements. The required domain size can
vary significantly and is not known beforehand, which
leads to the necessity of dynamically introducing new
components during the configuration process.

In this work, we present an Application Programming
Interface (API) to satisfy basic requirements for interac-
tive configuration [4]. Our implementation is based on
OOASP [6], a framework for representing object-oriented
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configurations in ASP. Additionally, we exploit multiple
features of the ASP system clingo1 [7] to provide interac-
tive functionalities.

After covering background on ASP, product configu-
ration and OOASP, and on our running example in Sec-
tion 2, we introduce our approach in detail in Section 3.
The paper concludes with a discussion in Section 4.

2. Background

2.1. Answer set programming
A logic program consists of rules of the form

a1;...;a𝑚 :- a𝑚+1,...,a𝑛,
not a𝑛+1,..., not a𝑜.

where each a𝑖 is an atom of form p(t1,...,t𝑘) and
all t𝑖 are terms, composed of function symbols and vari-
ables. For 1 ≤ 𝑚 ≤ 𝑛 ≤ 𝑜, atoms a1 to a𝑚 are often
called head atoms, while a𝑚+1 to a𝑛 and not a𝑛+1 to
not a𝑜 are also referred to as positive and negative body
literals, respectively. An expression is said to be ground,
if it contains no variables. As usual, not denotes (default)
negation. A rule is called a fact if 𝑚 = 𝑛 = 𝑜 = 1, nor-
mal if 𝑚 = 1, and an integrity constraint if 𝑚 = 0. In
what follows, we deal with normal logic programs only,
for which 𝑚 is either 0 or 1. Semantically, a logic pro-
gram induces a set of stable models, being distinguished
models of the program determined by the stable models
semantics [8].

To ease the use of ASP in practice, several extensions
have been developed. First of all, rules with variables
are viewed as shorthands for the set of their ground in-
stances. Further language constructs include conditional
literals and cardinality constraints [9]. The former are

1https://potassco.org/clingo
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of the form2 a:b1,...,b𝑚, the latter can be written as3

s {d1;...;d𝑛} t, where a and b𝑖 are possibly negated
(regular) literals and each d𝑗 is a conditional literal; s
and t provide optional lower and upper bounds on the
number of satisfied literals in the cardinality constraint.
We refer to b1,...,b𝑚 as a condition. The practical
value of both constructs becomes apparent when used
with variables. For instance, a conditional literal like
a(X):b(X) in a rule’s body expands to the conjunction
of all instances of a(X) for which the corresponding
instance of b(X) holds. Similarly, 2 {a(X):b(X)} 4 is
true whenever at least two and at most four instances
of a(X) (subject to b(X)) are true. More sophisticated
examples are given in Section 3.

A particular convenience feature are anonymous vari-
ables, denoted uniformly by an underscore ‘_’. Each
underscore in a rule is interpreted as a fresh variable.
In turn, atoms with anonymous variables are replaced
by new atoms dropping these variables; the new atoms
are then linked to the original ones by rules expressing
projections.

Multi-shot solving allows for solving continuously
changing logic programs in an operative way. In clingo,
this can be controlled via an API for implementing reac-
tive procedures that loop on grounding and solving while
reacting, for instance, to outside changes or previous solv-
ing results. This is supported by two directives. First, a
program can be partitioned into several subprograms by
means of the directive #program; it comes with a name
and an optional list of parameters. Such subprograms can
then be grounded upon demand and added to the solver.
Second, #external directives allow for declaring atoms
whose truth value can be set via the API and/or rules that
may be added later on. This allows us to continuously
assemble ground rules evolving at different stages of a
reasoning process and to change program behavior by
manipulating the truth values of external atoms via the
API.

Full details on the input language of clingo along
with various examples can be found in the Potassco User
Guide [10].

2.2. Product Configuration and OOASP
Product Configuration as an activity produces the spec-
ification of an artifact that is assembled from instances
of given component types and that conforms to a given
set of constraints between those components. Compo-
nent types can have attributes, thus components can be
parametrized. Furthermore, components are related to
each other via part-of or is-a relationships [11]. In most

2In rule bodies, they are terminated by ‘;’ or ‘.’ [10].
3More elaborate forms of aggregates are obtained by explicitly

using function (e.g. #count) and relation symbols (e.g. <=) [10].

configuration problems, a dynamic number of compo-
nents plays an important role [12].

