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Abstract

Knowledge-based configuration tasks are often solved on the basis of constraint programming. Using constraint programming
requires technical expertise regarding problem specification and - to some extent — also solution search, for example, in
terms of being confronted with the definition of search heuristics. In this paper, we show how to apply database queries to
solve knowledge-based configuration tasks. Using this approach, configuration tasks can be defined and solved without the
need of integrating a potentially new technology, but rather stick with technical infrastructures (i.e., relational databases)

already existing in the company.
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1. Introduction

Constraint programming (CP) [1] is based on the idea of
defining a set of problem variables, variable domains, and
related restrictions (constraints) and solving the problem
using on a constraint solver. As such, this technology is
often used for solving configuration tasks [2, 3]. There
are further approaches used for configuration knowledge
representation. For example, SAT solving [4] is based on
the idea of representing a configuration task by set of
Boolean variables where each variable represents a vari-
able domain value in the general constraint satisfaction
problem, for example, car color red is a domain value
of the variable color. In the SAT context, red would be
regarded as variable with the domain {true, false}. In
addition, answer set programming (ASP) is based on a
more object-oriented view on configuration knowledge
representation [5] where on the reasoning level, ASP
programs are solved using SAT solvers.

All these types of knowledge representation require ad-
ditional expertise in at least one of the areas of constraint
programming or SAT solving. Furthermore, additional
investments are needed to increase CP-related knowl-
edge of employees which is a major precondition for
making underlying technologies applicable for configu-
ration knowledge representation and reasoning. On the
other hand, relational database technologies and related
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query languages are wide-spread in industrial software
development projects. Our idea is to exploit the same
technologies in a different form for the representation
and solving of constraint-based configuration tasks. In
this paper, we provide an overview of different types of
knowledge representations and corresponding database
queries that can be used to support configuration tasks.
We focus on specific database queries which can be re-
garded as a conjunction of the individual constraints of
a corresponding constraint satisfaction problem.

The contributions of this paper are the following: (1)
we introduce the idea of a configuration task and a cor-
responding configuration defined and determined on the
basis of the concepts of database queries. (2) we discuss
the results of performance evaluations with existing con-
figuration benchmark knowledge bases.

The remainder of this paper is organized as follows. In
Section 2, we introduce an example of a car configuration
task defined in terms of a constraint satisfaction problem
(CSP). In Section 3, we introduce a database query based
definition of a configuration task and discuss possibilities
of table-based configuration knowledge representations.
Thereafter, in Section 4 we provide a performance com-
parison between database query based and constraint
solving based configuration. Threats to validity are dis-
cussed in Section 5. Finally, the paper is concluded with
a summary of open research issues in Section 6.

2. Example Configuration Task

Following the concepts of constraint programming [1],
a configuration task can be defined in terms of (1) finite
domain variables v; € V = {v;..,} (including the corre-
sponding domain definitions dom(v;)) describing prod-
uct properties and user preferences and (2) constraints
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Table 1

Implicit configuration space description where each (CSP) variable v; € V'is represented by a single table with one attribute
val and the table entries derived from dom(v;), for example, variable type is represented by the corresponding table type. The
corresponding database query has to take into account all constraints in C.

table type fuel skibag | 4wheel pdc
attribute val val val val val
domain city,limo,combi,xdrive | 4l,61,101 | yes,no yes,no yes,no

C = CF u CR representing product domain-specific con-
straints CF and customer requirements CR [2].

A simplified example of a car configuration task is
the following where type represents the car type, fuel
represents the average fuel consumption, skibag indicates
the availability of a skibag, and pdc represents a parc
distance control feature. In this example, the product
domain specific constraints are CF = {c;..cs} and the
customer requirements are CR = {cg..co} which can be
specified in a complete (all variables in V' have a value)
or incomplete fashion.

« V={type, fuel, skibag, 4wheel, pdc}

« dom(type) = {city, limo, combi, xdrive}. dom( fuel)
= {4l 6L, 10l}. dom(skibag) =  {yes,no}.
dom(4wheel) = {yes, no}. dom(pdc) = {yes, no}.

o CF={c; : 4wheel = yes — type = xdrive,c, :
skibag = yes — type # city,cs : fuel = 4l —
type = city,cq : fuel = 6] — type # xdrive,cs :
type = city — fuel # 101}

o CR ={cs : 4wheel = yes,c; : fuel = 6l,cg
type = city,cq : skibag = yes}

Based on this example CP-based configuration task
representation, we will now discuss in more detail differ-
ent options to represent and solve a configuration task on
the basis of a corresponding database query definition.

