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Abstract
In many scenarios, configurators support the configuration of a solution that satisfies the preferences of a single user. The
concept of multi-configuration is based on the idea of configuring a set of configurations. Such a functionality is relevant
in scenarios such as the configuration of personalized exams, the configuration of project teams, and the configuration of
different trips for individual members of a tourist group (e.g., when visiting a specific city). In this paper, we exemplify the
application of multi-configuration for generating individualized exams. We also provide a constraint solver performance
analysis which helps to gain some insights into corresponding performance issues.
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1. Introduction
Configuration is the process of assembling basic compo-
nents into a complex product while taking into account a
set of constraints [1, 2, 3, 4]. Most existing configurators
are based on the assumption that a solution (configu-
ration) is developed for a single user. On the contrary,
group-based configuration [5, 6] focuses on the configu-
ration of a solution for a group of users. Such a config-
uration must satisfy the preferences of each individual
user as much as possible [7, 8]. Group-based configura-
tion can be further extended to allow the configuration
of a set of solutions based on the preferences of one or
multiple users. Such a multi-configuration problem [9]
includes a set of constraints specifying restrictions with
regard to (1) the combination of multiple solutions and (2)
properties of a specific solution. Scenarios including such
configuration sets may benefit from multi-configuration.
Related example scenarios are the following.
Multi-exam configuration. individual exams are con-

figured for each student, where related constraints are
specified by instructors and possibly also students. A
configurator can support instructors during the exam
preparation phase and helps in the prevention of cheat-
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ing through the generation of individualized exams [10].
Project team assignment. persons are assigned to teams

such that each team has the expertise to successfully com-
plete the corresponding project (assigned to the team).
In this context, fairness aspects can play a role, for ex-
ample, each team should have at least similar chances to
complete a project within pre-defined time limits [9].
Generation of test cases. The automated generation

of test cases can be considered as a multi-configuration
problem, where input values need to be generated in such
a way that given coverage criteria are fulfilled [11].
Holiday planning. Members of tourist groups often

do not share the same interests during excursions [12],
i.e., which sightseeing destinations to visit. Therefore, a
configurator could configure different trips for subgroups
of tourists based on their preferences.

Configuration space learning. Many (software) systems
(e.g., operating systems) offer a high degree of configura-
bility. In this context, it is difficult to find the optimal
configuration settings [13] also due to the fact that it is
impossible to test all possible settings to find the optimal
one. Multi-configuration can support the identification
of test configurations that help to learn dependencies
between configuration parameters.
In the context of multi-exam configuration, we have

built a software library that helps to configure exams.
Example inputs are the number of examinees, a pool of
questions, and a set of constraints specifying preferences
of instructors and examinees. The outcome is a set of
questions for each examinee. Constraint solving in our
implementation is based on the Choco constraint solver.1

In this paper, we show how the problem of multi-exam
configuration can be represented as a constraint satisfac-
tion problem (CSP) [14]. We exemplify different types of
constraints supported by our configurator and also show

1https://choco-solver.org/
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how the preferences of students can (potentially) be taken
into account. In order to analyze constraint solver per-
formance, we evaluate the runtime performance of an
open source constraint solver (Choco) on the basis of a
typical real-world exam configuration scenario.
The remainder of this paper is organized as follows.

In Section 2, we introduce a definition of a multi-
configuration task and provide an example from the do-
main of multi-exam configuration. In this context, we
also introduce and exemplify different constraint types.
Thereafter, in Section 3, we evaluate the performance
of Choco when solving multi-exam configuration tasks
also including a performance analysis when solving a
real-world configuration task. Threats to validity are
discussed in Section 4. The paper is concluded with a
discussion of open research issues in Section 5.

2. Working Example
We now give a basic definition of a multi-configuration
task (see Definition 1) (see [9]) and show howmulti-exam
configuration tasks can be introduced correspondingly.

