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Abstract
Feature models (FM) support the management of variability properties of software, products, and services. To enable feature
model configuration, these models have to be translated into a corresponding formal representation (e.g., a satisfiability or
constraint satisfaction representation). Specifically in interactive configuration, efficient response times are crucial. In this
paper, we show how to improve the performance of constraint solvers (supporting FM configuration) on the basis of exploiting
the concepts of collaborative filtering for recommending solver search heuristics (variable orderings and value orderings).
As a basis for our recommendation approach, we used data (configurations) synthesized from real-world feature models
using different state-of-the-art synthesis approaches. A performance analysis shows that, with heuristics recommendation,
significant improvements of solver runtime performance compared to standard solver heuristics can be achieved.
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1. Introduction
Feature models (FMs) are in wide-spread use for model-
ing variability properties [1, 2]. These properties can be
translated into a formal representation [3] to support var-
ious types of reasoning tasks, for example, in the context
of feature model analysis and feature model configura-
tion. In this paper, we focus on the aspect of feature
model configuration where users of a configuration sys-
tem define their preferences (e.g., in terms of intended
feature inclusions) and the feature model configurator
then tries to find a corresponding complete configuration
which defines inclusion or exclusion for each feature.

Feature model configuration needs to be efficient
which can become challenging specifically with large
and complex configuration knowledge bases. The major
means of improving the performance of solvers (specifi-
cally SAT and constraint solvers) is to employ different
search heuristics which can help to cut down the search
space as fast as possible. Following the idea of integrating
machine learning (ML) with constraint solving [4], we
propose to apply recommender systems [5], more specif-
ically, collaborative filtering [6], to recommend solver
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search heuristics for a new FM configuration task.
A major precondition for implementing such a ma-

chine learning approach is the availability of training
data that help to identify relevant heuristics. An issue in
this context is the availability of datasets – this cannot be
guaranteed specifically at the very beginningwhen an FM
configurator has not been used that often. An alternative
to datasets collected from real-world user interactions is
data synthesis [7, 8]. In this paper, we focus on develop-
ing and comparing different configuration data synthesis
strategies (see, e.g., Pereira et al. [8]) to gain deeper in-
sights regarding the impact of the used strategies on the
quality of the heuristics determined by our collaborative
filtering approach. As discussed in Pereira et al. [8] (the
focus of their work is performance prediction, for exam-
ple, in video encoding scenarios), performance prediction
is feasible, however, synthesizing high-quality and small
sample data is a challenging task (see also [9]).
There exist a couple of approaches to integrate ma-

chine learning with constraint solving focusing on the
aspect of identifying relevant heuristics on the basis of
given datasets – see, for example, Erdeniz et al. [10] and
Uta et al. [11]. These approaches focus on predicting
relevant attribute values (features) for a user and – at the
same time - improving constraint solver performance by
choosing appropriate variable value ordering heuristics. In
contrast to related work, we extend the recommendation
scope by also supporting the identification of efficient
variable orderings. At the same time, we analyze the im-
pact of different data synthesis strategies on the quality
of the recommended heuristics (which we regard as a
new contribution to the fields of feature modeling and
knowledge-based configuration).
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Figure 1: Example feature model of a survey software (based on Le et al. [12]).

The major contributions of this paper are the follow-
ing. (1) we show how to apply configuration space learn-
ing concepts in FM configurator performance optimiza-
tion. (2) our recommendation approach takes into ac-
count both, the recommendation of variable orderings
and variable value orderings. (3) we compare different
data synthesis strategies with regard to their applicability
in search heuristics selection. (4) our evaluation results
on the basis of real-world configuration (feature) models
[13, 14] indicate significant performance improvements.
The remainder of this paper is organized as follows.

In Section 2, we provide an example feature model with
the related constraint-based representation. In Section 3,
we introduce an approach to collaborative filtering based
recommendation of constraint solver search heuristics.
In Section 4, we provide an overview of the synthesis
approaches we have used in our recommendation set-
tings. Performance evaluation results are summarized
in Section 5. Threats to validity are discussed in Section
6. The paper is concluded with a discussion of future
research issues in Section 7.

