
Game-based Configuration Task Learning with ConGuess:

An Initial Empirical Analysis

Andreas Hofbauer1,*, Alexander Felfernig1

1Graz University of Technology, Inffeldgasse 16b, Graz, 8010, Austria

Abstract
The concepts and semantics of constraint solving and configuration need to be understood in order to be able to develop
one’s own configuration knowledge bases. Developing a related basic understanding is in many cases quite challenging.
Consequently, further support is needed that makes the learning of configuration knowledge representation practices and
semantics less effortful. In this paper, we provide a short overview of ConGuess which is a game-based learning environment
for constraint-based configuration tasks. In this context, we report the results of a user study which focused on an analysis of
the perceived complexity of different constraint types and on a corresponding usability analysis.

Keywords

Knowledge-based Configuration, Constraint Solving, E-Learning, Gamification

1. Introduction

Assuring the correct understanding of configuration
knowledge representations and corresponding semantics
is an important issue specifically in industrial configu-
ration settings. Such an understanding can be regarded
as a precondition for successful configurator develop-
ment and maintenance [1, 2, 3]. Following the basic idea
of gamification-based learning [4], we have developed
ConGuess [5] which is an application supporting the
learning of the semantics of constraint satisfaction prob-
lems (CSP) [6] in a gamification-based fashion.

The overall idea of ConGuess is to pre-generate con-
figuration tasks (represented as CSPs) and let users (game
players) try to figure out correct solutions for the defined
tasks. With this, ConGuess follows the idea of earlier
related work focusing on the learning of graphical con-
figuration constraints (specifically, incompatibility con-
straints) and the concepts of hitting sets in model-based
diagnosis (specifically, minimal food item sets that cover
all relevant vitamins) [7, 8, 9].

Also in this line of research, Jefferson et al. [10] present
the application Combination which supports the learn-
ing of configuring color ray emitting wooden pieces such
that no color array hits a wooden piece of different color.
Compared to related work, ConGuess extends the ex-
pressivity of constraint representations and also includes

ConfWS’23: 25th International Workshop on Configuration, Sep 6–7,
2023, Málaga, Spain
*Corresponding author.
$ andreas.hofbauer@student.tugraz.at (A. Hofbauer);
alexander.felfernig@ist.tugraz.at (A. Felfernig)
� https://felfernig.ist.tugraz.at/ (A. Felfernig)
� 0000-0003-2956-3862 (A. Hofbauer); 0000-0003-0108-3146
(A. Felfernig)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

a gamification-based approach that can help to increase
user engagement.

The contributions of this paper are the following: (1)
we provide a short introduction to the ConGuess gaming
app, (2) we report the results of an initial complexity and
usability analysis that has been conducted in an Artificial
Intelligence university course, and (3) we discuss different
open issues for further related research.

The remainder of this paper is organized as follows. In
Section 2, we provide a short overview of the ConGuess
app specifically introducing the major idea behind. There-
after, in Section 3, we discuss first insights regarding the
perceived complexity of different constraint types. In
Section 4, we report results regarding the usability of
ConGuess. In Section 5, we discuss potential threats
to validity. The paper is concluded with a discussion of
open research issues in Section 6.

2. The ConGuess Game

In the line of related research (e.g., [7]), ConGuess is pro-
vided as Android app1 which includes mechanisms for
automated CSP generation and evaluation of solutions.2

In ConGuess, players have to solve pre-generated CSPs
[6] which are represented in terms of a set of Variables 𝑉
with related domain definitions and a corresponding set
of constraints (𝐶). The task of players is to identify solu-
tions (configurations) that satisfy all given constraints.

ConGuess supports different game levels where with
an increasing level the corresponding CSPs become more
difficult to solve. For solving configuration tasks (CSPs),
players (users) have a pre-defined time limit. For each cor-
rectly solved CSP, players receive corresponding points

1See play.google.com.
2We apply the constraint solving library Choco (choco-solver.org).

mailto:andreas.hofbauer@student.tugraz.at
mailto:alexander.felfernig@ist.tugraz.at
https://felfernig.ist.tugraz.at/
https://orcid.org/0000-0003-2956-3862
https://orcid.org/0000-0003-0108-3146
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

(a) A simple configura-
tion task (CSP).