OOASP4 [6, 13] is an ASP-based framework to encode
and reason about object-oriented problems such as con-
figuration problems. It defines a Domain Description
Language (DDL) specific to the domain of object-oriented
models that can be represented by a modelling language
corresponding to a UML class diagram. OOASP-DDL de-
fines ASP predicates to encode models (classes, subclass
relations, associations, and attributes) and instantiations
(instances, is-a relations, instance-level associations, and
attribute values). Furthermore, it provides a uniform way
to encode (built-in and user-specific) constraints.

Table 1 shows the OOASP-DDL predicates for the en-
coding of models, and Table 2 shows the OOASP-DDL
predicates for the encoding of instantiations.5

OOASP constraints are defined using the predicate
ooasp_cv (“cv” stands for “constraint violation”). Rules
with head atoms of this predicate are used instead of
ASP constraints to enable configurations to be checked,
i.e., to derive which constraints are violated in a given
configuration (Listing 4). To enforce a configuration to be
consistent, a simple ASP constraint forbidding ooasp_cv
to be true can be added. An ooasp_cv atom contains
four terms: a unique constraint identifier, the identifier of
the faulty object, a string containing a message describing
the issue, and a list of additional explanatory terms.

OOASP distinguishes integrity constraints from
domain-specific constraints. The former are defined in
the OOASP framework itself and refer to issues such as
invalid values and violations of association cardinalities.
Domain-specific constraints can be defined by a user of
OOASP in the same format.

An instantiation (configuration) defined by the pred-
icates from Table 2 is complete if every object is an in-
stance of an instantiable class, and it is correct if no
constraint violations can be derived from it. We follow
the convention that only leaf classes (i.e., classes that
have no subclasses) are instantiable, so every object must
be an instance of a leaf class in a complete configuration.

Configuration is usually an interactive task, iteratively
involving user interactions (decisions) and automatic rea-
soning by a solver, e.g., an ASP solver [4]. The goal of our
work is to support interactive configuration in a frame-
work based on OOASP, because we think that its natural
way of representing subclasses, parts hierarchies, rich el-
ement properties, and dynamically created configuration
instances allows for understandable and precise product
modeling.

4https://github.com/siemens/OOASP
5We here present a version of OOASP-DDL that has already

evolved from the original definition [6] and that has also been slightly
simplified for this paper.

https://github.com/siemens/OOASP


Table 1
OOASP-DDL predicates for the encoding of models

ooasp_class(C) C is a class
ooasp_subclass(SubC,SupC) SubC is a subclass of SupC
ooasp_assoc(A,C1,C1Min,C1Max,

C2,C2Min,C2Max)
A is an association in which each instance of the class C1 is associated to between
C2Min and C2Max instances of class C2, and each instance of C2 is associated
to between C1Min and C1Max instances of C1.

ooasp_attr(C,A,T) A is an attribute of class C with type T
ooasp_attr_enum(C,A,D) D is an element of the domain of attribute A of class C

Table 2
OOASP-DDL predicates for the encoding of instantiations

ooasp_isa(C,O) O is an object of class C
ooasp_isa_leaf(C,O) O is an object of leaf class C
ooasp_associated(A,O1,O2) Object O1 is associated to object O2 in association A
ooasp_attr_value(A,O,V) The attribute A of object O has value V

2.3. Running example
We use a typical hardware racks configuration problem
as the running example for this paper. For easier compar-
ison with non-incremental OOASP the running example
is an extension of the racks configuration paper used in
the original OOASP paper [6]. The UML class diagram
(Figure 1) shows all concepts and relations of the racks
knowledge base. This diagram was automatically gener-
ated by our Interactive API in integration with clingraph
[14] using a visualization encoding.

Additionally to the constraints implied by the UML
diagram, the following constraints hold for the domain:

• An ElementA/B/C/D requires exactly 1/2/3/4 ob-
jects of type ModuleI/II/III/IV

• Instances of ModuleI/II/III/IV must be required
by exactly one Element

• A SingleRack/DoubleRack has exactly 4/8 Frames
• A Frame containing a ModuleII must also contain

exactly one ModuleV

The running example captures the essence of a typical
configuration knowledge base in an industrial setting.
Of course, real life industrial knowledge bases are much
larger (>100 classes, associations, attributes). And the
constraints of the domain will vary considerable depend-
ing on additional requirements imposed by the customer,
regulations, geographic location, etc. Notice that the
knowledge base does not contain any restrictions on the
number of objects in a configuration or on the order in
which objects must be created.