2. Example Configuration Task
In the following, we introduce an example feature model
representing the variability properties of a survey soft-
ware (see Figure 1). Each configured survey software
must have included a corresponding license model (which
can be either advanced or basic). The features statistics
and ABtesting are optional ones, i.e., must not be part of
every configuration. Finally, each survey software con-
figuration must include a selected interaction mode (in
terms of the type of questions (feature QA) supported)
which consists of at least one out of question answering
(feature basicQA) and multimedia based question answer-
ing (feature multimediaQA).
The feature model in Figure 1 includes different re-

lationships and cross-tree constraints 𝑐𝑖 ∈ 𝐶. First,

each survey software configuration must include the
root feature (𝑐1 ∶ 𝑠𝑢𝑟𝑣𝑒𝑦 = 𝑡𝑟𝑢𝑒) and either an ad-
vanced or basic license (𝑐2 ∶ 𝑠𝑢𝑟𝑣𝑒𝑦 ↔ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 and
𝑐3 ∶ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 ↔ 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 ○∨ 𝑏𝑎𝑠𝑖𝑐).1 Furthermore, ABtest-
ing and statistics are optional (𝑐4 ∶ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 → 𝑠𝑢𝑟𝑣𝑒𝑦
and 𝑐5 ∶ 𝑠𝑡𝑎𝑡𝑖𝑠𝑡 𝑖𝑐𝑠 → 𝑠𝑢𝑟𝑣𝑒𝑦). Each selected ques-
tion mode must include at least one out of basic and
multimedia (𝑐6 ∶ 𝑄𝐴 ↔ 𝑠𝑢𝑟𝑣𝑒𝑦 and 𝑐7 ∶ 𝑄𝐴 ↔
𝑏𝑎𝑠𝑖𝑐𝑄𝐴 ∨ 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴). Finally, the FM includes a set
of cross-tree constraints: basic licenses are incompat-
ible with ABtesting (𝑐8 ∶ ¬(𝑏𝑎𝑠𝑖𝑐 ∧ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔)), the in-
clusion of ABtesting requires the inclusion of statistics
(𝑐9 ∶ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 → 𝑠𝑡𝑎𝑡𝑖𝑠𝑡 𝑖𝑐𝑠), and a basic license must
not be combined with a multimedia answering mode
(𝑐10 ∶ ¬(𝑏𝑎𝑠𝑖𝑐 ∧ 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴)).

Summarizing, our example feature model includes the
list of (Boolean-valued) features (variables 𝑣𝑖) 𝐹 = {𝑣1 ∶
𝑠𝑢𝑟𝑣𝑒𝑦 , 𝑣2 ∶ 𝑙𝑖𝑐𝑒𝑛𝑠𝑒, 𝑣3 ∶ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔, 𝑣4 ∶ 𝑠𝑡𝑎𝑡𝑖𝑠𝑡 𝑖𝑐𝑠, 𝑣5 ∶
𝑄𝐴, 𝑣6 ∶ 𝑏𝑎𝑠𝑖𝑐, 𝑣7 ∶ 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑, 𝑣8 ∶ 𝑏𝑎𝑠𝑖𝑐𝑄𝐴, 𝑣9 ∶
𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴}. Furthermore, the model includes the set
of constraints 𝐶 = {𝑐1..𝑐10}. These are the two major ele-
ments of an FM configuration task defined in terms of a
constraint satisfaction problem (CSP) (see Definition 1).

Definition 1 (FM Configuration Task). An FM con-
figuration task (𝑉 , 𝐶, 𝑅) can be defined as a CSP, where V
is a set of (Boolean-valued) variables 𝑉 = {𝑣1, ..., 𝑣𝑛} and
𝐶 = {𝑐1..𝑐𝑚} is a set of feature model constraints. Finally,
𝑅 = {𝑟1..𝑟𝑘} is a set of user requirements also represented
in terms of constraints (mostly variable assignments).

With a configuration task definition2, we can introduce
the concept of an FM configuration (Definition 2).

Definition 2 (FM Configuration). An FM configura-
tion for an FM configuration task (𝑉 , 𝐶, 𝑅) is an assign-
1○∨ denotes a logical xor.
2Without loss of generality, we focus on feature models and corre-
sponding Boolean variable domains.



Table 1
Solver search heuristics for solving a new configuration task (𝑡𝑎𝑠𝑘) can be determined by reusing the search heuristics already
applied to create the nearest neighbor (𝑁𝑁) configuration(s) (𝑖𝑑 = configuration identifier). In this example, the selected nearest
neighbor is configuration 3 – the corresponding search heuristics can be applied to solve the new FM configuration task. In
this context, H=highest value first and L=lowest value first.