3. Database Query Based
Configuration

Representing a configuration task on the basis of a
database query allows for the application of relational
database technologies for determining corresponding
configurations (solutions). We now introduce a defini-
tion of a configuration task on the basis of a database
query setting Pj¢|S (see Definition 1). In this context, P
can be (1) a set of tables where each table represents one
v; € V (“one table per variable” representation), (2) one
table including “all possible configurations” (solutions),
and (3) a set of tables representing tuples consistent with
individual constraints in ¢; € C (“local consistency”). Fur-
thermore, [C] is the set of constraints representing the
selection criteria of the database query. Finally, Sincludes
those variables v; € Vrepresenting the projection criteria

of the query, i.e., those variable values that should be
shown as result of the configuration task.

Definiton 1 (Configuration Task). A configuration
task can be defined as database query Pj)S. In this con-
text, P represents all possible configurations in tabular
form (explicitly or implicitly) and [C] represents the se-
lection criteria of the query in conjunctive form, i.e.,
/\(C,EC) ¢;. Furthermore, S represents the projection at-
tributes (variables). In this context, C = CR u CF with
CR representing the given customer requirements and
CF representing product domain-specific constraints.

Given such a definition of a configuration task, we are
now able to introduce the definition of a configuration
(see Definition 2).

Definiton 2 (Configuration). A configuration for
configuration task is one tuple of a result of executing a
database query P[¢|S using the selection criteria in C and
the projection attributes (variables) in S.

Based on Definitions 1-2, we now discuss different
ways of representing configuration knowledge in a tabu-
lar fashion. The chosen type of knowledge representation
has an impact on the way the corresponding database
query has to be formulated - for demonstration purposes,
we will include related examples.

(1) “One Table per Variable”. Using this represen-
tation, configuration knowledge is expressed in terms
of tables (representing individual CSP variables) — see
Table 1. For example, the CSP variable type is rep-
resented by table type with the attribute val having
the CSP variable domain expressed by individual tuples
{(city), (limo), (combi), (xdrive)}. Following this type of
representation, the database (SQL) query Pc—crycr)S for
our car configuration task is the following (see Query 1).

1. SELECT * FROM type,fuel,skibag, 4wheel,pdc
WHERE (not 4-wheel.val=yes or type.val=xdrive)
and .. and (skibag.val=yes).

In this example, we assume that S includes all variables
in Vand P is regarded as implicit representation of the
Cartesian product ty pex fuelxskibagxdwheelx pdc.' Table
2 shows one configuration returned by Query 1. The

'We want to assure that at most one tuple is returned by a query -
to support this, we assume a query setting such as LIMIT=1 (this is
database-specific).



configuration includes the pdc feature, i.e., pdc.val = yes
(this attribute has not been specified by the user).

Table 2
Configuration determined by Query 1.
table type fuel | skibag | 4wheel | pdc
val xdrive 6l yes yes yes

Note that if we are interested only in specific attribute
values, the query projection has to specify those at-
tributes, for example, since 4wheel, fuel, type, and skibag
have already been specified as customer requirements,
only pdc needs to be included (see Query 2).

2. SELECT DISTINCT pdc.val
FROM type, fuel, skibag, 4wheel, pdc
WHERE (not 4-wheel.val=yes or type.val=xdrive)
and .. and (skibag.val=yes).

Example Query Optimization. Possibilities of improv-
ing the performance of such queries are (1) to reduce
variable domains in terms of assuring node consistency
(e.g., each value of the domain of the variable type must
be consistent with each unary constraint referring to
this variable). (2) queries can be “enriched” by including
so-called no-goods (conflict sets) [6] in negated form -
the determination of possible conflicts must also be per-
formed in a pre-calculation step. (3) It is also possible to
further restrict variable (attribute) domains by establish-
ing arc consistency within a pre-calculation step.

(2) “All Possible Configurations”. Specifically for
small configuration problems with a limited configura-
tion space size there is also the possibility of just enu-
merating all possible configurations and storing those
configurations in a corresponding table (see, e.g., Table
3). Such an enumeration can be performed on the basis
of a database query P|cp)S where Pis a table that includes
all possible configurations and CF represents the set of
domain-specific constraints.