Definition 1. A multi-configuration task can be defined
as a tuple (𝑉 , 𝐷, 𝐶) with 𝑉 = ⋃{𝑣𝑖𝑗} is a set of finite do-
main variables (𝑣𝑖𝑗 is variable 𝑗 of configuration instance
𝑖), 𝐷 = ⋃{𝑑𝑜𝑚(𝑣𝑖𝑗)} a set of corresponding domain defini-
tions, and 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑣} a set of constraints.

In the following, wewill use this definition to introduce
the task for multi-exam configuration and outline what
constraint types are supported by our configurator. In
this context, the set of constraints 𝐶 can be defined by
users represented by instructors and also students (where
this is intended).

2.1. Multi-exam configuration
Following Definition 1, a multi-exam configuration task
can be defined as follows.

• 𝑉 = {𝑞11..𝑞𝑛𝑚, 𝑞11.𝑇1..𝑞11.𝑇𝜋, .., 𝑞𝑛𝑚.𝑇1..𝑞𝑛𝑚.𝑇𝜋}
where 𝑞𝑖𝑗 is question 𝑗 of the exam of student 𝑖, 𝑛 is
the number of exams (students), 𝑚 is the number
of questions per exam, 𝑞𝑖𝑗.𝑇𝑘 denotes the value of
the k-th question property of question 𝑞𝑖𝑗, and 𝜋
represents the number of question properties per
question (in our case, 𝜋 = 6). Our configurator
supports the following question properties:

1. topic - topic of the question
2. level - difficulty level of the question
3. min-duration - minimum estimated time

needed to answer the question
4. max-duration - maximum estimated time

needed to answer the question

5. type - type of the question (e.g. single/mul-
tiple choice, assignment task, etc.)

6. points - maximum number of points re-
warded for correct answers

• 𝐷 = {𝑑𝑜𝑚(𝑞11)..𝑑𝑜𝑚(𝑞𝑛𝑚), 𝑑𝑜𝑚(𝑞11.𝑇1)..𝑑𝑜𝑚(𝑞11.𝑇6),
.., 𝑑𝑜𝑚(𝑞𝑛𝑚.𝑇1)..𝑑𝑜𝑚(𝑞𝑛𝑚.𝑇6)} where 𝑑𝑜𝑚(𝑞𝑖𝑗) =
{1..Ω}, with Ω being the total number of questions
in the question pool, and 𝑑𝑜𝑚(𝑞𝑖𝑗.𝑇𝑘) is a question
property domain (one out of the following):

1. dom(topic) = {1..𝜂} where 𝜂 is the number
of defined question topics

2. dom(level) = {1..𝜇} where 𝜇 is the number
of defined question complexity levels

3. dom(min-duration) = {1..𝜏 } with 𝜏 indicat-
ing the maximum specifiable value

4. dom(max-duration) = {1..𝜅} with 𝜅 indicat-
ing the maximum specifiable value

5. dom(type) = {1..𝜃} where 𝜃 is the number
of defined question types

6. dom(points) = {1..𝜙} where 𝜙 is the maxi-
mum amount of points

• 𝐶 = {𝑐1..𝑐𝑣} where 𝑐𝛽 is the constraint identifier
and 𝑣 is the number of constraints

Importantly, depending on the question 1..Ω assigned
to a question variable 𝑞𝑖𝑗, a set of corresponding question
properties must hold, for example, if question 𝑞11 = 1,
corresponding restrictions such as 𝑞11 = 1 → 𝑞11.𝑡𝑜𝑝𝑖𝑐 =
𝐴 indicate the relevant question properties. In Subsection
3.2, we explain in which way we support this aspect in
our configuration library. Furthermore, for each student-
specific exam 𝑖, we need to include an alldifferent(𝑞𝑖1..𝑞𝑖𝑚)
constraint to avoid situations where a questions is as-
signed to the same exam twice. In our implementation,
this aspect is taken into account on the basis of set vari-
ables (see also Subsection 3.2).