Configuration Variable Ordering Value Ordering Runtime [ms]
id 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8 𝑣9

𝑐𝑜𝑛𝑓1 1 1 0 1 1 1 0 1 0 9 3 6 1 8 4 7 5 2 L L H L L H H H L 229.133
𝑐𝑜𝑛𝑓2 1 1 0 1 1 1 0 1 0 5 2 3 9 7 1 8 6 4 H L L L L H L L H 218.384
𝑐𝑜𝑛𝑓3 1 1 0 1 1 0 1 1 0 4 2 7 5 8 6 1 3 9 H H H H L H L L L 191.296
𝑐𝑜𝑛𝑓4 1 1 0 0 1 0 1 1 0 8 2 7 9 6 5 4 1 3 H L H H L H L L H 116.995

𝑡𝑎𝑠𝑘 ? 1 ? 1 ? ? ? ? ? ? → 4 2 7 5 8 6 1 3 9 ? → H H H H L H L L L ?

ment 𝑐𝑜𝑛𝑓 = {𝑣1 = 𝑣𝑎1 ∧ .. ∧ 𝑣𝑛 = 𝑣𝑎𝑛} where 𝑐𝑜𝑛𝑓 ∪ 𝐶 ∪ 𝑅
is consistent and every variable in 𝑉 has an assignment,
i.e., we assume assignment completeness.

Assuming a set of defined user requirements 𝑅 =
{𝑟1 ∶ 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 = 𝑡𝑟𝑢𝑒, 𝑟2 ∶ 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑟3 ∶
𝑏𝑎𝑠𝑖𝑐𝑄𝐴 = 𝑡𝑟𝑢𝑒} (i.e., users do not need to define
their preferences with regard to all features) could re-
sult in the following complete configuration 𝑐𝑜𝑛𝑓 =
{𝑠𝑢𝑟𝑣𝑒𝑦 = 𝑡𝑟𝑢𝑒, 𝑙𝑖𝑐𝑒𝑛𝑠𝑒 = 𝑡𝑟𝑢𝑒, 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝑑 = 𝑡𝑟𝑢𝑒, 𝑏𝑎𝑠𝑖𝑐 =
𝑓 𝑎𝑙𝑠𝑒, 𝐴𝐵𝑡𝑒𝑠𝑡𝑖𝑛𝑔 = 𝑡𝑟𝑢𝑒, 𝑠𝑡𝑎𝑡𝑖𝑠𝑡 𝑖𝑐𝑠 = 𝑡𝑟𝑢𝑒, 𝑄𝐴 =
𝑡𝑟𝑢𝑒, 𝑏𝑎𝑠𝑖𝑐𝑄𝐴 = 𝑡𝑟𝑢𝑒, 𝑚𝑢𝑙𝑡𝑖𝑚𝑒𝑑𝑖𝑎𝑄𝐴 = 𝑓 𝑎𝑙𝑠𝑒}.
Having introduced the concepts of a configuration

task and a corresponding configuration, we are now able
to discuss our collaborative filtering based constraint
solver search heuristics recommendation approach in
more detail.

3. Collaborative Search Heuristics
Recommendation

Our basic idea is to apply different types of nearest neigh-
bor based collaborative filtering [6] for the purpose of rec-
ommending relevant solver search heuristics (including
both, variable orderings (the order in which the solvers
tries to instantiate variables) and variable value orderings
also denoted as variable domain strategies (the order in
which the solver instantiates variable values) for a new
configuration task (see Definition 1).
Our used variable value orderings (i.e., variable do-

main strategies) are highest first (H) and lowest first (L),
i.e., the constraint solver starts with trying to instanti-
ating the highest or the lowest variable value first.3 For
the purposes of our experiments, we use different data
synthesis approaches [9] (see Section 4). Each entry of a
synthesized dataset represents a complete configuration
consistent with the constraints in 𝐶 and 𝑅 (see Definition
2). In addition to the feature settings (inclusion or exclu-
sion), each entry also includes information about (1) the
used variable ordering, (2) variable value ordering, and

3In our example, strategy 𝐻 first tries to include feature 𝑣𝑖, i.e., 𝑣𝑖 =
𝑡𝑟𝑢𝑒.