Table 3

Explicit configuration space description in one table Pinclud-
ing the CSP variables v, € Vas table attributes. The correspond-
ing database query has to take into account the constraints
in CR (CFis already taken into account in P).

[ type [fue[ [ skibag [ 4wheel [ pdc ]

xdrive 6l yes yes yes
xdrive 6l yes yes no
city 4l no no no

Following this knowledge representation, the database
query in the context of our car configuration task is the
following (see Query 3). In this example, we again as-
sume that S includes all CSP variables. Furthermore, P

represents a table that includes all (pre-generated) possi-
ble configurations.

3. SELECT * FROM P

WHERE (4-wheel=yes) and .. and (skibag=yes).
Table 4 shows one configuration returned by Query 3.

Table 4
Configuration determined by Query 3.

[ type [ fuel [ skibag [ 4wheel [ pdc ]
[xdrive[ 6l [ yes [ [ yes ]

yes

Example Query Optimization. A basic approach to in-
crease query efficiency is to reduce the number of table
entries in P. For example, instead of having one cen-
tralized table, we could introduce one table per car type
which is reasonable if the user is sure about the car type
selection and just wants to configure the remaining pa-
rameters. If we want to generate a table just for the car
type city, this could be performed on the basis of the

query P[CFU{[ype:city}] S.

(3) “Local Consistency”. An alternative to the pre-
viously discussed knowledge representations is to use
tables that represent local consistency properties. For ex-
ample, the constraint ¢; : 4wheel = yes — type = xdrive
can be represented by a corresponding consistency table
(variant table [7]) c1 expressing all possible combinations
of variable values of 4wheel and type as specified by the
corresponding constraint ¢; (see Table 5).

Table 5

Implicit configuration space description representing locally
consistent variable value combinations (Table c7) — in this case,
combinations specified by ¢; : 4wheel = yes — type = xdrive.

yes xdrive
no xdrive
no city
no limo
no combi

In a similar fashion, we can define a consistency table
c2 expressing the possible variable value combinations
as defined by constraint c, (see Table 6). This procedure
needs to be performed for each constraint ¢; € CF.

This way, we are able to specify tables fulfilling the
property of arc consistency since only variable values
are included which are part of at least one tuple included
in the corresponding consistency table. Following this
knowledge representation, the database query in our car
configuration task is the following (see Query 4).

4. SELECT * FROM cl1, c2,
WHERE c1.type = c2.type AND ..



Table 6

Implicit configuration space description representing locally
consistent variable value combinations (Table ¢2) - in this case,
combinations specified by ¢, : skibag = yes — type # city.

yes xdrive
yes limo
yes combi
no xdrive
no limo
no combi
no city

In this setting, we again assume that S includes all
variables. Furthermore, P can be regarded as the table
related to the equi-join of all generated consistency ta-
bles, i.e., c1 X c2 X ¢3 X c4 X ¢5 in our case where table
ci represents the corresponding constraint ¢; € CF. In
this context, join conditions have to be integrated in the
query for every combination of consistency tables where
there is an overlap in terms of the included attributes. For
example, consistency tables c1 and c2 both include the
type attribute. Consequently, 4wheel.type = skibag.ty pe
has to be included as join condition into the query. Table
7 shows the complete set of (partial) configurations re-
turned by Query 4 if we assume that only Tables c1 and
c2 have been defined and included into the query.

Table 7
Partial configurations determined by Query 4.

[ 4wheel [ type [ skibag ]

yes xdrive yes
yes xdrive no
no xdrive yes
no xdrive no
no city no
no limo yes
no limo no
no combi yes
no combi no

Example Query Optimization. Following the idea of k-
consistency in constraint-based reasoning [1], the number
of tuples in a consistency table can be further reduced.
For example, if the car type city is included in Table c1
but there does not exist a tuple in ¢2 with type = city,
all tuples of c1 including city can be removed as well.
Formulated differently, we could check each entry of each
consistency table for the existence of a solution which
can lead to a further reduction of the number of tuples in
the existing consistency tables. Following this idea, we
are able to guarantee global consistency [1] meaning that
each consistency table only includes tuples which are part
of at least one configuration. Furthermore, as a result of
related work [8], the inclusion of negative consistency

tables and/or tables representing conflicts could make
sense to further improve database query efficiency.