2.2. Instructor constraints
Instructor constraints (defined by instructors) in 𝐶 re-
strict the set of questions that may or may not appear
in exams. Each exam must fulfil all of these constraints.
We distinguish between two types of related constraints:
intra-exam and inter-exam constraints.

2.2.1. Intra-exam constraints

Intra-exam constraints restrict which questions are eligi-
ble for being part of an exam. Such constraints refer to
each individual exam. A simple form of intra-exam con-
straints is to directly define a specific question property.
For example, let us assume that up to now a course has
covered only one (the first) topic (𝐴). As a consequence,



the instructor requires that only questions belonging to
topic 𝐴 are part of the first exam (see Formula 1).

∀𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐴 (1)

Furthermore, we might want to restrict the complex-
ity level of questions. For example, assuming that four
different question complexities exist, for the final exam
the instructor would like to increase the overall exam
complexity using an intra-exam constraint specifying
that all questions of each exam must have a complexity
level of at least 2 (see Formula 2).

∀𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙 ≥ 2 (2)

Intra-exam constraints allow instructors to arbitrarily
combine multiple constraints with logical operators. For
example, since multiple choice questions can generally
be answered rather quickly, an instructor could require
that every multiple choice question is of at least difficulty
level 3 (see Formula 3 where we assume question type 3
indicates multiple choice questions).

∀𝑞𝑖𝑗 ∈ 𝑉 ∶ (𝑞𝑖𝑗.𝑡𝑦𝑝𝑒 = 3 ⟹ 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙 ≥ 3) (3)

In many cases, instructors would like to be able to
specify intra-exam constraints on a more granular level.
It is possible to combine intra-exam constraints with a
corresponding scope. Constraint scopes enable instruc-
tors to specify how many questions per exam need to
satisfy a given constraint. To illustrate this aspect, we
will continue our previous example (see Formula 1). By
the time the next topic (topic 𝐵) is covered in the course,
the students will have a follow-up exam consisting of 10
questions. The instructor now wants to focus mainly on
the new topic. Therefore, they specify constraints such
that for each exam only 2 questions belong to topic 𝐴
and the remaining 8 to topic 𝐵 (see Formula 4 and 5).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐴}| = 2) (4)

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐵}| = 8) (5)

Constraint scopes also support lower and/or upper
bounds, for example, the instructor would like to keep the
follow-up exam rather simple. For this reason, between
5 and 10 questions of each exam should be easy to solve,
which is indicated by complexity level 1 (see Formula 6).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(5 ≤ |{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙 = 1}| ≤ 10) (6)

Instructors may also specify constraint scopes using
percentages in order to describe which amount of ques-
tions per exam must satisfy the question property con-
straint. For example, only between 10 and 20 percent of
questions per exam should be solvable in less than five
minutes (see Formula 7).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(0.10 ≤
|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑚𝑖𝑛-𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 < 5}|

𝑚
≤ 0.20)

(7)
Intra-exam constraints also support aggregations. In

the context of our evaluation settings, we support the
functions sum, average, and distinct count. For their ap-
plication, see the examples in Formulas 8–10.

1. Example (sum): The total amount of points per
exam is 100 (see Formula 8).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(
𝑚
∑
𝑗=1

𝑞𝑖𝑗.𝑝𝑜𝑖𝑛𝑡𝑠 = 100) (8)

2. Example (average): The average complexity level
of each exam is between 2 and 3. (see Formula 9).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(2 ≤
∑𝑚

𝑗=1 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙
𝑚

≤ 3) (9)

3. Example (distinct count): Each exam consists of
at least 3 different question topics (Formula 10).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐}| ≥ 3) (10)

2.2.2. Inter-exam constraints

Similar to intra-exam constraints, inter-exam constraints
restrict which questions may be part of exams. However,
they constrain how often certain question or question
properties may or may not appear in the entire exam con-
figuration. Therefore, inter-exam constraints depend on
all exams combined, instead of every exam individually.
Such constraints count, for example, how many exams
have at least one question that fulfills a given constraint.
This sum can be lower and/or upper bounded. For exam-
ple, we assume that a specific question 𝜉 is part of at least
5 exams but at most 10 (see Formula 11).