(3) runtime (in 𝑚𝑠) to find the corresponding configura-
tion (see Table 1). We use such entries to identify (reuse)
search heuristics for completing new configuration tasks.

k-nearest neighbors (k=1). Table 1 shows a simpli-
fied example of how to apply 𝑘𝑁𝑁 (𝑘 nearest neighbor)
based approaches for recommending search heuristics
for a new configuration task (in this example, we assume
𝑘 = 1). The table contains four (in our case synthesized)
entries of complete configurations including further in-
formation on the used solver search heuristics, i.e, vari-
able and variable value orderings. Finally, for each con-
figuration we have information about the corresponding
solver runtime (in 𝑚𝑠).
In this example, the new configuration task needs to

be solved. The idea is to identify nearest neighbor con-
figurations 𝑐𝑜𝑛𝑓𝑖 on the basis of the similarity between
the new configuration task and the available (complete)
configuration entries (𝑐𝑜𝑛𝑓1 – 𝑐𝑜𝑛𝑓4 in Table 1). Follow-
ing Formula 1 for determining the similarity between the
new configuration task and each 𝑐𝑜𝑛𝑓𝑖, configurations
𝑐𝑜𝑛𝑓1–𝑐𝑜𝑛𝑓3 have the same similarity, i.e., 𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓1)
= 𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓2) = 𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓3) = 1.0.4 In this con-
text, 𝑉 ′ denotes variables with associated specified user
requirements, i.e., those variables of 𝑉 which have a cor-
responding initial value assignment in the configuration
task definition (e.g., {𝑣2, 𝑣4} in Table 1).

𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓 ) =
|{𝑣𝑖 ∈ 𝑉 ′ ∶ 𝑣𝑎𝑙(𝑣𝑖, 𝑡𝑎𝑠𝑘) = 𝑣𝑎𝑙(𝑣𝑖, 𝑐𝑜𝑛𝑓 )}|

|{𝑣𝑖 ∈ 𝑉 }|
(1)

In this context, task (the initial user requirements) rep-
resents a partial configuration, since not every variable
needs to have an assigned value – assigned values are
assumed to represent user requirements 𝑟𝑖 ∈ 𝑅.

k-nearest neighbors (k>1). The k-nearest neighbor
based approach identifies the 𝑘 most similar configura-
tions 𝑐𝑜𝑛𝑓𝑖 compared to the current configuration 𝑡𝑎𝑠𝑘
(see Formula 1) and then chooses the configuration with

4𝑣𝑎𝑙(𝑣𝑖,) denotes the value of variable 𝑣𝑖.



the best solver runtime performance (which is then the
so-called nearest neighbor). Since 𝑐𝑜𝑛𝑓3 has the lowest
(best) runtime among the identified nearest neighbors, we
can reuse the solver search heuristics used to determine
𝑐𝑜𝑛𝑓3. If 𝑘 = 1, only one nearest neighbor is identified and
the corresponding solver search heuristics are applied
to the current configuration task. The major difference
between 𝑘 = 1 and 𝑘 > 1 is that in 𝑘 > 1 settings it could
be the case that a configuration with lower similarity
(see Formula 1) is selected due to a better corresponding
runtime performance.

k-nearest neighbors (k>1, weighted). The previ-
ously discussed k-nearest neighbor approach takes into
account the similarity between the current configura-
tion (task) and already existing configurations 𝑐𝑜𝑛𝑓𝑖. In
our experiments, we were also interested in the impact
of taking into account tradeoffs between configuration
similarity and solver runtimes (see Formula 2).

𝑠𝑖𝑚𝑡(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓 ) =
𝑚𝑎𝑥(𝑟𝑢𝑛𝑡𝑖𝑚𝑒) − 𝑟𝑢𝑛𝑡𝑖𝑚𝑒(𝑐𝑜𝑛𝑓 )

1 − 𝑠𝑖𝑚(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑛𝑓 ) + 𝜆
(2)

Similar to the k-nearest neighbor based approach (𝑘 >
1), this weighted approach (see Formula 2) as well identi-
fies configurations similar to the current configuration
(task), but then uses similarity as a weighting factor, i.e.,
not just selects the nearest neighbor with the best run-
time performance. This way, we determine those nearest
neighbors with a good runtime which are at the same as
similar as possible to the given configuration task.
In Formula 2, we have introduced a small constant 𝜆

to avoid division by 0 which could happen in situations
where the requirements in the given configuration task
are equivalent with the corresponding variable settings
in 𝑐𝑜𝑛𝑓, i.e., the similarity is 1.0. Finally, we want to
mention that max(runtime) denotes the highest (global)
runtime value used to represent the worst (highest) run-
time observed in the (FM-specific) synthesized data.