Another property of these knowledge bases is that the
number of objects required for a solution is not known
beforehand. For example, suppose the user interactively
created 5 objects of type ModuleI. The user could assign
those modules to the same frame and assign the frame to

a rack. Or the user could assign the modules to different
frames and assign those to different racks. In any case, a
rack must be connected to at least four frames. Therefore,
the first configuration has 10 objects (5 modules, 4 frames,
1 rack), while the second, equally valid configuration has
30 objects (5 modules, 20 frames, 5 racks).

3. Interactive Configurator
Our Configuration API (CAPI) is implemented using
Python, relying heavily on multiple features provided by
clingo’s Python API, as well as the systems clorm6 and
clingraph. Clorm is a Python library providing an Object
Relational Mapping (ORM) interface to clingo, which we
use to map the OOASP predicates defining the knowledge
base and the configuration into Python classes. These
elements are then visualized as graphs (resembling UML
diagrams) using clingraph. For interactive configuration,
we created a scientific prototype User Interface (UI) using
ipywidgets that employed our CAPI functionalities.

The basic idea behind our approach is to modularize
the encodings so that the program can be built incre-
mentally as the number of instantiated objects in the
configuration increases based on user interaction. To
that end, we use the multi-shot capabilities of clingo
to solve these continuously changing logic programs.
This approach avoids re-grounding and benefits from
learned constraints by grounding and solving on demand.
More specifically, we defined subprograms that depend
on the identifier of each newly introduced object, namely
new_object. Therefore, whenever the domain size is
extended by a new object, all the rules referring to this
object are grounded. In this sense, our implementation

6https://github.com/potassco/clorm

https://github.com/potassco/clorm


Figure 1: Class diagram for the racks knowledge base generated by clingraph.

differs from the previous work [15], in which subpro-
grams were subject to domain-specific actions.

3.1. Interactive tasks
We introduce eight fundamental interactive tasks, derived
from [4] and adapted to our multi-shot setting, allowing
users to edit a partial configuration 𝒞𝒫 and construct a
complete configuration 𝒞𝒞 . First, the user can modify 𝒞𝒫
through the following interactive tasks:

T1. Setting and un-setting the type of an existing
object.

T2. Adding and removing associations between two
objects.

T3. Setting and un-setting values for attributes.

Such tasks are done using external atoms in clingo, so that
no re-grounding is required. Due to lack of space, we will
focus only on the encoding of task T3. Tasks T1 and T2
are encoded in a similar way. We show in Listing 1 how
the user input is handled for task T3. Line 1 corresponds
to clingo’s program directive indicating that the subpro-
gram depends on new_object. Thus, all the following
rules will be grounded on demand when a new object
is introduced. Lines 2 and 3 define an external atom
user(ooasp_attr_value(A,new_object,V)) for
each attribute A and value V of the new_object. Notice
that we need to generate all possible combinations
since the object can be assigned to any class. The truth
value of these externals will be set based on the user’s
selection. Finally, the rule in Lines 4 and 5 makes sure
that if the user selected a value for an attribute it will be
considered in the encoding.

T4. Extending the configuration with a new object.

As mentioned before, the grounding of subprograms
will exclusively occur when the user performs task T4.
Consequently, in the rest of the tasks the number of
objects will remain fixed. Note that the newly introduced

1 #program domain(new_object).
2 #external user(ooasp_attr_value(A,new_object,V)):
3 ooasp_attr_enum(_,A,V).
4 ooasp_attr_value(A,new_object,V) :-
5 user(ooasp_attr_value(A,new_object,V)).

Listing 1: User input

object will not have a type; its type will be set explicitly
by the user with T1 or by the system with T5.

Finally, we identified three reasoning tasks in which
solving is necessary.

T5. Using the current objects to generate 𝒞𝒞 from 𝒞𝒫
via choice rules.7

T6. Checking if 𝒞𝒫 is complete or if it violates any
constraints.