5 ≤ |{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗 = 𝜉 }| ≤ 10 (11)

As a special case of inter-exam constraints, instructors
can restrict the degree of question overlap across exams,
i.e., the number of questions that exams have in com-
mon. This is especially useful to prevent the generation
of identical or very similar exams. The degree of overlap
can be lower and upper bounded in order to restrict the



minimum and maximum amount of questions that pairs
of exams may share. For example (see Formula 12), the
upper bound denotes that no pair of exams exists which
shares more than 5 questions, whereas the lower bound
states that every pair of exams must share at least 2 ques-
tions. This might be useful to create a sense of fairness
among students but might lead to cheating. 𝑒𝜆 represents
a set of questions comprising all questions of exam 𝜆.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑗=1

(2 ≤ |𝑒𝑖 ∩ 𝑒𝑗| ≤ 5) (𝑖 ≠ 𝑗) (12)

The amount of exam pairs to be constrained can be
further decreased in the context of onsite exams where
a pre-defined lecture hall’s seating plan (chart) is speci-
fied. One goal in such scenarios is to prevent cheating
of students positioned in a neighborhood which can be
achieved on the basis of constraints avoiding question
overlaps in the case of students located next to each other.

Given is the following lecture hall with 5 rows and 8
seats per row (see Figure 1).

Figure 1: lecture hall seating: seat 34 and its neighbors.

The seats are labeled with the letter s and two digits.
The first digit represents its row (top to bottom) and the
second digit its position in the row (left to right). We
assume no neighboring exams may share even a single
question (see Formula 13), where 𝑘 is the number of neigh-
bors of exam 𝑖, 𝑒𝑖 is the question set assigned to exam 𝑖
(student 𝑖), and 𝑓 (𝑖, 𝑗, 𝑠) describes the set of questions of
𝑖’s j-th neighboring exam according to seating chart 𝑠.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

𝑘
⋀
𝑗=1

(|𝑒𝑖 ∩ 𝑓 (𝑖, 𝑗, 𝑠)| = 0) (13)

This allows identical exams in the configuration but
never for students right next to each other. In order to
provide a better understanding of how many constraints
approximately need to be added per seat, we have high-
lighted seat 𝑠34 (dark gray) and its neighbors (light gray)
as an example (see Figure 1). This particular seat has 8
neighbors requiring 8 constraints to be added.

2.3. Student constraints
Student constraints in 𝐶 can be specified by each student
individually. They constrain only the student’s exam, no
other exams are affected. Student constraints can only
further narrow down instructor constraints.
Example: The instructor specifies a constraint such

that between 20% and 50% of the questions of each exam
must belong to topic 𝐴 (see Formula 14).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(0.20 ≤
|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐴)}|

𝑚
≤ 0.50)

(14)
Student 𝑎 decides to restrict this constraint even further

so that only a maximum of 25% of questions of their exam
belong to topic 𝐴 (see Formula 15).

|{𝑞𝑎𝑗 ∈ 𝑉 ∶ 𝑞𝑎𝑗.𝑡𝑜𝑝𝑖𝑐 = 𝐴)}|
𝑚

≤ 0.25 (15)

3. Evaluation
We now present a performance analysis of our multi-
configuration setting.2

3.1. Real world example
We assume that (1) 450 students participate in an exam
and (2) a question pool of 45 questions individually asso-
ciated with one out of four different topic areas (topics) is
available. Each exam should consist of 𝑚 = 10 questions.
We define the following constraints (𝐶):

1. Each exam should include questions related to at
least 2 different topics.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗.𝑡𝑜𝑝𝑖𝑐}| ≥ 2)