4. Used Data Synthesis
Approaches

Overall Synthesis Approach. Themethods we chose
for synthesizing configuration data are based on those dis-
cussed in Pereira et al. [9]. We have applied these synthe-
sis approaches in our constraint solver search heuristics
recommendation scenario for the purpose of generating
complete and consistent configurations, i.e., each vari-
able has a corresponding assignment and all assignments
are consistent with the constraints in 𝐶. As solver input,
we have generated a set of user requirements 𝑟𝑖 ∈ 𝑅 rep-
resenting around 10% of the features contained in the

corresponding feature model. For each variable, a cor-
responding variable value ordering heuristics has been
chosen randomly. Finally, we also chose a variable or-
dering for variables not contained in the generated set
of user requirements 𝑅. On the basis of this initial input
(randomly generated search heuristics and user require-
ments), a solver has been activated with a repetition
factor of 5 to determine the average runtime needed to
solve the defined setting (see also Tables 2 and 3). Fol-
lowing the overview of Pereira et al. [9], we have used
and evaluated the following data synthesis approaches.

Random Sampling. Random Sampling is one of the
most widely used methods to synthesize data for configu-
ration problems [15, 16, 17]. There are several variations
[9, 13] that can be differentiated with regard to the num-
ber generated samples. One of these variations generates
a fixed (pre-defined) number of configurations, regardless
of the properties of the underlying feature model. The
fixed number approaches we have tested in the context
of our evaluation are: 100, 200, 500, 1000, 2000 and 10000.
In addition to this rather static approach, we have

applied other approaches which take into account feature
model sizes. Random N focuses on generating 𝑁 random
configurations where 𝑁 equals the number of features in
the feature model. There also exist some variations of this
approach where the number of generated configurations
equals 2𝑁 (Random 2𝑁) or 3𝑁 (Random 3𝑁). Furthermore,
the number of configurations can also be systematically
reduced by introducing the synthesis variants Random
1
4N, Random

1
2N and Random 3

4N.

Heuristics Based Sampling. Other approaches are
based on heuristics for configuration generation.

Feature Frequency Heuristic (FFH) The Feature Fre-
quency Heuristic (FFH) [18] generates configurations fol-
lowing the strategy of ensuring that each feature occurs
at least a predefined times in the resulting configurations
(corresponding thresholds can also be defined per fea-
ture). In our evaluation, we have applied the (global)
feature-wise threshold values of 5, 10, and 20.

Feature Coverage Heuristic (FCH). FCH [19, 20, 18] tries
to ensure the presence of every feature combination of
size 𝑡 in the generated data. This approach could be
applied in different ways, for example, by generating
all possible 𝑡-way feature combinations. We used the
ACTS tool5 provided by [21], which generates so-called
covering arrays [22]. This way, we generated data sets
with 2-way and with 3-way coverage. Higher coverage
comes at very high computational costs for larger models
which forced us to omit corresponding synthetizations
with our used ACTS tool [21].

5https://csrc.nist.gov/projects/automated-combinatorial-testing-for-
software.



Table 2
Constraint solver performance with k-nearest neighbor based (following the nearest neighbor selection approach of Formula
1) search heuristics recommendations. In this context, the constraint solver performance of different feature models has
been evaluated. Compared to standard solver runtimes (without heuristics recommendations – see Table 4)) , we can observe
significant corresponding runtime improvements. Values in bold indicate the best configuration synthesis strategy, values
with a grey background the best corresponding 𝑘 value.