T7. Obtaining the list of available edit-options for the
user via brave reasoning.

These tasks are distinguished within the encoding via
externals. The truth values of these externals is con-
trolled internally depending on the task selected by the
user. In this case, one external atom guess states that
the guessing of objects’ types, associations and values is
active. Two additional externals check_permanent_cv
and check_potential_cv activate the integrity con-
straints for the two types of constraints. Constraints
are divided in this way, since we need to take into con-
sideration that we are building 𝒞𝒞 in an interactive and
incremental way, therefore some of these constraints
might be violated on 𝒞𝒫 but fixed once 𝒞𝒞 is reached.
The intuition for this decision can be taken from the
fields of Runtime Verification and Monitoring, where a
constraint is either satisfied, potentially violated (might or
might not remain a violation in the future) or permanently
violated (a violation in all possible futures). Potential con-
straint violations are those that can potentially be fixed by
adding more information in a later stage of the process.

7A choice rule is a rule with a cardinality constraint in the head.



1 1 { ooasp_attr_value(A,new_object,V):
2 ooasp_attr_enum(C,A,V) } 1 :-
3 ooasp_isa(C,new_object),
4 ooasp_attr(C,A,T),
5 ooasp_attr_enum(C,A,_),
6 guess.

Listing 2: Choice rule to guess the value of an attribute

1 :- ooasp_cv(CV,_,_,_),
2 not ooasp_potential_cv(CV),
3 check_permanent_cv.
4 :- ooasp_cv(CV,_,_,_),
5 ooasp_potential_cv(CV),
6 check_potential_cv.

Listing 3: Integrity constraints enforcing constraint
violations

For instance, a lower bound of an association that has
not been reached, or a value that is missing. These con-
straints are identified in the encoding with the predicate
ooasp_potential_cv. On the other hand, permanent
constraint violations refer to violations that can no longer
be fixed, such as upper bounds of an association or an
attribute value of a wrong type.

For task T5, guess, check_permanent_cv and
check_potential_cv are set to true in order to find a
complete and valid configuration 𝒞𝒞 . This is achieved by
using choice rules to generate possible values, types and
associations for the objects, which are activated by the
external guess. If no 𝒞𝒞 can be found with the current
number of objects the result of the task will be UNSATIS-
FIABLE. To illustrate this, Listing 2 shows the choice rule
to select a value for an attribute. The rule can be read as
follows: if the new object is of type C (Line 3), where type
C has an attribute A (Line 4) with some elements in the
domain (Line 5), and the guessing is active (Line 6), then
out of all the possible values for A choose a single value
V. Notice that this rule is also grounded incrementally
and uses the corresponding new_object.

For task T6, we set the externals
check_permanent_cv and check_potential_cv to
false so that all the ooasp_cv atoms are part of the
computed stable model, thus deriving the issues with
𝒞𝒫 . In Listing 3 we show the integrity constraints
handling the constraint violations, which are also
grounded incrementally. Lines 1 to 3 make sure
that no constraint violation is derived if the external
check_permanent_cv is true and the constraint
violation CV is not a potential but a permanent one.
Similarly, the second constraint (Lines 4 to 6) enforces
potential constraints when check_potential_cv is
true.

For task T7, we want to provide the user with valid
actions from T1, T2 and T3. To achieve this, po-
tential constraints are ignored by setting the external
check_potential_cv to false so that we allow con-

1 ooasp_potential_cv(no_val).
2 ooasp_cv(no_val,new_object,"Missing value for {}",(A,)) :-
3 ooasp_attr(C,A,T),
4 ooasp_attr_enum(C,A,_),
5 ooasp_isa(C,new_object),
6 not ooasp_attr_value(A,new_object,_).

Listing 4: Constraint violation of a missing value

straints of this type to be violated in 𝒞𝒫 while still getting
a satisfiable answer. However, the permanent constraints
should remain active since we want to discard anything
that can’t be fixed by further interaction with the system.
With this set, we use the brave reasoning capabilities of
clingo to obtain the union of all stable models, and thus,
all the possible options for types, values of attributes, and
associations.