2. There is at most one multiple choice question.3

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑡𝑦𝑝𝑒 = 3}| ≤ 1)

3. 10% – 20% of the questions are assigned to com-
plexity level 4 being the most complex one.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(0.10 ≤
|{𝑞𝑖𝑗 ∈ 𝑉 ∶ 𝑞𝑖𝑗.𝑙𝑒𝑣𝑒𝑙 = 4}|

𝑚
≤ 0.20)

4. Each exam should include questions resulting in
40 points in total.

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

(
𝑚
∑
𝑗=1

𝑞𝑖𝑗.𝑝𝑜𝑖𝑛𝑡𝑠 = 40)

2A link to the source code of our configuration approach will be
provided in the final paper version.

3Question type 3 was assumed to be multiple choice.



5. Neighboring exams share at most 2 questions (as-
suming a hall 𝑠 with 22 rows and 21 seats/row).

𝑛(#𝑒𝑥𝑎𝑚𝑠)
⋀
𝑖=1

𝑘
⋀
𝑗=1

(|𝑒𝑖 ∩ 𝑓 (𝑖, 𝑗, 𝑠)| ≤ 2)

Considering these specific requirements, the configu-
rator yielded a solution in about one second.

3.2. Dealing with flexible upper bounds
Instead of relying on a constant number of questions per
student exam, it is also possible to support flexible lower
and upper bounds. We support this aspect by utilizing
Choco set variables. Every student exam includes a set
of questions. The domain of a set variable is (implicitly)
defined by lower and upper bound sets. The lower bound
is a set of questions that each exammust include, whereas
the upper bound defines the maximum possible question
set. In our case, the lower bound is empty and the upper
bound equals the question pool.

A varying number of questions per exam could trigger
the need for further instructor constraints, for example, to
restrict the allowed number of questions. Let us assume
a defined question pool with Ω = 3 questions ({1, 2, 3})
and 𝑛 = 2 exams (𝑒1 and 𝑒2) represented as Choco set
variables (model is a Choco model object).

e1 = model.setVar(lb:{}, ub:{1, 2, 3})
e2 = model.setVar(lb:{}, ub:{1, 2, 3})

Now, we want to specify that each exam 𝑒𝑖 (of student 𝑖)
needs to include at least two and at most three questions.
In Choco, this constraint would be defined as follows.

e1.setCard(model.intVar(2, 3))
e1.setCard(model.intVar(2, 3))

In this simplified setting, the possible solution sets for
both, 𝑒1 and 𝑒2 are: {1, 2}, {1, 3}, {2, 3}, and {1, 2, 3}.

If we also want to define restrictions on allowed ques-
tion properties, the solver needs to know the question
properties of each individual question. For scalability
reasons, we avoid to define question/property relation-
ships on the basis of constraints. Instead, we support a
key-value data structure that allows the identification
of question properties on the basis of the corresponding
question 𝐼𝐷 ∈ {1..Ω}. Given such a structure, we are now
able to define constraints referring to question properties,
for example: in each exam, the number of questions of
topic 𝐴 is exactly 2.
In Choco, no related built-in constraints exist. We

have defined a custom constraint by extending the Prop-
agator class and implemented the two required methods
propagate and isEntailed.4 The former is called in each it-
eration of the solving process. It tries to find solutions by
4A GitHub source code reference will be included in the final paper.

counting the number of questions that belong to the spec-
ified topic. If the current branch of the solving process
cannot satisfy the constraint, a contradiction is indicated.
When taking into account this constraint, the possible
solutions for 𝑒1 and 𝑒2 are {1, 2, 3} and {1, 3}.