(b) A more complex
configuration task.

Figure 1: ConGuess: configuration task user interface.

which increases their overall game score. If a player pro-
poses a configuration inconsistent with the given set of
constraints, his/her score is not reduced and further tries
are possible. With an increasing number of unsuccessful
tries, the number of points that can be received for a cor-
rect solution gets decreased. Finally, the game provides a
global highscore ranking which helps to further motivate
users to improve their personal highscore.

A screenshot of ConGuess in action is provided in
Figure 1 which depicts two different configuration tasks
(a more simple one on the left hand side and a more
complex one on the right hand side). The value of each
corresponding variable has to be specified individually
indicated by the select button. A major objective of the
app is to make the configuration task representation as
understandable as possible. For this reason, the overall
rule of the app in terms of information visualization is
that each configuration task fits into the screen without
the need of scrolling.

As mentioned, constraint satisfaction problems (CSPs)
in ConGuess are pre-generated. The consistency of in-
dividual configuration tasks (CSPs) is checked with the
Choco constraint solver. If a generated configuration
task (variables and corresponding constraints) is consis-
tent, the corresponding setting is stored for further usage
(as configuration task given to players). Player-proposed
solutions as well as generated configuration tasks are
checked for consistency using Choco.3

3Details on the ConGuess constraint solving and configuration task
generation approach can be found in Hofbauer and Felfernig [5].

3. Complexity of Constraint Types

Our goal was to better understand in which way differ-
ent types of constraints are understood by players. In
order to achieve this goal, we performed a user study
with 150 bachelor students engaged in an Artificial In-
telligence course at the Graz University of Technology.
Best-performing students had the chance to achieve ad-
ditional bonus points considered then as a part of the
overall evaluation. In total, 780 game sessions have been
completed within the scope of the user study resulting
in an average number of 5.2 gaming sessions per study
participant (with an average of 6 levels per session).

In each ConGuess session, correct and wrong guesses
were tracked in combination with the corresponding con-
figuration task shown to the player. The error rate𝑅𝑒𝑟𝑟𝑜𝑟

of specific configuration tasks (CSPs) was tracked follow-
ing the metric shown in Formula 1. In this context, 𝑛𝑡𝑜𝑡𝑎𝑙

is the total amount of guesses and 𝑛𝑒𝑟𝑟𝑜𝑟 is the amount
of wrong guesses for a CSP.

𝑅𝑒𝑟𝑟𝑜𝑟 =
𝑛𝑒𝑟𝑟𝑜𝑟

𝑛𝑡𝑜𝑡𝑎𝑙
(1)

Within the scope of our study, we compared different
configuration task types with regard to their understand-
ability: configuration tasks (1) consisting of equality and
inequality constraints, (2) consisting of constraints in-
cluding a range restriction, i.e., <,>,≤,≥, (3) with impli-
cations (requires) and equivalences, and (4) with different
numbers of constraints and variables.

In a first step, we focused on the analysis of single-
constraint configuration tasks, i.e., configuration tasks
with only one constraint included (|𝐶| = 1). Tables
1–5 include example constraints which represent a cor-

responding analysis class, for example, the constraint
𝑋1 = 𝑋2 in Table 1 represents a configuration task
with a singleton constraint of type equality constraint.
Similarly, the first constraint in Table 2 represents a con-
figuration task with a single constraint of type <.

Equality and Inequality Constraints. First, we have
analyzed player failure rates when being confronted with
singleton equality and inequality constraints. The corre-
sponding 𝑅𝑒𝑟𝑟𝑜𝑟 rates are depicted in Table 1. As can be
immediately seen, the error rates for such constraints are
rather low (on an average, below 5%) indicating a high
degree of understandability in the reported basic setting.

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

X1 = X2 4.08
X3 != X2 2.11

Table 1

Error rates of binary (in-)equality constraints.