As before, we use the attribute values to exemplify
the use of task T7 in Listing 4. The rule in Lines 2 to
6 derives the constraint violation no_val of having no
value set for an attribute. As expected, this is a potential
constraint (expressed in Line 1) since the user can later on
select the missing value. The constraint violation is then
derived for any attribute of the new_object that has no
corresponding value assigned via ooasp_attr_value.

Some other checks might depend on values that have
to be recomputed on every grounding step, such as
the arity of an association. In other words, if an ag-
gregate #count is used to compute the objects asso-
ciated to new_object , it will only count the objects
that are already grounded at that time. This means
that the arity computed in previous steps must be dis-
regarded. Therefore, we need an additional external
active(new_object) that indicates the current step
to know if the aggregate’s value is older and thus expired.
Notice that the current step corresponds to the object
identifier that is being grounded at that time.

T8. Extend 𝒞𝒫 incrementally to generate 𝒞𝒞

Given all these functionalities, finding the smallest 𝒞𝒞
that extends 𝒞𝒫 can be encapsulated into the combined
task T8. The program for task T8 will proceed following
an incremental approach: 𝒞𝒫 is extended with a new
object (T4) and then tries to generate 𝒞𝒞 (T5), these steps
are repeated until a 𝒞𝒞 is found.

3.2. Performance
Knowing about the huge solution space, we improved ef-
ficiency right from the beginning by including symmetry
breaking constraints which get rid of multiple symmetric
configurations. The two symmetries identified can be
found in Listing 5. Both symmetries correspond to
permutations of the classes assigned to objects. The
constraint in Lines 1 to 6 ensures that the classes
assigned to objects smaller than the new_object



1 :- ooasp_isa_leaf(C1,new_object),
2 ooasp_isa_leaf(C2,ID),
3 ID<new_object,
4 C1<C2,
5 not user(ooasp_isa_leaf(C1,new_object)),
6 not user(ooasp_isa_leaf(C2,ID)).

8 :- ooasp_isa_leaf(_,new_object),
9 not ooasp_isa_leaf(_,ID),

10 ooasp_isa(_,ID),
11 ID<new_object.

Listing 5: Symmetry breaking constraints

are also smaller. Notice that this is only applied to
decisions made by the solver, excluding assignments
made by the user (Lines 5 and 6). Otherwise the user
setting the class of an object (via T1) could lead to
unsatisfiability. The constraint in Lines 8 to 11 makes
sure that any objects left out from the configuration (with
no class assigned) are always those with larger ids. For
instance, the assignment {(1, 𝐶1), (2, undef), (3, 𝐶2)}
would be removed by the second constraint in
favor of {(1, 𝐶1), (2, 𝐶2), (3, undef)}. Similarly,
{(1, 𝐶1), (2, 𝐶2), (3, 𝐶1)} would not be valid due to
the first constraint, keeping the symmetric assignment
{(1, 𝐶1), (2, 𝐶1), (3, 𝐶2)}.

We performed some empirical tests in the system to
check the performance based on the running example
from Section 2.3. The aim of the first test was to gen-
erate a 𝒞𝒞 of size 41 with one RackSingle associated to
four Frames, each Frame with four associated Modules
with one corresponding Element. First, we extended 𝒞𝒫
with 41 objects via T4 where 18 of those objects were
selected to be of the Element class. Then we used task
T5 to find our expected 𝒞𝒞 . Overall, these steps took
7 seconds of grounding time and 3 seconds of solving.
At this point, any of the tasks T1, T2, T3, and T6 can
be done without delay. However, obtaining the list of
options with task T7 didn’t finish within 5 minutes. This
happened since the number of valid options is quite large
when a user has 23 objects without an associated class.
In practice we expect this to decrease with a more tightly
defined 𝒞𝒫 during the interaction. As a second test, we
analyzed task T8 by creating 𝑛 Element instances and
finding incrementally the corresponding 𝒞𝒞 . The results
can be found in Figure 2a for 𝑛 ∈ {8, 9, 10}. When we
increased 𝑛 to 11, the task didn’t finish within a 5 minute
time out. Looking closely at the performance for 𝑛 = 9
in Figure 2b, we can see that the issue lies on having to
prove unsatisfiability for domain sizes 9 to 22. Proving
unsatisfiability implies going trough all the search space
to make sure there is no answer, which is quite costly as
the domain increases. In our test, this is the case when
trying to find a non-existing 𝒞𝒞 with a domain size of 22
objects. This was not the case in our previous test where
we have all the required objects to obtain a satisfiable

answer in a single call, comparable to the solving time
taken for domain size 23 in Figure 2b.