3.3. Evaluation with synthesized data
We have also evaluated the solver performance with syn-
thesized multi-exam configuration tasks along the dimen-
sions of number of questions and number of exams. Each
task utilizes the same 5 constraints as discussed in Subsec-
tion 3.1. We choose the lecture hall size depending on the
amount of exams 𝑛, using the formula ⌈√𝑛⌉, since this is a
fairly simple way to assure that all students will fit in the
lecture hall and to keep a good ratio between rows and
seats per row. The results of this performance evaluation
are summarized in Table 1 showing acceptable runtime
performances in the context of typical exam settings as
well as extreme cases of around 1000 questions and up
to 1000 students inducing solver runtimes up to nearly
3 minutes. Notice that a smaller question pool size does
not always result in faster runtime.

4. Threats to Validity
In the context of the reported evaluation, we have ap-
plied the standard settings of the used constraint solver.
A major topic of further work is to further improve run-
time performance on the basis of different approaches
supporting the learning of solver search heuristics (see,
e.g., [15]). Fairness is a crucial aspect to be taken into
account when it comes to the automated generation of
exams. In this work, we have taken this aspect into ac-
count a.o. on the basis exam-specific criteria regarding
the percentage of to-be-included questions that are re-
lated to a specific complexity level. For future work, we
plan to further refine this aspect, for example, on the
basis of optimization functions that help to balance the
complexity of individual exams on a more fine-grained
level. Finally, in real-world settings, we often have to deal
with situations where a given set of constraints is incon-
sistent, i.e., no solution could be identified. In our future
work, we will integrate corresponding repair concepts
which will help users to find ways out from the so-called
no solution could be found dilemma. Such approaches can
be based o.a. on model-based diagnosis [16].

5. Conclusions
In this paper, we have introduced multi-configuration as
a useful approach in scenarios requiring solution set con-
figuration, for example, exam configuration and project



Table 1
Constraint solver (configurator) performance based on synthesized settings differing in terms of number of questions and
number of student-specific exams using the constraints introduced in Subsection 3.1. In this context, 𝑠=seconds and 𝑚=minutes.
Cells without unit of measurement represent runtimes in 𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠.

Exams
1 5 10 25 50 75 100 250 500 750 1000

25 14,33 328,33 397,67 349,00 425,33 475,67 516,00 1183,33 3340,33 6,30s 10,10s
50 21,67 34,00 80,33 100,67 143,33 153,00 183,33 448,67 1231,33 2572,33 3769,00
75 26,67 46,33 63,00 88,33 155,33 221,33 234,00 686,67 1689,00 3387,00 5,66s
100 23,67 55,33 80,33 161,00 172,67 318,00 314,00 849,33 2345,00 4899,00 7,36s
150 36,00 93,67 102,67 193,67 301,00 462,00 485,00 1163,33 3751,00 7,08s 12,80s
250 109,00 146,33 185,33 383,33 562,67 725,33 934,33 2540,67 7,21s 14,38s 20,98s
500 114,00 269,33 407,33 878,00 1638,33 2174,33 3020,33 7,64s 19,27s 35,75s 55,30s
750 168,33 415,67 719,67 1677,33 3163,33 5,02s 5,09s 15,92s 33,41s 1,14m 1,50m

Q
ue

st
io
ns

1000 250,33 651,67 1052,67 2942,67 5,01s 8,08s 9,04s 27,18s 1,06m 1,81m 2,67m

team configuration. In the context of multi-exam config-
uration, we have shown a corresponding configuration
task representation as a constraint satisfaction problem.
We have evaluated the performance of the proposed ap-
proach on the basis of an example real-world configura-
tion task as well as a collection of synthesized configura-
tion tasks (differing in terms of the number of pre-defined
questions and the number of ”to be generated” exams).
Our future work will include the integration of further
concepts supporting solver performance optimization.
Furthermore, we will include features, for example, in
terms of optimization functions, that help to take into ac-
count aspects such as fairness in a more explicit fashion.
Finally, we plan to include concepts that will allow us
to take into account historical data, for example, when
generating a set of ”new” exams, the frequency of ques-
tions already ”used” in previous exams should be taken
into account in order to avoid situations where specific
questions are posed too often.
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