Range Restriction Constraints. In the next step, we
analyzed the understandability of range restriction con-
straints (<, >, ≤, ≥) (see Table 2). Compared to settings
including the < and > operators, error rates significantly
increase with settings including≤ and≥ operators. One
way to explain this significant difference is the increased
complexity of {≤,≥} due to the fact that both dimen-
sions, inequality and equality have to be taken into ac-
count at the same time.

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

X3 < X4 8.41
X1 > X2 4.90
(X2 + 1) > X3 7.37
X3 ≤ X2 20.49
X2 ≥ X1 13.50

Table 2

Error rates of binary range restriction constraints.

Requires and Equivalence Constraints. In this con-
text, we have compared the understandability of individ-
ual implications (requires) and equivalences (see Table
3). We can see that equivalence constraints have slightly
lower error-rates than requires constraints. This is a re-
sult that has also been confirmed by a previous study of
Felfernig et al [3]. One way to explain this difference is
a potentially higher overhead induced by the analysis
of implications since equivalences can be reduced to set-
tings where both sides of the logical operator must have
the same logical value. Further related work on model
understandability can be found in Sepasi et al. [11] where
cognitive complexity is also measured on the basis of eye
tracking technologies.

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

(X2 = X4) ↔ (X1 < X3) 8.05
(X1 > X3) ↔ (X1 < X2) 17.39
(X3 != X2) → (X4 != X2) 18.06
(X1 > X3) → (X1 < X2) 20.53

Table 3

Error rates of requires and equivalence constraints.

Number of Constraints. When using {→,←} in-
stead of↔ for expressing equivalence knowledge, we
need twice the amount of constraints. As could be ob-
served in our analysis, an increasing number of con-
straints leads to increasing error rates due to a lower
understandability of the configuration task (see Table 4).

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

c1: X1 > X2
4.90

c2: X2 = X3
c1: X1 ≥ X2

17.12c2: X1 > X4
c2: X3 > X2
c1: X1 != X3

36.87
c2: X2 > X3
c3: X4 ≤ X1
c4: X3 < X4

Table 4

Error rates with an increasing number of constraints.

N-ary Constraints. The highest error-rates in our
study were encountered with constraints involving more
than 2 variables. As we can see in Table 5, even config-
uration tasks with |𝐶| = 1 are already difficult to solve
for players, if the number of included variables is greater
than 2. Furthermore, by increasing the number of con-
straints in a configuration task, it becomes extremely
challenging for players to find a consistent solution.

𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠) avg. 𝑅𝑒𝑟𝑟𝑜𝑟 in %

c1: X3 ≤ (X1 + 3) = (X2 - 2) 20.13
c1: X3 ≤ (X4 + 4)

72.12
c2: X4 < X1 ≤ X3
c1: X3 ≥ X1 ≤ X2

73.02c2: (X1 · 2) > X2
c3: X3 < X2
c1: X4 != (X3 + 3) < X1

84.68
c2: (X4 - 2) ≥ X1
c3: X1 < (X3 · 3)
c4: X4 != (X1 + 3)

Table 5

Error rates with n-ary constraints.

4. Usability of ConGuess

To evaluate the usability of ConGuess, we have per-
formed a usability study with 10 participants (computer
science students on the bachelor level). For this purpose,
we have used the System Usability Scale (SUS) [12].
SUS is a widely used tool for evaluating the usability
of systems and software applications and it consists of
a questionnaire with 10 items. After using ConGuess
(without further explanations), the participants had to
rate their perception of the software on a 5-point Likert
scale. Following the SUS calculation scheme resulted in
an overall evaluation of 89.5 out of 100 which is an ex-
cellent SUS rating expressing clear understandability and
high willingness to use the system.

5. Threats to Validity

The results reported in this paper are based on the app
usage by bachelor-level students within an Artificial In-
telligence course. On the one hand, different educational
backgrounds could be expected by persons working in
industrial configurator projects. On the other hand, per-
sons in an early phase of their career could be in a similar
situation as students engaged in our study.