Linux UClinux-distribution Busybox WeaFQAS REAL-FM-11 MobileMedia
k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

N = 100 366.39 371.05 371.82 370.39 30.20 29.31 29.21 29.23 6.17 5.93 5.92 5.93 0.49 0.36 0.36 0.35 0.17 0.10 0.10 0.09 0.13 0.08 0.07 0.07
N = 200 371.71 374.69 374.33 372.28 30.13 30.72 30.08 30.08 6.02 6.07 6.21 6.30 0.37 0.36 0.37 0.38 0.07 0.07 0.07 0.07 0.06 0.05 0.05 0.05
N = 500 378.97 375.05 379.77 381.11 30.56 30.45 30.57 30.98 6.54 6.52 6.56 6.59 0.41 0.41 0.42 0.42 0.09 0.12 0.12 0.12 0.06 0.06 0.06 0.06
N = 1000 384.09 378.06 377.27 379.48 32.38 32.15 32.38 32.15 7.54 7.79 7.67 7.67 0.50 0.52 0.51 0.52 0.11 0.11 0.12 0.12 0.08 0.08 0.08 0.08
N = 2000 394.45 393.54 392.77 390.67 36.60 36.64 36.75 36.96 9.24 8.73 8.87 9.03 0.67 0.66 0.68 0.67 0.17 0.17 0.17 0.17 0.12 0.12 0.12 0.13
N = 10000 500.68 510.78 484.87 510.41 69.44 70.38 69.36 70.01 19.76 19.86 21.31 21.54 3.51 3.38 3.57 3.60 0.73 0.75 0.74 0.76 0.53 0.53 0.52 0.53

Random 1
4
N 406.34 387.72 386.92 389.04 31.55 31.79 31.52 31.46 6.17 6.14 6.19 6.12 0.34 0.34 0.34 0.34 0.06 0.06 0.06 0.06 0.04 0.04 0.03 0.04

Random 1
2
N 419.47 401.34 399.21 405.95 32.17 31.61 32.07 31.77 6.46 6.46 6.46 6.44 0.35 0.35 0.35 0.35 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random 3
4
N 422.74 424.84 426.05 450.48 33.25 33.40 33.32 33.15 6.79 6.73 6.75 6.73 0.35 0.36 0.36 0.36 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random N 444.35 440.96 438.66 438.72 34.62 34.45 34.79 34.50 6.99 7.03 7.04 7.04 0.36 0.37 0.37 0.37 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
Random 2N 525.98 537.85 534.80 513.28 42.60 41.66 40.95 41.43 8.12 8.37 8.48 8.47 0.39 0.39 0.40 0.40 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.04
Random 3N 632.08 643.38 615.72 635.11 48.20 47.78 48.31 48.44 9.73 9.77 9.90 9.76 0.42 0.42 0.42 0.43 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.05
FCH (2-Way) - - - - - - - - - - - - - - - - 0.06 0.06 0.06 0.05 0.04 0.04 0.04 0.03
FCH (3-Way) - - - - - - - - - - - - - - - - 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

FFH (5) 386.46 374.25 373.67 374.49 28.68 28.74 28.70 28.69 6.11 5.88 5.92 5.89 0.35 0.35 0.35 0.35 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FFH (10) 372.84 371.83 374.77 378.29 29.14 29.21 29.20 29.14 6.00 5.96 5.94 5.95 0.35 0.36 0.36 0.36 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FFH (20) 377.96 379.57 376.61 380.04 30.17 30.17 30.15 30.20 6.06 6.05 6.05 6.07 0.37 0.38 0.38 0.38 0.06 0.06 0.06 0.07 0.04 0.04 0.04 0.04

Table 3
Constraint solver performance with k-nearest neighbor based search heuristics recommendations (following the nearest
neighbor selection approach of Formula 2). Again, the constraint solver performance of different feature models has been
evaluated. Using this approach, we can observe further solver runtime improvements compared to the basic k-nearest neighbor
based approach. Note that for 𝑘 = 1 the performance values are the same as in Table 2 due to the fact that the same heuristics
are selected in this case.