3.3. User Interface Prototype
To give an impression of our prototype, we include
screenshots (Figures 3,4) of the UI rendered in a Jupyter
notebook for the racks examples from Section 2.3. This
UI has 6 sections. The section on the upper left corner
shows the current 𝒞𝒫 using clingraph. To the right, the
history of actions taken by the user is rendered as a list
in the History section. In our example, the user started
with the first two actions being the extension of the do-
main by two new objects. This is done via the button
in the Extend section below, corresponding to task T4.
Then, in steps 3 and 4, the user assigned classes to ob-
jects 1 and 2, respectively, using the Edit section. This
section employs T7 to generate a dropdown for each ob-
ject with the list of possible options (T1, T2, T3). Step 5
corresponds to T6, triggered by clicking the button in the
Check section. This action prints in red the constraint
violations found for each object. In this case, Object 2 (the
frame) violates the missing value constraint from List-
ing 4 and the lower-bound constraint, since it should be
associated with one rack. Similarly, Object 1 (the instance
of RackSingle) is violating the lower-bound constraint,
as well as a domain-specific constraint enforcing it to be
associated to exactly 4 frames. For the last task, namely
T5, the user must work on the Browse section of the UI.
By clicking the button labeled “Next solution”, the system
would perform task T5. However, since there is no 𝒞𝒞
with the current number of objects it would get an error.
As mentioned before, this is overcome by extending 𝒞𝒫
incrementally, which is done by task T8 in step 6 when
the user clicks on “Find incrementally” (Figure 4). As
a consequence, the system will internally find 𝒞𝒞 and
render it in the bottom right. In this clingraph image,
the values from 𝒞𝒫 will appear in green. As a next step,
the user could either browse through all the possible 𝒞𝒞
of the same size, or select the current 𝒞𝒞 as the new 𝒞𝒫
to be to be further edited. Notice that while browsing,
no options are shown in the Edit section. This happens
since we have a single clingo control object which is cur-
rently in the middle of solving, thus, it can’t generate the
brave consequences of T7.

4. Discussion
In this paper, we have presented an interactive config-
urator that enables engineers and salespeople, among
other configurator users, to incrementally build configu-
rations. Our contribution involves the development of an
API built upon the OOASP framework and the clingo sys-
tem. The OOASP framework provided us with a domain



(a) Times starting from 8, 9 and 10 Elements. (b) The times for each call to task T5 for the given domain size,
starting from 9 Elements.

Figure 2: Times for task T8 (Extending incrementally)

Figure 3: UI for interactive configuration generated with ipywidgets rendered in a Jupyter notebook.

description language to encode models, instances, and so-
lutions, while clingo’s multi-shot capabilities allowed us
to dynamically extend the configuration by adding com-
ponents on demand. The integration of this multi-shot
approach to interactive configuration distinguishes our
approach from previous work.

To fulfill the basic requirements of interactive config-
uration, we identified and implemented eight distinct
tasks, which we described in detail. To demonstrate the
functionality of our API, we developed a prototype user
interface and showcased the step-by-step creation of a
configuration using our running example. As the UI is



Figure 4: UI for interactive configuration generated with ipywidgets rendered in a Jupyter notebook. Where the user is
browsing the extensions for 𝒞𝒫 into 𝒞𝒞 .

currently in a prototypical stage, gathering real user feed-
back remains a future goal for subsequent versions of
the system. To assess the performance of the system, we
conducted empirical tests and identified the need for fur-
ther improvements. In particular, we boosted efficiency
by incorporating symmetry-breaking constraints.

However, we also encountered performance issues
with our incremental approach when dealing with larger
instances, which warrants future research. More specifi-
cally, we plan to explore alternative methods for extend-
ing the configuration beyond the one-by-one incremental
process. For instance, we are interested in investigating
scheduling techniques [16] and pre-computing the min-
imal number of required objects [17]. Additionally, we
aim to enhance usability by incorporating additional ad-
vanced features, such as linear domains, which enable
more sophisticated reasoning in the configuration pro-
cess.
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