The settings analyzed in our study are limited in the
sense that further aspects such as constraint grouping,
i.e., constraint ordering, have not been analyzed in detail.
Furthermore, we did not compare alternative ways of
increasing the complexity level of individual configura-
tion tasks which is important since our goal is to create
a kind a flow where game players try to solve even more
configuration tasks. We regard these aspects as major
issues for future work.

6. Conclusion and Future Work

In this paper, we have presented ConGuess which is an
Android app supporting the learning of configuration
knowledge representations and underlying semantics.
The basic idea of ConGuess is that players learn con-
straint semantics on the basis of trying to solve CSPs. We
conducted an empirical study to better understand the
cognitive complexity of different constraint structures.

Major issues for future work are the following: (1)
we will analyze to which extent the grouping of con-
straints and corresponding variables can have an impact
on the overall understandability of a configuration task,
(2) based on the insights of our empirical study, we will
propose adaption operations on real-world configuration
knowledge bases and analyze related impacts on under-
standability (again, within the scope of empirical stud-
ies), (3) based on the results of further empirical studies,

we will try to adapt the complexity measures currently
integrated into the ConGuess configuration task gener-
ation. Improved complexity measures could result in a
more user-centered increase of configuration task com-
plexity and with this potentially also to a corresponding
improved learning experience.

References

[1] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen,
Knowledge-based Configuration - From Research
to Business Cases, Elsevier, 2014.

[2] A. Felfernig, S. Reiterer, M. Stettinger, J. Tiihonen,
Towards understanding cognitive aspects of config-
uration knowledge formalization, in: Vamos’2015,
ACM, New York, NY, USA, 2015, p. 117–123.

[3] A. Felfernig, M. Mandl, A. Pum, M. Schubert, Em-
pirical knowledge engineering: Cognitive aspects
in the development of constraint-based recom-
menders, in: Trends in Applied Intelligent Systems,
volume 6096 of LNCS, Springer, Berlin / Heidelberg,
2010, pp. 631–640.

[4] R. Raymer, Gamification: Using game mechanics
to enhance elearning, ELearn 2011 (2011).

[5] A. Hofbauer, A. Felfernig, ConGuess: A Learning
Environment for Configuration Tasks, in: ACM
SPLC’22, Association for Computing Machinery,
New York, NY, USA, 2022, p. 156–157.

[6] F. Rossi, P. van Beek, T. Walsh, Handbook of Con-
straint Programming, Elsevier, Amsterdam, The
Netherlands, 2006.

[7] A. Felfernig, M. Jeran, T. Ruprechter, A. Ziller, S. Re-
iterer, M. Stettinger, Learning games for configu-
ration and diagnosis tasks, in: 17th International
Configuration Workshop, volume 1453, CEUR, Vi-
enna, Austria, 2015, pp. 111–114.

[8] A. Felfernig, M. Schubert, C. Zehentner, An efficient
diagnosis algorithm for inconsistent constraint sets,
AIEDAM 26 (2012) 53–62.

[9] R. Reiter, A theory of diagnosis from first principles,
Artificial Intelligence 32 (1987) 57–95.

[10] C. Jefferson, W. Moncur, K. Petrie, Combination:
Automated generation of puzzles with constraints,
in: ACM Symposium on Applied Computing, ACM,
New York, NY, USA, 2011, pp. 907–912.

[11] E. Sepasi, K. Balouchi, J. Mercier, R. Lopez-Herrejon,
Towards a cognitive model of feature model com-
prehension: An exploratory study using eye-
tracking, in: ACM SPLC’22, Association for
Computing Machinery, New York, NY, USA, 2022,
p. 21–31. URL: https://doi.org/10.1145/3546932.
3546995. doi:10.1145/3546932.3546995.

[12] J. Brooke, SUS: A quick and dirty usability scale,
Usability Eval. Ind. 189 (1995).

https://doi.org/10.1145/3546932.3546995
https://doi.org/10.1145/3546932.3546995
http://dx.doi.org/10.1145/3546932.3546995

	1 Introduction
	2 The ConGuess Game
	3 Complexity of Constraint Types
	4 Usability of ConGuess
	5 Threats to Validity
	6 Conclusion and Future Work