Linux UClinux-distribution Busybox WeaFQAS REAL-FM-11 MobileMedia
k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20 k = 1 k = 5 k = 10 k = 20

N = 100 366.39 371.52 385.70 373.99 30.20 29.03 29.10 29.16 6.17 5.96 5.97 5.98 0.49 0.35 0.36 0.36 0.17 0.08 0.07 0.07 0.13 0.06 0.05 0.06
N = 200 371.71 374.70 376.70 377.71 30.13 30.14 30.10 30.87 6.02 6.06 6.04 6.14 0.37 0.37 0.37 0.38 0.07 0.07 0.07 0.07 0.06 0.05 0.05 0.05
N = 500 378.97 381.00 377.46 379.25 65.91 30.26 31.76 33.02 6.54 6.50 6.54 6.55 0.41 0.42 0.43 0.42 0.09 0.09 0.09 0.09 0.06 0.06 0.06 0.06
N = 1000 384.09 381.19 380.19 381.54 32.38 32.37 32.46 32.67 7.54 7.67 7.62 7.69 0.50 0.56 0.50 0.50 0.11 0.11 0.12 0.12 0.08 0.08 0.08 0.09
N = 2000 394.45 392.21 394.54 388.43 36.60 36.66 36.62 36.57 9.24 8.95 8.74 8.93 0.67 0.66 0.68 0.67 0.17 0.18 0.17 0.18 0.12 0.12 0.12 0.13
N = 10000 500.68 505.10 502.58 514.55 69.44 70.19 69.13 69.67 19.76 20.44 20.10 19.83 3.51 3.53 3.66 3.72 0.73 0.74 0.75 0.74 0.53 0.53 0.53 0.53

Random 1
4
N 406.34 389.73 391.04 391.56 31.55 32.02 31.82 32.04 6.17 6.10 6.11 6.13 0.34 0.34 0.34 0.35 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random 1
2
N 419.47 405.14 402.24 402.53 32.17 31.87 31.89 31.71 6.46 6.49 6.47 6.49 0.35 0.35 0.35 0.36 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random 3
4
N 422.74 423.54 426.13 421.33 33.25 33.64 33.39 33.82 6.79 6.75 6.74 6.77 0.35 0.36 0.36 0.37 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

Random N 444.35 442.24 441.59 440.81 34.62 34.34 34.60 35.09 6.99 7.00 7.00 7.01 0.36 0.37 0.37 0.38 0.06 0.06 0.06 0.07 0.04 0.04 0.04 0.04
Random 2N 525.98 528.67 546.50 515.19 42.60 41.43 41.10 42.04 8.12 8.41 8.52 8.60 0.39 0.39 0.40 0.40 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.05
Random 3N 632.08 641.79 630.38 636.14 48.20 47.70 48.23 47.99 9.73 9.39 9.47 9.51 0.42 0.43 0.43 0.44 0.07 0.07 0.07 0.07 0.04 0.04 0.04 0.05
FCH (2-Way) - - - - - - - - - - - - - - - - 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FCH (3-Way) - - - - - - - - - - - - - - - - 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04

FFH (5) 386.46 374.04 373.87 371.93 28.68 28.69 28.76 28.82 6.11 5.95 6.03 5.98 0.35 0.35 0.35 0.35 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FFH (10) 372.84 376.19 373.66 374.67 29.14 29.15 29.16 29.28 6.00 5.98 5.99 6.00 0.35 0.36 0.36 0.37 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04
FFH (20) 377.98 377.64 379.47 375.97 30.17 29.88 29.95 29.95 6.06 6.04 6.05 6.09 0.37 0.37 0.38 0.38 0.06 0.06 0.06 0.07 0.04 0.04 0.04 0.05

5. Evaluation
Overall Evaluation Approach. On the basis of the
discussed data synthesis and recommendations, we now
present the results of a performance evaluation. We have
compared solver runtimes with default solver settings
with our recommendation based approaches. For the
standard setting, we have measured the time needed by
the solver to find a solution (see Formula 3).

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒(𝑠𝑜𝑙𝑣𝑒𝑟) (3)

For settings including heuristics recommendation, the
runtime calculation also needs to take into account near-
est neighbor (NN) identification and heuristics recom-
mendation (see Formula 4).

𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒(𝑁𝑁)+𝑡𝑖𝑚𝑒(𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛)+𝑡𝑖𝑚𝑒(𝑠𝑜𝑙𝑣𝑒𝑟)
(4)

Overall, we have compared six different feature mod-
els6 which significantly differ in terms of the number of
variables and the number of corresponding feature model
constraints. Tables 2–3 provide an overview of the run-
time performance of the used constraint solver Choco7 in
scenarios where 10% of the user requirements have been
specified (randomly assigned) for the new configuration
task. To avoid evaluation biases, for each setting (syn-
thesizer strategy × feature model), we have generated
150 test configuration tasks. In addition, to avoid biases
in the training data set, we have generated 5 training
datasets for the mentioned settings. With this, we have
measured the average runtime needed for solving the
configuration task (see also Formulae 3 – 4).