4. Initial Performance Analysis

We compared the performance of the three discussed ap-
proaches for representing configuration tasks as database
query with constraint solving on the basis of five real-
world feature models [9, 10] selected from the S.P.L.O.T.
feature model repository [11]. Table 8 provides an
overview of selected feature models. Due to space com-
plexity, not all configurations could be determined for
TTax and FQAs within reasonable time limits.

For each feature model, we randomly synthesized? and
collected 25,000 user requirements that cover 40% of the
leaf features in the feature model. We applied the system-
atic sampling technique [12] to select 10 no-solution user
requirements and 10 user requirements with at least one
solution. In Table 9, each setting shows the average run-
time of the corresponding approach after executing the
queries on the basis of these 20 user requirements. We
used Choco Solver® and HSQLDB* as an in-memory re-
lational database management system. All experiments
were run with an Apple M1 Pro (8 cores) with 16-GB
RAM, and an HSQLDB maximum cache size of 4GB.

Table 9 shows the results of this evaluation of selected
feature models represented as (1) an explicit enumeration
of all possible configurations, (2) an implicit representation
of the feature model configuration space (one table per
variable), (3) an implicit representation where individual
tables represent local consistency, and (4) constraint satis-
faction problem (CSP). Corresponding evaluation results
show similar runtimes for small models and significantly
longer runtimes for more complex models. Basically, the
results of our performance evaluation show the applica-
bility of database query based configuration approaches.

Table 8

Feature models used for evaluation purposes (IDE=IDE prod-
uct line, DVS=digital video system, DELL=DELL Laptops,
MTT=Model transformation taxonomy, FQAs=Functional
Quality Attributes, FM=feature model, F= features, LF=leaf
features, HC=hierarchical constraints, CC = cross-tree con-
straints, and CONFS = configurations).

[FM [ IDE [ DVS [ DELL | MTT [ FQAs |
#F 14 26 47 88 178
#LF 9 16 38 55 124
#HC 11 25 16 54 92
#CC 2 3 105 0 9
#CONFS 30 22,680 | 2,319 - -

*To ensure the reproducibility of the results, we used the seed value
of 141982L for the random number generator.

3choco-solver.org

*hsqldb.org



Table 9

The average runtime (msec) of database query and constraint-
based configuration (FM = feature model, ALLC = all config-
urations (no optimization), OTV = one table/variable (with
node consistency), OTC = one table/constraint (with arc con-
sistency), and CSP = constraint satisfaction problem).

[FM [ IDE | DVS [ DELL | MTT | FQAs |
ALLC [ 0.05 [ 3.66 [ 144 - -
OTV [ 049 | 045 [ 253 | 1,448 | 301,541
OTC [ 051 | 078 [ 332 | 704 [ 220922
CsP o073 ] 078 [ 109 | 119 243

5. Threats to Validity

We have shown how to apply database queries to the
identification of configurations. In a performance analy-
sis, we compared the runtimes of database queries with
the Choco constraint solver. Related results show the
basic applicability of our approach, however, further eval-
uations and optimizations are needed - specifically with
industrial datasets. Our focus in this paper is a discussion
of basic alternative knowledge representation approaches
that can be used as a basis for defining database queries.
We are aware of related work focusing on compression as-
pects when supporting configuration with variant tables
- see, for example, Haag [7]. A major issue for our future
work will be to understand the possibilities of knowledge
compression depending on the used knowledge repre-
sentation. Finally, integrating machine learning with
constraint solving is a relevant topic [13] - a major goal
for future work is to analyze related application poten-
tials in the context of database queries [14].

6. Conclusions and Future Work

We have introduced a database query based approach to
constraint-based configuration. With this, we provide
an alternative to approaches such as SAT solving and
constraint solving. For sure, further evaluations need to
be performed and the proposed queries have to be further
optimized for more complex industrial scenarios.

Open issues for future related work are the following:
(1) further evaluations on the basis of industrial configu-
ration benchmarks, (2) comparison with other knowledge
representation and reasoning approaches such as answer
set programming (ASP) and SAT solving, (3) performance
improvements through parallelization approaches (e.g.,
[15]), (4) understanding in more detail how constraint-
based reasoning and database queries can profit from
each other, for example, in which way could forward
checking be applied in database queries and in which
way can techniques from relational databases be useful
in the context of SAT and constraint solving, and (5) we
are interested in which way machine learning and knowl-

edge compression can be used and combined to increase
database query efficiency.
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