Comparison of Synthesis Strategies. Independent
of the used synthesis strategy, solver performance can be

6See github.com/diverso-lab/benchmarking [13] and the S.P.L.O.T.
repository [14].

7See choco-solver.org.



Table 4
Feature models used for evaluating the different heuristics rec-
ommendation approaches (also including the standard solver
runtime (in milliseconds) needed for calculating a solution for
a configuration task).

Model |𝑉 | |𝐶| solver runtime [ms]

Linux 6467 13972 771.93
uClinux-distribution 1580 1793 65.91
busybox 854 905 13.96
WeaFQAS 179 100 1.30
REAL-FM-11 67 64 0.49
mobilemedia 43 32 0.07

significantly improved with search heuristics recommen-
dation, for example, in the context of the Linux feature
model (see Table 4), runtimes can be reduced by half.
The analysis of the different data synthesis approaches
showed that approaches generating smaller datasets in
general perform best which can partially explained by the
fact that the effort of determining nearest neighbors is re-
duced. The best performing synthesis approach for small
models (REAL-FM-11 Model and MobileMedia Model) is
Feature Coverage Heuristic (2-way) – due to computa-
tional overheads, evaluations for larger models have been
omitted. For the remaining settings, in the majority of
the cases the best performing synthesis approach is the
Feature Frequency Heuristic (FFH) with threshold 𝑡 = 5.

Comparison of K-Nearest Neighbor Approaches.
When comparing k-nearest neighbor and weighted k-
nearest neighbor based heuristics recommendation, we
can observe that both approaches result in a similar solver
performance, however, weighted k-nearest neighbor ap-
pears to be the more stable approach which is less sus-
ceptible to outliers (in terms of low solver performance).

Comparison of 𝑘-Values. When comparing different
𝑘-values, we can observe a tendency that more complex
featuremodels (and corresponding constraint satisfaction
problems) tend to perform better with increasing 𝑘-sizes.
This can be partially explained by the fact that larger
models (with larger configuration/solution spaces) need
a higher k-value for achieving a certain coverage of the
search space. On the other hand, the additional efforts to
be taken into account for increasing k-sizes (e.g., in terms
of additional efforts in nearest neighbor determination)
can to some extent be compensated by higher-quality
variable (value) ordering heuristics.

6. Threats to Validity
The major objective of the presented work is constraint
solver optimization, however, the presented approach
could also be applied in other application domains such

as operating system optimization and the optimization
of production schedules. We regard corresponding evalu-
ations as a major focus of our future work. We are aware
of the variety of FM knowledge representations – not
all of these representations will directly profit from the
concepts presented in this paper (since we focused on
specific constraint solver heuristics). On the one hand,
we regard related developments, i.e., learning other types
of search heuristics, as a major focus of future research.
On the other hand, we want to emphasize that the pre-
sented collaborative recommendation approaches can be
applied as such in other settings with a focus on the reuse
of reasoning knowledge. We want to emphasize that we
intentionally focused on comparing (memory-based) col-
laborative recommendation approaches. Future work
will include evaluations with model-based (e.g., neural
networks) collaborative recommendation approaches. Fi-
nally, we are also aware of different types of paralleliza-
tion approaches helping the improve search efficiency
(see, for example, [23, 24]). We regard a direct compari-
son with such approaches a major task for future work.

7. Conclusions
In this paper, we have presented an approach to recom-
mend constraint solver search heuristics (variable order-
ings as well as variable values orderings) which help
to improve the performance of constraint solver based
feature model configuration. We have applied and com-
bined different types of data synthesis strategies and cor-
responding collaborative recommendation approaches
which have been used as a basis for recommending search
heuristics for new feature model configuration tasks. The
results of our performance evaluation show that an ap-
proach to the recommendation of search heuristics com-
bined with a well-fitted data synthesis approach can lead
to significant performance improvements in feature con-
figuration (in our evaluation settings, we could observe
significant performance improvements of around 50%
(and more) compared to standard solver runtimes). Major
issues for future work are the evaluation of our approach
in further domains (e.g., operating systems optimization)
and the development/inclusion of model-based recom-
mendation approaches.
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